Skip to main content

Pharmacology of Adrenaline, Noradrenaline, and Their Receptors

  • 684 Accesses

Abstract

Adrenaline and noradrenaline are important catecholamines of the biological system, responsible for the regulation of major functions of the body via their action on the brain. This noradrenaline is the chief neurotransmitter of the sympathetic nervous system, whereas adrenaline is an important metabolic hormone, known to play a vital role in the cardiovascular system and a mediator of the fight-or-flight response. These catecholamines act in the system through the membrane-bound GPCRs, adrenergic receptors (ARs). Two major classes of ARs, α-ARs and β-ARs, facilitate a number of functions at central and peripheral sites. There are two subtypes of α-ARs (α1-AR and α2-AR), whereas three different subtypes of β-ARs have been identified—β1-AR, β2-AR, and β3-AR. Based on their role, different AR modulators have been introduced clinically for their therapeutic application. In this chapter, we focus on the pharmacology of the two catecholamines through their action on different ARs within the biosystem and the modulators of ARs towards the treatment of potentially life-threatening conditions.

Keywords

  • Adrenaline
  • Noradrenaline
  • Adrenergic receptors
  • Agonists
  • Antagonists
  • Biological function

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-981-15-3556-7_4
  • Chapter length: 36 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   219.00
Price excludes VAT (USA)
  • ISBN: 978-981-15-3556-7
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   279.99
Price excludes VAT (USA)
Hardcover Book
USD   279.99
Price excludes VAT (USA)
Fig. 4.1
Fig. 4.2
Fig. 4.3

Abbreviations

AR:

Adrenergic receptor or adrenoceptor

BP:

Blood pressure

BPH:

Benign prostatic hyperplasia

cAMP:

Cyclic adenosine monophosphate

cGMP:

Cyclic guanosine monophosphate

CHF:

Congestive heart failure

CNS:

Central nervous system

GIT:

Gastrointestinal tract

GPCRs:

G-protein-coupled receptors

HT:

Hydroxytryptamine

KO:

Knockout

L-DOPA:

L-dihydroxyphenylalanine

MDMA:

Methylenedioxymethamphetamine

mRNA:

Messenger ribonucleotide

NO:

Nitric oxide

PKA:

Protein kinase A

TM:

Transmembrane

References

  • Abel J (1899) On epinephrin, the active constituent of the suprarenal capsule and its compounds. Am Physiol Soc 3–4:iii–iiv

    CrossRef  Google Scholar 

  • Adami M, Coruzzi G, Sotirov E et al (2003) Pharmacological evidence for beta3 adrenoceptors in the control of rat gastric acid secretion. Dig Dis Sci 48:334–339

    CrossRef  Google Scholar 

  • Addison T (1855) On the constitutional and local effects of disease of the supra-renal capsules. In: 1st edn. Samuel Highley, London, pp 1793–1860

    Google Scholar 

  • Ahlquist RP (1948) A study of the ADRENOTROPIC receptors. Am J Physiol Content 153:586–600. https://doi.org/10.1152/ajplegacy.1948.153.3.586

    CAS  CrossRef  Google Scholar 

  • Altman JD, Trendelenburg AU, MacMillan L et al (1999) Abnormal regulation of the sympathetic nervous system in α 2A -adrenergic receptor knockout mice. Mol Pharmacol 56:154–161

    CAS  CrossRef  Google Scholar 

  • Amobi NIB, Guillebaud J, Kaisary AV et al (2002) Discrimination by SZL49 between contractions evoked by noradrenaline in longitudinal and circular muscle of human vas deferens. Br J Pharmacol 136:127–135

    CAS  CrossRef  Google Scholar 

  • Arch JR, Kaumann AJ (1993) Beta 3 and atypical beta-adrenoceptors. Med Res Rev 13:663–729

    CAS  CrossRef  Google Scholar 

  • Arch JRS, Ainsworth AT, Cawthorne MA et al (1984) Atypical β-adrenoceptor on brown adipocytes as target for anti-obesity drugs. Nature 309:163–165

    CAS  CrossRef  Google Scholar 

  • Awatramani GB, Price GD, Trussell LO (2005) Modulation of transmitter release by presynaptic resting potential and background calcium levels. Neuron 48:109–121

    CAS  CrossRef  Google Scholar 

  • Babin-Ebell J, Gliese M (1995) Extraneuronal uptake of noradrenaline in human tissue (uptake2). Heart Vessel 10:151–153

    CAS  CrossRef  Google Scholar 

  • Baez M, Garg D, Jallad N, Weidler D (1986) Antihypertensive effect of doxazosin in hypertensive patients: comparison with atenolol. Br J Clin Pharmacol 21:63S–67S

    CrossRef  Google Scholar 

  • Baker JG (2005) The selectivity of β -adrenoceptor antagonists at the human β 1, β 2 and β 3 adrenoceptors. Br J Pharmacol 144:317–322

    CAS  CrossRef  Google Scholar 

  • Baker JG, Gardiner SM, Woolard J et al (2017) Novel selective β 1 -adrenoceptor antagonists for concomitant cardiovascular and respiratory disease. FASEB J 31:3150–3166

    CAS  CrossRef  Google Scholar 

  • Basil B, Jordan R (1982) Pharmacological properties of diacetolol (M&B 16,942), a major metabolite of acebutolol. Eur J Pharmacol 80:47–56

    CAS  CrossRef  Google Scholar 

  • Beridze N, Frishman WH (2012) Vascular Ehlers-Danlos syndrome. Cardiol Rev 20:4–7

    CrossRef  Google Scholar 

  • Berkowitz DE, Nardone NA, Smiley RM et al (1995) Distribution of β3-adrenoceptor mRNA in human tissues. Eur J Pharmacol Mol Pharmacol 289:223–228

    CAS  CrossRef  Google Scholar 

  • Berlan M, Galitzky J, Bousquet-Melou A et al (1994) Beta-3 adrenoceptor-mediated increase in cutaneous blood flow in the dog. J Pharmacol Exp Ther 268:1444–1451

    CAS  Google Scholar 

  • Bertrix L, Timour-Chah Q, Lang J et al (1986) Protection against ventricular and atrial fibrillation by sotalol. Cardiovasc Res 20:358–363

    CAS  CrossRef  Google Scholar 

  • Björklund M, Siverina I, Heikkinen T et al (2001) Spatial working memory improvement by an α2-adrenoceptor agonist dexmedetomidine is not mediated through α2C-adrenoceptor. Prog Neuropsychopharmacol Biol Psychiatry 25:1539–1554

    CrossRef  Google Scholar 

  • Blier P (2003) The pharmacology of putative early-onset antidepressant strategies. Eur Neuropsychopharmacol 13:57–66

    CAS  CrossRef  Google Scholar 

  • Boron WF, Boulpaep EL (2003) Medical physiology: a cellular and molecular approach. W.B. Saunders, Philadelphia

    Google Scholar 

  • Boyajian CL, Leslie FM (1987) Pharmacological evidence for alpha-2 adrenoceptor heterogeneity: differential binding properties of [3H]rauwolscine and [3H]idazoxan in rat brain. J Pharmacol Exp Ther 241:1092 LP–1091098

    Google Scholar 

  • Brodde OE, Bruck H, Leineweber K, Seyfarth T (2001) Presence, distribution and physiological function of adrenergic and muscarinic receptor subtypes in the human heart. Basic Res Cardiol 96:528–538

    CAS  CrossRef  Google Scholar 

  • Bruchas MR, Toews ML, Bockman CS, Abel PW (2008) Characterization of the alpha1-adrenoceptor subtype activating extracellular signal-regulated kinase in submandibular gland acinar cells. Eur J Pharmacol 578:349–358

    CAS  CrossRef  Google Scholar 

  • Bücheler M, Hadamek K, Hein L (2002) Two α2-adrenergic receptor subtypes, α2A and α2C, inhibit transmitter release in the brain of gene-targeted mice. Neuroscience 109:819–826

    CrossRef  Google Scholar 

  • Burgen ASV, Iversen LL (1965) The inhibition of noradrenaline uptake by sympathomimetic amines in the rat isolated heart. Br J Pharmacol Chemother 25:34–49

    CAS  CrossRef  Google Scholar 

  • Burt RP, Chapple CR, Marshall I (1998) α 1A -adrenoceptor mediated contraction of rat prostatic vas deferens and the involvement of ryanodine stores and Ca 2+ influx stimulated by diacylglycerol and PKC. Br J Pharmacol 123:317–325

    CAS  CrossRef  Google Scholar 

  • Bylund DB, Eikenberg DC, Hieble JP et al (1994) International Union of Pharmacology nomenclature of adrenoceptors. Pharmacol Rev 46:121–136

    CAS  Google Scholar 

  • Castillo-Meléndez M, McKinley MJ, Summers RJ (2000) Intracerebroventricular administration of the beta(3)-adrenoceptor agonist CL 316243 causes Fos immunoreactivity in discrete regions of rat hypothalamus. Neurosci Lett 290:161–164

    CrossRef  Google Scholar 

  • Cavallo JAKS (2018) Medical aspects of the treatment of lower urinary tract symptoms/benign prostatic hyperplasia: 5-alpha reductase inhibitors. In: Lower urinary tract symptoms and benign prostatic hyperplasia. Academic Press, Cambridge, pp 189–206

    CrossRef  Google Scholar 

  • Chamberlain PD, Jennings KH, Paul F et al (1999) The tissue distribution of the human beta3-adrenoceptor studied using a monoclonal antibody: direct evidence of the beta3-adrenoceptor in human adipose tissue, atrium and skeletal muscle. Int J Obes Relat Metab Disord 23:1057–1065

    CAS  CrossRef  Google Scholar 

  • Chapple CR, Yamaguchi O, Ridder A et al (2008) Clinical proof of concept study (blossom) shows novel β3 adrenoceptor agonist YM178 is effective and well tolerated in the treatment of symptoms of overactive bladder. Eur Urol Suppl 7:239

    Google Scholar 

  • Chopin P, Colpaert FC, Marien M (1999) Effects of alpha-2 adrenoceptor agonists and antagonists on circling behavior in rats with unilateral 6-hydroxydopamine lesions of the nigrostriatal pathway. J Pharmacol Exp Ther 288:798–804

    CAS  Google Scholar 

  • Cirino G, Sorrentino R, di Villa Bianca RD et al (2003) Involvement of 3-adrenergic receptor activation via cyclic GMP- but not NO-dependent mechanisms in human corpus cavernosum function. Proc Natl Acad Sci 100:5531–5536

    CAS  CrossRef  Google Scholar 

  • Civantos Calzada B, Aleixandre de Artiñano A (2001a) Alpha-adrenoceptor subtypes. Pharmacol Res 44:195–208

    CAS  CrossRef  Google Scholar 

  • Civantos Calzada B, Aleixandre De Artiñano A (2001b) Alpha-adrenoceptor subtypes. Pharmacol Res 44:195–208. https://doi.org/10.1006/phrs.2001.0857

    CAS  CrossRef  Google Scholar 

  • Cleary L, Slattery J, Bexis S, Docherty JR (2004) Sympathectomy reveals α 1A - and α 1D -adrenoceptor components to contractions to noradrenaline in rat vas deferens. Br J Pharmacol 143:745–752

    CAS  CrossRef  Google Scholar 

  • Collins S, Caron MG, Lefkowitz RJ (1991) Regulation of adrenergic receptor responsiveness through modulation of receptor gene expression. Annu Rev Physiol 53:497–508

    CAS  CrossRef  Google Scholar 

  • Coman OA, Păunescu H, Ghiţă I et al (2009) Beta 3 adrenergic receptors: molecular, histological, functional and pharmacological approaches. Romanian J Morphol Embryol 50:169–179

    Google Scholar 

  • Cotecchia S (2010) The α1-adrenergic receptors: diversity of signaling networks and regulation. J Recept Signal Transduct Res 30:410–419

    CAS  CrossRef  Google Scholar 

  • Cotecchia S, Schwinn DA, Randall RR et al (1988) Molecular cloning and expression of the cDNA for the hamster alpha 1-adrenergic receptor. Proc Natl Acad Sci 85:7159–7163

    CAS  CrossRef  Google Scholar 

  • Craig CR, Stitzel RE (2004) Modern pharmacology with clinical applications, 6th edn. Lippincott Williams & Wilkins, Philadelphia

    Google Scholar 

  • Daly CJ, Deighan C, McGee A et al (2002) A knockout approach indicates a minor vasoconstrictor role for vascular α 1B -adrenoceptors in mouse. Physiol Genomics 9:85–91

    CAS  CrossRef  Google Scholar 

  • Daniels DV, Gever JR, Jasper JR et al (1999) Human cloned alpha1A-adrenoceptor isoforms display alpha1L-adrenoceptor pharmacology in functional studies. Eur J Pharmacol 370:337–343

    CAS  CrossRef  Google Scholar 

  • Danner I, Escande D, Gauthier C (2001) Beta(3)-adrenoceptors control cl(−) conductance in rabbit nasal epithelium. Eur J Pharmacol 422:203–207

    CAS  CrossRef  Google Scholar 

  • Daubner SC, Le T, Wang S (2011) Tyrosine hydroxylase and regulation of dopamine synthesis. Arch Biochem Biophys 508:1–12

    CAS  CrossRef  Google Scholar 

  • Davenport HW (1982) Epinephrin(e). Physiologist 25:76–82

    CAS  Google Scholar 

  • Day HE, Campeau S, Watson SJ, Akil H (1997) Distribution of alpha 1a-, alpha 1b- and alpha 1d-adrenergic receptor mRNA in the rat brain and spinal cord. J Chem Neuroanat 13:115–139

    CAS  CrossRef  Google Scholar 

  • Deng CY, Lin SG, Zhang WC et al (2006) Esmolol inhibits Na(+) current in rat ventricular myocytes. Methods Find Exp Clin Pharmacol 28:697–702

    CAS  CrossRef  Google Scholar 

  • Di Cesare ML, Micheli L, Crocetti L et al (2017) α2 adrenoceptor: a target for neuropathic pain treatment. Mini Rev Med Chem 17:95–107

    Google Scholar 

  • Docherty JR (2010) Subtypes of functional α1-adrenoceptor. Cell Mol Life Sci 67:405–417

    CAS  CrossRef  Google Scholar 

  • Dogrul A, Coskun I, Uzbay T (2006) The contribution of Alpha-1 and Alpha-2 adrenoceptors in peripheral Imidazoline and adrenoceptor agonist-induced nociception. Anesth Analg 103:471–477

    CAS  CrossRef  Google Scholar 

  • Easson LH, Stedman E (1933) Studies on the relationship between chemical constitution and physiological action. Biochem J 27:1257–1266

    CAS  CrossRef  Google Scholar 

  • Eltze M (1996) Functional evidence for an α1B-adrenoceptor mediating contraction of the mouse spleen. Eur J Pharmacol 311:187–198

    CAS  CrossRef  Google Scholar 

  • Emorine L, Marullo S, Briend-Sutren M et al (1989) Molecular characterization of the human beta 3-adrenergic receptor. Science (80-) 245:1118–1121

    CAS  CrossRef  Google Scholar 

  • Fagura MS, Lydford SJ, Dougall IG (1997) Pharmacological classification of α 1 -adrenoceptors mediating contractions of rabbit isolated ear artery: comparison with rat isolated thoracic aorta. Br J Pharmacol 120:247–258

    CAS  CrossRef  Google Scholar 

  • Frances Davies M, Tsui J, Flannery JA et al (2004) Activation of α2 adrenergic receptors suppresses fear conditioning: expression of c-Fos and phosphorylated CREB in mouse amygdala. Neuropsychopharmacology 29:229–239

    CrossRef  CAS  Google Scholar 

  • Fulton B, Wagstaff AJ, Sorkin EM (1995) Doxazosin. An update of its clinical pharmacology and therapeutic applications in hypertension and benign prostatic hyperplasia. Drugs 49:295–320

    CAS  CrossRef  Google Scholar 

  • Gaddum JH, Holzbauer M (1957) Adrenaline and noradrenaline. Vitam Horm 15:151–203. https://doi.org/10.1016/S0083-6729(08)60510-5

    CAS  CrossRef  Google Scholar 

  • Gauthier C, Tavernier G, Charpentier F et al (1996) Functional beta3-adrenoceptor in the human heart. J Clin Invest 98:556–562

    CAS  CrossRef  Google Scholar 

  • Gingrich JA, Caron MG (1993) Recent advances in the molecular biology of dopamine receptors. Annu Rev Neurosci 16:299–321

    CAS  CrossRef  Google Scholar 

  • Goldstein DS (2010) Adrenaline and noradrenaline. In: Encyclopedia of life sciences. Wiley, Chichester, pp 1–9

    Google Scholar 

  • Gomi T, Ikeda T, Ikegami F (1997) Beneficial effect of alpha-blocker on hemorheology in patients with essential hypertension. Am J Hypertens 10:886–892

    CAS  CrossRef  Google Scholar 

  • Graaf PH, Shankley NP, Black JW (1996) Analysis of the effects of α1-adrenoceptor antagonists on noradrenaline-mediated contraction of rat small mesenteric artery. Br J Pharmacol 118:1308–1316

    CrossRef  Google Scholar 

  • Graefe K-H, Bönisch H (1988) The transport of amines across the axonal membranes of noradrenergic and dopaminergic Neurones. In: Trendelenburg U, Weiner N (eds) Catecholamines I. Handbook of experimental pharmacology. Springer, Berlin, pp 193–245

    CrossRef  Google Scholar 

  • Gray K, Short J, Ventura S (2008) The alpha1A-adrenoceptor gene is required for the alpha1L-adrenoceptor-mediated response in isolated preparations of the mouse prostate. Br J Pharmacol 155:103–109

    CAS  CrossRef  Google Scholar 

  • Griffith RK (2003) Adrenergics and adrenergic-blocking agents. In: Burger’s medicinal chemistry and drug discovery. Wiley, Chichester

    Google Scholar 

  • Haapalinna A, Leino T, Heinonen E (2003) The alpha 2-adrenoceptor antagonist atipamezole potentiates anti-parkinsonian effects and can reduce the adverse cardiovascular effects of dopaminergic drugs in rats. Naunyn Schmiedeberg’s Arch Pharmacol 368:342–351

    CAS  CrossRef  Google Scholar 

  • Hancock AA, Kyncl JJ, Martin YC, DeBernardis JF (1988) Differentiation of alpha-adrenergic receptors using pharmacological evaluation and molecular modeling of selective adrenergic agents. J Recept Res 8:23–46

    CAS  CrossRef  Google Scholar 

  • Hickie JB (1970) Alprenolol (&aptin&) in angina pectoris. A double-blind multicentre trial. Med J Aust 2:268–272

    CAS  CrossRef  Google Scholar 

  • Hieble JP, Bylund DB, Clarke DE et al (1995) International Union of Pharmacology. X. Recommendation for nomenclature of alpha 1-adrenoceptors: consensus update. Pharmacol Rev 47:267–270

    CAS  Google Scholar 

  • Hillarp N-Å, Hokfelt B (1955) Histochemical demonstration of noradrenaline and adrenaline in the adrenal medulla. J Histochem Cytochem 3:1–5

    CAS  CrossRef  Google Scholar 

  • Hom GJ, Forrest MJ, Bach TJ et al (2001) Beta(3)-adrenoceptor agonist-induced increases in lipolysis, metabolic rate, facial flushing, and reflex tachycardia in anesthetized rhesus monkeys. J Pharmacol Exp Ther 297:299–307

    CAS  Google Scholar 

  • Horinouchi T, Tanaka Y, Koike K (2002) [Beta 3-adrenoceptor-mediated relaxation of Guinea-pig gastric funds smooth muscle: cAMP-independent characteristics and a primary role of 4-aminopyridine-sensitive voltage-dependent K+ (Kv) channels]. Nihon Yakurigaku Zasshi 120:109P–111P

    Google Scholar 

  • Hosoda C, Koshimizu T-A, Tanoue A et al (2004) Two 1-adrenergic receptor subtypes regulating the vasopressor response have differential roles in Blood pressure regulation. Mol Pharmacol 67:912–922

    CrossRef  CAS  Google Scholar 

  • Hunter JC, Fontana DJ, Hedley LR et al (1997) Assessment of the role of alpha2-adrenoceptor subtypes in the antinociceptive, sedative and hypothermic action of dexmedetomidine in transgenic mice. Br J Pharmacol 122:1339–1344

    CAS  CrossRef  Google Scholar 

  • Ikeshita K, Nishikawa K, Toriyama S et al (2008) Landiolol has a less potent negative inotropic effect than esmolol in isolated rabbit hearts. J Anesth 22:361–366

    CrossRef  Google Scholar 

  • Inoue K, Kei Noguchi K, Masumoto M, Wakakura M (2011) Effect of five years of treatment with nipradilol eye drops in patients with normal tension glaucoma. Clin Ophthalmol 5:1211–1216

    CAS  CrossRef  Google Scholar 

  • Ishide T (2002) Denopamine, a selective beta1-receptor agonist and a new coronary vasodilator. Curr Med Res Opin 18:407–413

    CAS  CrossRef  Google Scholar 

  • Iversen LL (1971) Role of transmitter uptake mechanisms in synaptic neurotransmission. Br J Pharmacol 41:571–591

    CAS  CrossRef  Google Scholar 

  • Jaillon P, Drici M (1989) Recent antiarrhythmic drugs. Am J Cardiol 64:65J–69J

    CAS  CrossRef  Google Scholar 

  • Janumpalli S, Butler LS, MacMillan LB et al (1998) A point mutation (D79N) of the alpha2A adrenergic receptor abolishes the antiepileptogenic action of endogenous norepinephrine. J Neurosci 18:2004–2008

    CAS  CrossRef  Google Scholar 

  • Jesudason CD, Baker JE, Bryant RD et al (2011) Combination of a Beta adrenoceptor modulator and a norepinephrine-serotonin uptake inhibitor for the treatment of obesity. ACS Med Chem Lett 2:583–586

    CAS  CrossRef  Google Scholar 

  • Jinushi K, Kushikata T, Kudo T et al (2018) Central noradrenergic activity affects analgesic effect of neuropeptide S. J Anesth 32:48–53

    CrossRef  Google Scholar 

  • Johnston JP (1968) Some observations upon a new inhibitor of monoamine oxidase in brain tissue. Biochem Pharmacol 17:1285–1297. https://doi.org/10.1016/0006-2952(68)90066-x

    CAS  CrossRef  Google Scholar 

  • Kanagy NL (2005) Alpha(2)-adrenergic receptor signalling in hypertension. Clin Sci 109:431–437

    CAS  CrossRef  Google Scholar 

  • Kaumann AJ (1996) (−)-CGP 12177-induced increase of human atrial contraction through a putative third beta-adrenoceptor. Br J Pharmacol 117:93–98

    CAS  CrossRef  Google Scholar 

  • Kava MS, Blue DR, Vimont RL et al (1998) Alpha1L-adrenoceptor mediation of smooth muscle contraction in rabbit bladder neck: a model for lower urinary tract tissues of man. Br J Pharmacol 123:1359–1366

    CAS  CrossRef  Google Scholar 

  • Khan ZP, Ferguson CN, Jones RM (1999) Alpha-2 and imidazoline receptor agonists. Their pharmacology and therapeutic role. Anaesthesia 54:146–165

    CAS  CrossRef  Google Scholar 

  • Knepper SM, Buckner SA, Brune ME et al (1995) A-61603, a potent alpha 1-adrenergic receptor agonist, selective for the alpha 1A receptor subtype. J Pharmacol Exp Ther 274:97–103

    CAS  Google Scholar 

  • Kobilka BK (2011) Structural insights into adrenergic receptor function and pharmacology. Trends Pharmacol Sci 32:213–218

    CAS  CrossRef  Google Scholar 

  • Kobilka B, Matsui H, Kobilka T et al (1987) Cloning, sequencing, and expression of the gene coding for the human platelet alpha 2-adrenergic receptor. Science (80-) 238:650–656

    CAS  CrossRef  Google Scholar 

  • Kohout TA, Lefkowitz RJ (2003) Regulation of G protein-coupled receptor kinases and Arrestins during receptor desensitization. Mol Pharmacol 63:9–18

    CAS  CrossRef  Google Scholar 

  • Lachnit WG, Tran AM, Clarke DE, Ford APDW (1997) Pharmacological characterization of an α 1A -adrenoceptor mediating contractile responses to noradrenaline in isolated caudal artery of rat. Br J Pharmacol 120:819–826

    CAS  CrossRef  Google Scholar 

  • Lafontan M, Berlan M (1980) Evidence for the α2 nature of the α-adrenergic receptor inhibiting lipolysis in human fat cells. Eur J Pharmacol 66:87–93

    CAS  CrossRef  Google Scholar 

  • Lafontan M, Barbe P, Galitzky J et al (1997) Adrenergic regulation of adipocyte metabolism. Hum Reprod 12:6–20

    CAS  CrossRef  Google Scholar 

  • Langlois M, Brémont B, Rousselle D, Gaudy F (1993) Structural analysis by the comparative molecular field analysis method of the affinity of beta-adrenoreceptor blocking agents for 5-HT1A and 5-HT1B receptors. Eur J Pharmacol 244:77–87

    CAS  CrossRef  Google Scholar 

  • Laurila JMM (2011) α2-adrenoceptors: structure and ligand binding properties at the molecular level. University of Turku

    Google Scholar 

  • Lefkowitz RJ (2000) The superfamily of heptahelical receptors. Nat Cell Biol 2:E133–E136

    CAS  CrossRef  Google Scholar 

  • Lemke KA (2004) Perioperative use of selective alpha-2 agonists and antagonists in small animals. Can Vet J 45:475–480

    CAS  Google Scholar 

  • Lenders JWM, Pacak K, Walther MM et al (2002) Biochemical diagnosis of Pheochromocytoma. JAMA 287:1427–1434

    CAS  CrossRef  Google Scholar 

  • Liu JH, Dacus AC, Bartels SP (1991) Adrenergic mechanism in circadian elevation of intraocular pressure in rabbits. Invest Ophthalmol Vis Sci 32:2178–2183

    CAS  Google Scholar 

  • Lomasney JW, Lorenz W, Allen LF et al (1990) Expansion of the alpha 2-adrenergic receptor family: cloning and characterization of a human alpha 2-adrenergic receptor subtype, the gene for which is located on chromosome 2. Proc Natl Acad Sci 87:5094–5098

    CAS  CrossRef  Google Scholar 

  • Lund-Johansen P, Omvik P (1991) Acute and chronic hemodynamic effects of drugs with different actions on adrenergic receptors: a comparison between alpha blockers and different types of beta blockers with and without vasodilating effect. Cardiovasc Drugs Ther 5:605–615

    CAS  CrossRef  Google Scholar 

  • Ma YC, Huang XY (2002) Novel signaling pathway through the beta-adrenergic receptor. Trends Cardiovasc Med 12:46–49

    CAS  CrossRef  Google Scholar 

  • Marshall I, Burt RP, Chappie CR (1995) Noradrenaline contractions of human prostate mediated by α1c-(α1c-) adrenoceptor subtype. Br J Pharmacol 115:781–786

    CAS  CrossRef  Google Scholar 

  • Martí D, Miquel R, Ziani K et al (2005) Correlation between mRNA levels and functional role of alpha1-adrenoceptor subtypes in arteries: evidence of alpha1L as a functional isoform of the alpha1A-adrenoceptor. Am J Physiol Heart Circ Physiol 289:H1923–H1932

    CrossRef  CAS  Google Scholar 

  • Martin CA, Advenier C (1995) Beta 3-adrenoceptors and airways. Fundam Clin Pharmacol 9:114–118

    CAS  CrossRef  Google Scholar 

  • Mills K, Hausman N, Chess-Williams R (2008) Characterization of the alpha1-adrenoceptor subtype mediating contractions of the pig internal anal sphincter. Br J Pharmacol 155:110–117

    CAS  CrossRef  Google Scholar 

  • Morigny P, Houssier M, Mouisel E, Langin D (2016) Adipocyte lipolysis and insulin resistance. Biochimie 125:259–266

    CAS  CrossRef  Google Scholar 

  • Morilak DA, Barrera G, Echevarria DJ et al (2005) Role of brain norepinephrine in the behavioral response to stress. Prog Neuropsychopharmacol Biol Psychiatry 29:1214–1224

    CAS  CrossRef  Google Scholar 

  • Moriyama N, Nasu K, Takeuchi T et al (1997) Quantification and distribution of α 1 -adrenoceptor subtype mRNAs in human vas deferens: comparison with those of epididymal and pelvic portions. Br J Pharmacol 122:1009–1014

    CAS  CrossRef  Google Scholar 

  • Morrow AL, Creese I (1986) Characterization of alpha 1-adrenergic receptor subtypes in rat brain: a reevaluation of [3H]WB4104 and [3H]prazosin binding. Mol Pharmacol 29:321–330

    CAS  Google Scholar 

  • Mottram AR, Erickson TB (2009) Toxicology in emergency cardiovascular care. In: Field JM, Kudenchuk PJ, O’Connor R, Terry V (eds) The textbook of emergency cardiovascular care and CPR. Lippincott Williams & Wilkins, Philadelphia, pp 443–452

    Google Scholar 

  • Müller P, Schier AF (2011) Extracellular movement of signaling molecules. Dev Cell 21:145–158

    CrossRef  CAS  Google Scholar 

  • Muramatsu I, Ohmura T, Kigoshi S et al (1990) Pharmacological subclassification of α1-adrenoceptors in vascular smooth muscle. Br J Pharmacol 99:197–201

    CAS  CrossRef  Google Scholar 

  • Nagatomo T, Hosohata Y, Ohnuki T et al (2001) Bopindolol: pharmacological basis and clinical implications. Cardiovasc Drug Rev 19:9–24

    CAS  CrossRef  Google Scholar 

  • Nakajima D, Negoro N, Nakaboh A et al (2006) Effectiveness of low dose denopamine, a β1-adrenoceptor agonist, in a patient with vasospastic angina refractory to intensive medical treatment. Int J Cardiol 108:281–283

    CrossRef  Google Scholar 

  • Nakamura S, Taniguchi T, Suzuki F et al (1999) Evaluation of alpha1-adrenoceptors in the rabbit iris: pharmacological characterization and expression of mRNA. Br J Pharmacol 127:1367–1374

    CAS  CrossRef  Google Scholar 

  • Nguyen V, Tiemann D, Park E, Salehi A (2017) Alpha-2 Agonists. Anesthesiol Clin 35:233–245

    CrossRef  Google Scholar 

  • Nicholas AP, Pieribone V, Hökfelt T (1993) Distributions of mRNAs for alpha-2 adrenergic receptor subtypes in rat brain: an in situ hybridization study. J Comp Neurol 328:575–594

    CAS  CrossRef  Google Scholar 

  • Nishio R, Matsumori A, Shioi T et al (1998) Denopamine, a beta1-adrenergic agonist, prolongs survival in a murine model of congestive heart failure induced by viral myocarditis: suppression of tumor necrosis factor-alpha production in the heart. J Am Coll Cardiol 32:808–815

    CAS  CrossRef  Google Scholar 

  • Noble AJ, Chess-Williams R, Couldwell C et al (1997) The effects of tamsulosin, a high affinity antagonist at functional α 1A - and α 1D -adrenoceptor subtypes. Br J Pharmacol 120:231–238

    CAS  CrossRef  Google Scholar 

  • Nuttall SL, Routledge HC, Kendall MJ (2003) A comparison of the beta1-selectivity of three beta1-selective beta-blockers. J Clin Pharm Ther 28:179–186

    CAS  CrossRef  Google Scholar 

  • Nyrönen T, Pihlavisto M, Peltonen JM et al (2001) Molecular mechanism for agonist-promoted alpha(2A)-adrenoceptor activation by norepinephrine and epinephrine. Mol Pharmacol 59:1343–1354

    CrossRef  Google Scholar 

  • Ohmura T, Oshita M, Kigoshi S, Muramatsu I (1992) Identification of α1-adrenoceptor subtypes in the rat vas deferens: binding and functional studies. Br J Pharmacol 107:697–704

    CAS  CrossRef  Google Scholar 

  • Okajima M, Takamura M, Taniguchi T (2015) Landiolol, an ultra-short-acting β1-blocker, is useful for managing supraventricular tachyarrhythmias in sepsis. World J Crit Care Med 4:251–257

    CrossRef  Google Scholar 

  • Oliver G, Schäfer EA (1895) The physiological effects of extracts of the suprarenal capsules. J Physiol 18:230–276. https://doi.org/10.1113/jphysiol.1895.sp000564

    CAS  CrossRef  Google Scholar 

  • Palluk R, Hoefke W, Gaida W et al (1986) Interactions of MEN 935 (adimolol), a long acting beta- and alpha-adrenolytic antihypertensive agent, with postsynaptic alpha-adrenoceptors in different isolated blood vessels--influence of angiotensin II. Naunyn Schmiedeberg’s Arch Pharmacol 333:277–283

    CAS  CrossRef  Google Scholar 

  • Parker K, Brunton L, Goodman LS et al (2008) Goodman and Gilman’s manual of pharmacology and therapeutics. McGraw-Hill Medical, New York, NY

    Google Scholar 

  • Perez DM, Piascik MT, Graham RM (1991) Solution-phase library screening for the identification of rare clones: isolation of an alpha 1D-adrenergic receptor cDNA. Mol Pharmacol 40:876–883

    CAS  Google Scholar 

  • Perez DM, Piascik MT, Malik N et al (1994) Cloning, expression, and tissue distribution of the rat homolog of the bovine alpha 1C-adrenergic receptor provide evidence for its classification as the alpha 1A subtype. Mol Pharmacol 46:823–831

    CAS  Google Scholar 

  • Philipp M, Brede M, Hein L (2002) Physiological significance of α 2 -adrenergic receptor subtype diversity: one receptor is not enough. Am J Physiol Integr Comp Physiol 283:R287–R295

    CAS  CrossRef  Google Scholar 

  • Piascik MT, Kusiak JW, Barron KW (1990) Alpha 1-adrenoceptor subtypes and the regulation of peripheral hemodynamics in the conscious rat. Eur J Pharmacol 186:273–278

    CAS  CrossRef  Google Scholar 

  • Pickering TG, Levenstein M, Walmsley P (1994) Nighttime dosing of doxazosin has peak effect on morning ambulatory Blood pressure. Am J Hypertens 7:844–847

    CAS  CrossRef  Google Scholar 

  • Pringle TH, Francis RJ, East PB, Shanks RG (1986) Pharmacodynamic and pharmacokinetic studies on bufuralol in man. Br J Clin Pharmacol 22:527–534

    CAS  CrossRef  Google Scholar 

  • Prokai L, Wu WM, Somogyi G, Bodor N (1995) Ocular delivery of the beta-adrenergic antagonist alprenolol by sequential bioactivation of its methoxime analogue. J Med Chem 38:2018–2020

    CAS  CrossRef  Google Scholar 

  • Ramsay D, Carr IC, Pediani J et al (2004) High-affinity interactions between human 1A-adrenoceptor C-terminal splice variants produce Homo- and heterodimers but do not generate the 1L-adrenoceptor. Mol Pharmacol 66:228–239

    CAS  CrossRef  Google Scholar 

  • Rang HP, Dale MM, Ritter J et al (1999) Rang and Dale’s pharmacology, 5th edn. Churchill Livingstone, Edinburgh

    Google Scholar 

  • Recio P, Orensanz LM, Martínez MP et al (2008) Noradrenergic vasoconstriction of pig prostatic small arteries. Naunyn Schmiedeberg’s Arch Pharmacol 376:397–406

    CAS  CrossRef  Google Scholar 

  • Regan JW, Kobilka TS, Yang-Feng TL et al (1988) Cloning and expression of a human kidney cDNA for an alpha 2-adrenergic receptor subtype. Proc Natl Acad Sci U S A 85:6301–6305

    CAS  CrossRef  Google Scholar 

  • Ross S, Rorabaugh BR, Chalothorn D et al (2003) The α1B-adrenergic receptor decreases the inotropic response in the mouse Langendorff heart model. Cardiovasc Res 60:598–607

    CAS  CrossRef  Google Scholar 

  • Ruffolo RR, Gellai M, Hieble JP et al (1990) The pharmacology of carvedilol. Eur J Clin Pharmacol 38(Suppl 2):S82–S88

    CAS  CrossRef  Google Scholar 

  • Sakuma T, Hida M, Nambu Y et al (2001) Beta1-adrenergic agonist is a potent stimulator of alveolar fluid clearance in hyperoxic rat lungs. Jpn J Pharmacol 85:161–166

    CAS  CrossRef  Google Scholar 

  • Schena G, Caplan MJ (2019) Everything you always wanted to know about β3-AR ∗ (∗ but were afraid to ask). Cell 8:357

    CAS  CrossRef  Google Scholar 

  • Schramm NL, McDonald MP, Limbird LE (2001) The alpha(2a)-adrenergic receptor plays a protective role in mouse behavioral models of depression and anxiety. J Neurosci 21:4875–4882

    CAS  CrossRef  Google Scholar 

  • Schwinn DA, Lomasney JW, Lorenz W et al (1990) Molecular cloning and expression of the cDNA for a novel alpha 1-adrenergic receptor subtype. J Biol Chem 265:8183–8189

    CAS  Google Scholar 

  • Shibata K, Hirasawa A, Moriyama N et al (1996) Alpha 1a-adrenoceptor polymorphism: pharmacological characterization and association with benign prostatic hypertrophy. Br J Pharmacol 118:1403–1408

    CAS  CrossRef  Google Scholar 

  • Shorr RGL, McCaslin DR, Strohsacker MW et al (1985) Molecular structure of the beta-adrenergic receptor. Biochemistry 24:6869–6875

    CAS  CrossRef  Google Scholar 

  • Skeberdis VA (2004) Structure and function of beta3-adrenergic receptors. Medicina (Kaunas) 40:407–413

    Google Scholar 

  • Smith KM, Macmillan JB, McGrath JC (1997) Investigation of alpha1-adrenoceptor subtypes mediating vasoconstriction in rabbit cutaneous resistance arteries. Br J Pharmacol 122:825–832

    CAS  CrossRef  Google Scholar 

  • Spence K, Hunter S, Brown C et al (2018) The role of plasma metanephrines and plasma catecholamines in the biochemical testing for Pheochromocytoma. Endocr Abstr 59:P018

    Google Scholar 

  • Stanaszek WF, Kellerman D, Brogden RN, Romankiewicz JA (1983) Prazosin update a review of its pharmacological properties and therapeutic use in hypertension and congestive heart failure. Drugs 25:339–384

    CAS  CrossRef  Google Scholar 

  • Starke K, Gothert M, Kilbinger H (1989) Modulation of neurotransmitter release by presynaptic autoreceptors. Physiol Rev 69:864–989

    CAS  CrossRef  Google Scholar 

  • Steinle JJ, Booz GW, Meininger CJ et al (2003) β 3 -adrenergic receptors regulate retinal endothelial cell migration and proliferation. J Biol Chem 278:20681–20686

    CAS  CrossRef  Google Scholar 

  • Steinle JJ, Zamora DO, Rosenbaum JT, Granger HJ (2005) β3-adrenergic receptors mediate choroidal endothelial cell invasion, proliferation, and cell elongation. Exp Eye Res 80:83–91

    CAS  CrossRef  Google Scholar 

  • Stone EA, Quartermain D (1999) Alpha-1-noradrenergic neurotransmission, corticosterone, and behavioral depression. Biol Psychiatry 46:1287–1300

    CAS  CrossRef  Google Scholar 

  • Strosberg AD (1993) Structure, function, and regulation of adrenergic receptors. Protein Sci 2:1198–1209. https://doi.org/10.1002/pro.5560020802

    CAS  CrossRef  Google Scholar 

  • Summers RJ, Papaioannou M, Harris S, Evans BA (1995) Expression of beta 3-adrenoceptor mRNA in rat brain. Br J Pharmacol 116:2547–2548

    CAS  CrossRef  Google Scholar 

  • Suryanarayana S, von Zastrow M, Kobilka BK (1992) Identification of intramolecular interactions in adrenergic receptors. J Biol Chem 267:21991–21994

    CAS  Google Scholar 

  • Szentirmai É, Kapás L (2017) The role of the brown adipose tissue in β3-adrenergic receptor activation-induced sleep, metabolic and feeding responses. Sci Rep 7:958

    CrossRef  CAS  Google Scholar 

  • Szymonowicz L (1896) Die Function der Nebenniere. Pflüger, Arch 64:97–164. https://doi.org/10.1007/BF01661663

    CrossRef  Google Scholar 

  • Tagaya E, Tamaoki J, Takemura H et al (1999) Atypical adrenoceptor-mediated relaxation of canine pulmonary artery through a cyclic adenosine monophosphate-dependent pathway. Lung 177:321–332

    CAS  CrossRef  Google Scholar 

  • Takamine J (1902) The blood-pressure raising principle of the suprarenal gland. JAMA XXXVIII:153–155. https://doi.org/10.1001/jama.1902.62480030011001c

    CrossRef  Google Scholar 

  • Tamaoki J, Yamauchi F, Chiyotani A et al (1993) Atypical beta-adrenoceptor- (beta 3-adrenoceptor) mediated relaxation of canine isolated bronchial smooth muscle. J Appl Physiol 74:297–302

    CAS  CrossRef  Google Scholar 

  • Teng C-M, Guh J-H, Ko F-N (1994) Functional identification of α1-adrenoceptor subtypes in human prostate: comparison with those in rat vas deferens and spleen. Eur J Pharmacol 265:61–66

    CAS  CrossRef  Google Scholar 

  • Tran TM, Friedman J, Qunaibi E et al (2004) Characterization of agonist stimulation of cAMP-dependent protein kinase and G protein-coupled receptor kinase phosphorylation of the 2-adrenergic receptor using phosphoserine-specific antibodies. Mol Pharmacol 65:196–206

    CAS  CrossRef  Google Scholar 

  • Trendelenburg U (1991) The TiPS lecture: functional aspects of the neuronal uptake of noradrenaline. Trends Pharmacol Sci 12:334–337

    CAS  Google Scholar 

  • Vargas HM, Gorman AJ (1995) Vascular alpha-1 adrenergic receptor subtypes in the regulation of arterial pressure. Life Sci 57:2291–2308

    CAS  CrossRef  Google Scholar 

  • Vaughan Williams EM (1987) Bevantolol: a beta-1 adrenoceptor antagonist with unique additional actions. J Clin Pharmacol 27:450–460

    CAS  CrossRef  Google Scholar 

  • Villalobos-Molina R, López-Guerrero JJ, Ibarra M (1997) Alpha 1D- and alpha 1A-adrenoceptors mediate contraction in rat renal artery. Eur J Pharmacol 322:225–227

    CAS  CrossRef  Google Scholar 

  • Vinay HK, Paul A, Goswami SS, Santani D (2002) Effect of SR 58611A, a beta-3 receptor agonist, against experimental gastro-duodenal ulcers. Indian J Physiol Pharmacol 46:36–44

    CAS  Google Scholar 

  • Wada Y, Aiba T, Tsujita Y et al (2016) Practical applicability of landiolol, an ultra-short-acting β1-selective blocker, for rapid atrial and ventricular tachyarrhythmias with left ventricular dysfunction. J Arrhythm 32:82–88

    CrossRef  Google Scholar 

  • Wallukat G (2002) The β-adrenergic receptors. Herz 27:683–690

    CrossRef  Google Scholar 

  • Warne T, Serrano-Vega MJ, Baker JG et al (2008) Structure of a beta1-adrenergic G-protein-coupled receptor. Nature 454:486–491

    CAS  CrossRef  Google Scholar 

  • Warren K, Burden H, Abrams P (2016) Mirabegron in overactive bladder patients: efficacy review and update on drug safety. Ther Adv drug Saf 7:204–216

    CAS  CrossRef  Google Scholar 

  • Wassall RD, Teramoto N, Cunnane TC (2009) Noradrenaline. In: Encyclopedia of Neuroscience. Academic Press, Cambridge, pp 1221–1230

    CrossRef  Google Scholar 

  • Webb DJ, Fulton JD, Leckie BJ et al (1987) The effect of chronic prazosin therapy on the response of the renin-angiotensin system in patients with essential hypertension. J Hum Hypertens 1:195–200

    CAS  Google Scholar 

  • Wei L, Zhu Y-M, Zhang Y-X et al (2016) The α1 adrenoceptors in ventrolateral orbital cortex contribute to the expression of morphine-induced behavioral sensitization in rats. Neurosci Lett 610:30–35

    CAS  CrossRef  Google Scholar 

  • Westlund KN, Denney RM, Rose RM, Abell CW (1988) Localization of distinct monoamine oxidase a and monoamine oxidase b cell populations in human brainstem. Neuroscience 25:439–456

    CAS  CrossRef  Google Scholar 

  • White WB, Moon T (2005) Treatment of benign prostatic hyperplasia in hypertensive men. J Clin Hypertens 7:212–217

    CrossRef  Google Scholar 

  • Woodcock EA (2007) Roles of α1A- and α1B-adrenoceptors in heart: insights from studies of genetically modified mice. In: Clinical and experimental pharmacology and physiology. Wiley, Chichester

    Google Scholar 

  • Wurtman RJ, Axelrod J (1966) Control of enzymatic synthesis of adrenaline in the adrenal medulla by adrenal cortical steroids. J Biol Chem 241:2301–2305

    CAS  Google Scholar 

  • Xie F, Petitti D, Chen W (2005) Prescribing patterns for antihypertensive drugs after the antihypertensive and lipid-lowering treatment to prevent heart attack trial: report of experience in a health maintenance organization. Am J Hypertens 18:464–469

    CrossRef  Google Scholar 

  • Yu GS, Han C (1994) Role of alpha 1A- and alpha 1B-adrenoceptors in phenylephrine-induced positive inotropic response in isolated rat left atrium. J Cardiovasc Pharmacol 24:745–752

    CAS  CrossRef  Google Scholar 

  • Zhao T-J, Sakata I, Li RL et al (2010) Ghrelin secretion stimulated by 1-adrenergic receptors in cultured ghrelinoma cells and in fasted mice. Proc Natl Acad Sci 107:15868–15873

    CAS  CrossRef  Google Scholar 

  • Zuscik MJ, Chalothorn D, Hellard D et al (2001) Hypotension, autonomic failure, and cardiac hypertrophy in transgenic mice overexpressing the α 1B -adrenergic receptor. J Biol Chem 276:13738–13743

    CAS  CrossRef  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Verify currency and authenticity via CrossMark

Cite this chapter

Gorain, B., Dutta, S., Nandy, U., Sengupta, P., Choudhury, H. (2020). Pharmacology of Adrenaline, Noradrenaline, and Their Receptors. In: Kumar, P., Deb, P.K. (eds) Frontiers in Pharmacology of Neurotransmitters. Springer, Singapore. https://doi.org/10.1007/978-981-15-3556-7_4

Download citation