Pharmacology of Adrenaline, Noradrenaline, and Their Receptors



Adrenaline and noradrenaline are important catecholamines of the biological system, responsible for the regulation of major functions of the body via their action on the brain. This noradrenaline is the chief neurotransmitter of the sympathetic nervous system, whereas adrenaline is an important metabolic hormone, known to play a vital role in the cardiovascular system and a mediator of the fight-or-flight response. These catecholamines act in the system through the membrane-bound GPCRs, adrenergic receptors (ARs). Two major classes of ARs, α-ARs and β-ARs, facilitate a number of functions at central and peripheral sites. There are two subtypes of α-ARs (α1-AR and α2-AR), whereas three different subtypes of β-ARs have been identified—β1-AR, β2-AR, and β3-AR. Based on their role, different AR modulators have been introduced clinically for their therapeutic application. In this chapter, we focus on the pharmacology of the two catecholamines through their action on different ARs within the biosystem and the modulators of ARs towards the treatment of potentially life-threatening conditions.


Adrenaline Noradrenaline Adrenergic receptors Agonists Antagonists Biological function 



Adrenergic receptor or adrenoceptor


Blood pressure


Benign prostatic hyperplasia


Cyclic adenosine monophosphate


Cyclic guanosine monophosphate


Congestive heart failure


Central nervous system


Gastrointestinal tract


G-protein-coupled receptors










Messenger ribonucleotide


Nitric oxide


Protein kinase A




  1. Abel J (1899) On epinephrin, the active constituent of the suprarenal capsule and its compounds. Am Physiol Soc 3–4:iii–iivCrossRefGoogle Scholar
  2. Adami M, Coruzzi G, Sotirov E et al (2003) Pharmacological evidence for beta3 adrenoceptors in the control of rat gastric acid secretion. Dig Dis Sci 48:334–339CrossRefGoogle Scholar
  3. Addison T (1855) On the constitutional and local effects of disease of the supra-renal capsules. In: 1st edn. Samuel Highley, London, pp 1793–1860Google Scholar
  4. Ahlquist RP (1948) A study of the ADRENOTROPIC receptors. Am J Physiol Content 153:586–600. CrossRefGoogle Scholar
  5. Altman JD, Trendelenburg AU, MacMillan L et al (1999) Abnormal regulation of the sympathetic nervous system in α 2A -adrenergic receptor knockout mice. Mol Pharmacol 56:154–161CrossRefGoogle Scholar
  6. Amobi NIB, Guillebaud J, Kaisary AV et al (2002) Discrimination by SZL49 between contractions evoked by noradrenaline in longitudinal and circular muscle of human vas deferens. Br J Pharmacol 136:127–135CrossRefGoogle Scholar
  7. Arch JR, Kaumann AJ (1993) Beta 3 and atypical beta-adrenoceptors. Med Res Rev 13:663–729CrossRefGoogle Scholar
  8. Arch JRS, Ainsworth AT, Cawthorne MA et al (1984) Atypical β-adrenoceptor on brown adipocytes as target for anti-obesity drugs. Nature 309:163–165CrossRefGoogle Scholar
  9. Awatramani GB, Price GD, Trussell LO (2005) Modulation of transmitter release by presynaptic resting potential and background calcium levels. Neuron 48:109–121CrossRefGoogle Scholar
  10. Babin-Ebell J, Gliese M (1995) Extraneuronal uptake of noradrenaline in human tissue (uptake2). Heart Vessel 10:151–153CrossRefGoogle Scholar
  11. Baez M, Garg D, Jallad N, Weidler D (1986) Antihypertensive effect of doxazosin in hypertensive patients: comparison with atenolol. Br J Clin Pharmacol 21:63S–67SCrossRefGoogle Scholar
  12. Baker JG (2005) The selectivity of β -adrenoceptor antagonists at the human β 1, β 2 and β 3 adrenoceptors. Br J Pharmacol 144:317–322CrossRefGoogle Scholar
  13. Baker JG, Gardiner SM, Woolard J et al (2017) Novel selective β 1 -adrenoceptor antagonists for concomitant cardiovascular and respiratory disease. FASEB J 31:3150–3166CrossRefGoogle Scholar
  14. Basil B, Jordan R (1982) Pharmacological properties of diacetolol (M&B 16,942), a major metabolite of acebutolol. Eur J Pharmacol 80:47–56CrossRefGoogle Scholar
  15. Beridze N, Frishman WH (2012) Vascular Ehlers-Danlos syndrome. Cardiol Rev 20:4–7CrossRefGoogle Scholar
  16. Berkowitz DE, Nardone NA, Smiley RM et al (1995) Distribution of β3-adrenoceptor mRNA in human tissues. Eur J Pharmacol Mol Pharmacol 289:223–228CrossRefGoogle Scholar
  17. Berlan M, Galitzky J, Bousquet-Melou A et al (1994) Beta-3 adrenoceptor-mediated increase in cutaneous blood flow in the dog. J Pharmacol Exp Ther 268:1444–1451Google Scholar
  18. Bertrix L, Timour-Chah Q, Lang J et al (1986) Protection against ventricular and atrial fibrillation by sotalol. Cardiovasc Res 20:358–363CrossRefGoogle Scholar
  19. Björklund M, Siverina I, Heikkinen T et al (2001) Spatial working memory improvement by an α2-adrenoceptor agonist dexmedetomidine is not mediated through α2C-adrenoceptor. Prog Neuropsychopharmacol Biol Psychiatry 25:1539–1554CrossRefGoogle Scholar
  20. Blier P (2003) The pharmacology of putative early-onset antidepressant strategies. Eur Neuropsychopharmacol 13:57–66CrossRefGoogle Scholar
  21. Boron WF, Boulpaep EL (2003) Medical physiology: a cellular and molecular approach. W.B. Saunders, PhiladelphiaGoogle Scholar
  22. Boyajian CL, Leslie FM (1987) Pharmacological evidence for alpha-2 adrenoceptor heterogeneity: differential binding properties of [3H]rauwolscine and [3H]idazoxan in rat brain. J Pharmacol Exp Ther 241:1092 LP–1091098Google Scholar
  23. Brodde OE, Bruck H, Leineweber K, Seyfarth T (2001) Presence, distribution and physiological function of adrenergic and muscarinic receptor subtypes in the human heart. Basic Res Cardiol 96:528–538CrossRefGoogle Scholar
  24. Bruchas MR, Toews ML, Bockman CS, Abel PW (2008) Characterization of the alpha1-adrenoceptor subtype activating extracellular signal-regulated kinase in submandibular gland acinar cells. Eur J Pharmacol 578:349–358CrossRefGoogle Scholar
  25. Bücheler M, Hadamek K, Hein L (2002) Two α2-adrenergic receptor subtypes, α2A and α2C, inhibit transmitter release in the brain of gene-targeted mice. Neuroscience 109:819–826CrossRefGoogle Scholar
  26. Burgen ASV, Iversen LL (1965) The inhibition of noradrenaline uptake by sympathomimetic amines in the rat isolated heart. Br J Pharmacol Chemother 25:34–49CrossRefGoogle Scholar
  27. Burt RP, Chapple CR, Marshall I (1998) α 1A -adrenoceptor mediated contraction of rat prostatic vas deferens and the involvement of ryanodine stores and Ca 2+ influx stimulated by diacylglycerol and PKC. Br J Pharmacol 123:317–325CrossRefGoogle Scholar
  28. Bylund DB, Eikenberg DC, Hieble JP et al (1994) International Union of Pharmacology nomenclature of adrenoceptors. Pharmacol Rev 46:121–136Google Scholar
  29. Castillo-Meléndez M, McKinley MJ, Summers RJ (2000) Intracerebroventricular administration of the beta(3)-adrenoceptor agonist CL 316243 causes Fos immunoreactivity in discrete regions of rat hypothalamus. Neurosci Lett 290:161–164CrossRefGoogle Scholar
  30. Cavallo JAKS (2018) Medical aspects of the treatment of lower urinary tract symptoms/benign prostatic hyperplasia: 5-alpha reductase inhibitors. In: Lower urinary tract symptoms and benign prostatic hyperplasia. Academic Press, Cambridge, pp 189–206CrossRefGoogle Scholar
  31. Chamberlain PD, Jennings KH, Paul F et al (1999) The tissue distribution of the human beta3-adrenoceptor studied using a monoclonal antibody: direct evidence of the beta3-adrenoceptor in human adipose tissue, atrium and skeletal muscle. Int J Obes Relat Metab Disord 23:1057–1065CrossRefGoogle Scholar
  32. Chapple CR, Yamaguchi O, Ridder A et al (2008) Clinical proof of concept study (blossom) shows novel β3 adrenoceptor agonist YM178 is effective and well tolerated in the treatment of symptoms of overactive bladder. Eur Urol Suppl 7:239Google Scholar
  33. Chopin P, Colpaert FC, Marien M (1999) Effects of alpha-2 adrenoceptor agonists and antagonists on circling behavior in rats with unilateral 6-hydroxydopamine lesions of the nigrostriatal pathway. J Pharmacol Exp Ther 288:798–804Google Scholar
  34. Cirino G, Sorrentino R, di Villa Bianca RD et al (2003) Involvement of 3-adrenergic receptor activation via cyclic GMP- but not NO-dependent mechanisms in human corpus cavernosum function. Proc Natl Acad Sci 100:5531–5536CrossRefGoogle Scholar
  35. Civantos Calzada B, Aleixandre de Artiñano A (2001a) Alpha-adrenoceptor subtypes. Pharmacol Res 44:195–208CrossRefGoogle Scholar
  36. Civantos Calzada B, Aleixandre De Artiñano A (2001b) Alpha-adrenoceptor subtypes. Pharmacol Res 44:195–208. CrossRefGoogle Scholar
  37. Cleary L, Slattery J, Bexis S, Docherty JR (2004) Sympathectomy reveals α 1A - and α 1D -adrenoceptor components to contractions to noradrenaline in rat vas deferens. Br J Pharmacol 143:745–752CrossRefGoogle Scholar
  38. Collins S, Caron MG, Lefkowitz RJ (1991) Regulation of adrenergic receptor responsiveness through modulation of receptor gene expression. Annu Rev Physiol 53:497–508CrossRefGoogle Scholar
  39. Coman OA, Păunescu H, Ghiţă I et al (2009) Beta 3 adrenergic receptors: molecular, histological, functional and pharmacological approaches. Romanian J Morphol Embryol 50:169–179Google Scholar
  40. Cotecchia S (2010) The α1-adrenergic receptors: diversity of signaling networks and regulation. J Recept Signal Transduct Res 30:410–419CrossRefGoogle Scholar
  41. Cotecchia S, Schwinn DA, Randall RR et al (1988) Molecular cloning and expression of the cDNA for the hamster alpha 1-adrenergic receptor. Proc Natl Acad Sci 85:7159–7163CrossRefGoogle Scholar
  42. Craig CR, Stitzel RE (2004) Modern pharmacology with clinical applications, 6th edn. Lippincott Williams & Wilkins, PhiladelphiaGoogle Scholar
  43. Daly CJ, Deighan C, McGee A et al (2002) A knockout approach indicates a minor vasoconstrictor role for vascular α 1B -adrenoceptors in mouse. Physiol Genomics 9:85–91CrossRefGoogle Scholar
  44. Daniels DV, Gever JR, Jasper JR et al (1999) Human cloned alpha1A-adrenoceptor isoforms display alpha1L-adrenoceptor pharmacology in functional studies. Eur J Pharmacol 370:337–343CrossRefGoogle Scholar
  45. Danner I, Escande D, Gauthier C (2001) Beta(3)-adrenoceptors control cl(−) conductance in rabbit nasal epithelium. Eur J Pharmacol 422:203–207CrossRefGoogle Scholar
  46. Daubner SC, Le T, Wang S (2011) Tyrosine hydroxylase and regulation of dopamine synthesis. Arch Biochem Biophys 508:1–12CrossRefGoogle Scholar
  47. Davenport HW (1982) Epinephrin(e). Physiologist 25:76–82Google Scholar
  48. Day HE, Campeau S, Watson SJ, Akil H (1997) Distribution of alpha 1a-, alpha 1b- and alpha 1d-adrenergic receptor mRNA in the rat brain and spinal cord. J Chem Neuroanat 13:115–139CrossRefGoogle Scholar
  49. Deng CY, Lin SG, Zhang WC et al (2006) Esmolol inhibits Na(+) current in rat ventricular myocytes. Methods Find Exp Clin Pharmacol 28:697–702CrossRefGoogle Scholar
  50. Di Cesare ML, Micheli L, Crocetti L et al (2017) α2 adrenoceptor: a target for neuropathic pain treatment. Mini Rev Med Chem 17:95–107Google Scholar
  51. Docherty JR (2010) Subtypes of functional α1-adrenoceptor. Cell Mol Life Sci 67:405–417CrossRefGoogle Scholar
  52. Dogrul A, Coskun I, Uzbay T (2006) The contribution of Alpha-1 and Alpha-2 adrenoceptors in peripheral Imidazoline and adrenoceptor agonist-induced nociception. Anesth Analg 103:471–477CrossRefGoogle Scholar
  53. Easson LH, Stedman E (1933) Studies on the relationship between chemical constitution and physiological action. Biochem J 27:1257–1266CrossRefGoogle Scholar
  54. Eltze M (1996) Functional evidence for an α1B-adrenoceptor mediating contraction of the mouse spleen. Eur J Pharmacol 311:187–198CrossRefGoogle Scholar
  55. Emorine L, Marullo S, Briend-Sutren M et al (1989) Molecular characterization of the human beta 3-adrenergic receptor. Science (80-) 245:1118–1121CrossRefGoogle Scholar
  56. Fagura MS, Lydford SJ, Dougall IG (1997) Pharmacological classification of α 1 -adrenoceptors mediating contractions of rabbit isolated ear artery: comparison with rat isolated thoracic aorta. Br J Pharmacol 120:247–258CrossRefGoogle Scholar
  57. Frances Davies M, Tsui J, Flannery JA et al (2004) Activation of α2 adrenergic receptors suppresses fear conditioning: expression of c-Fos and phosphorylated CREB in mouse amygdala. Neuropsychopharmacology 29:229–239CrossRefGoogle Scholar
  58. Fulton B, Wagstaff AJ, Sorkin EM (1995) Doxazosin. An update of its clinical pharmacology and therapeutic applications in hypertension and benign prostatic hyperplasia. Drugs 49:295–320CrossRefGoogle Scholar
  59. Gaddum JH, Holzbauer M (1957) Adrenaline and noradrenaline. Vitam Horm 15:151–203. CrossRefGoogle Scholar
  60. Gauthier C, Tavernier G, Charpentier F et al (1996) Functional beta3-adrenoceptor in the human heart. J Clin Invest 98:556–562CrossRefGoogle Scholar
  61. Gingrich JA, Caron MG (1993) Recent advances in the molecular biology of dopamine receptors. Annu Rev Neurosci 16:299–321CrossRefGoogle Scholar
  62. Goldstein DS (2010) Adrenaline and noradrenaline. In: Encyclopedia of life sciences. Wiley, Chichester, pp 1–9Google Scholar
  63. Gomi T, Ikeda T, Ikegami F (1997) Beneficial effect of alpha-blocker on hemorheology in patients with essential hypertension. Am J Hypertens 10:886–892CrossRefGoogle Scholar
  64. Graaf PH, Shankley NP, Black JW (1996) Analysis of the effects of α1-adrenoceptor antagonists on noradrenaline-mediated contraction of rat small mesenteric artery. Br J Pharmacol 118:1308–1316CrossRefGoogle Scholar
  65. Graefe K-H, Bönisch H (1988) The transport of amines across the axonal membranes of noradrenergic and dopaminergic Neurones. In: Trendelenburg U, Weiner N (eds) Catecholamines I. Handbook of experimental pharmacology. Springer, Berlin, pp 193–245CrossRefGoogle Scholar
  66. Gray K, Short J, Ventura S (2008) The alpha1A-adrenoceptor gene is required for the alpha1L-adrenoceptor-mediated response in isolated preparations of the mouse prostate. Br J Pharmacol 155:103–109CrossRefGoogle Scholar
  67. Griffith RK (2003) Adrenergics and adrenergic-blocking agents. In: Burger’s medicinal chemistry and drug discovery. Wiley, ChichesterGoogle Scholar
  68. Haapalinna A, Leino T, Heinonen E (2003) The alpha 2-adrenoceptor antagonist atipamezole potentiates anti-parkinsonian effects and can reduce the adverse cardiovascular effects of dopaminergic drugs in rats. Naunyn Schmiedeberg’s Arch Pharmacol 368:342–351CrossRefGoogle Scholar
  69. Hancock AA, Kyncl JJ, Martin YC, DeBernardis JF (1988) Differentiation of alpha-adrenergic receptors using pharmacological evaluation and molecular modeling of selective adrenergic agents. J Recept Res 8:23–46CrossRefGoogle Scholar
  70. Hickie JB (1970) Alprenolol (&aptin&) in angina pectoris. A double-blind multicentre trial. Med J Aust 2:268–272CrossRefGoogle Scholar
  71. Hieble JP, Bylund DB, Clarke DE et al (1995) International Union of Pharmacology. X. Recommendation for nomenclature of alpha 1-adrenoceptors: consensus update. Pharmacol Rev 47:267–270Google Scholar
  72. Hillarp N-Å, Hokfelt B (1955) Histochemical demonstration of noradrenaline and adrenaline in the adrenal medulla. J Histochem Cytochem 3:1–5CrossRefGoogle Scholar
  73. Hom GJ, Forrest MJ, Bach TJ et al (2001) Beta(3)-adrenoceptor agonist-induced increases in lipolysis, metabolic rate, facial flushing, and reflex tachycardia in anesthetized rhesus monkeys. J Pharmacol Exp Ther 297:299–307Google Scholar
  74. Horinouchi T, Tanaka Y, Koike K (2002) [Beta 3-adrenoceptor-mediated relaxation of Guinea-pig gastric funds smooth muscle: cAMP-independent characteristics and a primary role of 4-aminopyridine-sensitive voltage-dependent K+ (Kv) channels]. Nihon Yakurigaku Zasshi 120:109P–111PGoogle Scholar
  75. Hosoda C, Koshimizu T-A, Tanoue A et al (2004) Two 1-adrenergic receptor subtypes regulating the vasopressor response have differential roles in Blood pressure regulation. Mol Pharmacol 67:912–922CrossRefGoogle Scholar
  76. Hunter JC, Fontana DJ, Hedley LR et al (1997) Assessment of the role of alpha2-adrenoceptor subtypes in the antinociceptive, sedative and hypothermic action of dexmedetomidine in transgenic mice. Br J Pharmacol 122:1339–1344CrossRefGoogle Scholar
  77. Ikeshita K, Nishikawa K, Toriyama S et al (2008) Landiolol has a less potent negative inotropic effect than esmolol in isolated rabbit hearts. J Anesth 22:361–366CrossRefGoogle Scholar
  78. Inoue K, Kei Noguchi K, Masumoto M, Wakakura M (2011) Effect of five years of treatment with nipradilol eye drops in patients with normal tension glaucoma. Clin Ophthalmol 5:1211–1216CrossRefGoogle Scholar
  79. Ishide T (2002) Denopamine, a selective beta1-receptor agonist and a new coronary vasodilator. Curr Med Res Opin 18:407–413CrossRefGoogle Scholar
  80. Iversen LL (1971) Role of transmitter uptake mechanisms in synaptic neurotransmission. Br J Pharmacol 41:571–591CrossRefGoogle Scholar
  81. Jaillon P, Drici M (1989) Recent antiarrhythmic drugs. Am J Cardiol 64:65J–69JCrossRefGoogle Scholar
  82. Janumpalli S, Butler LS, MacMillan LB et al (1998) A point mutation (D79N) of the alpha2A adrenergic receptor abolishes the antiepileptogenic action of endogenous norepinephrine. J Neurosci 18:2004–2008CrossRefGoogle Scholar
  83. Jesudason CD, Baker JE, Bryant RD et al (2011) Combination of a Beta adrenoceptor modulator and a norepinephrine-serotonin uptake inhibitor for the treatment of obesity. ACS Med Chem Lett 2:583–586CrossRefGoogle Scholar
  84. Jinushi K, Kushikata T, Kudo T et al (2018) Central noradrenergic activity affects analgesic effect of neuropeptide S. J Anesth 32:48–53CrossRefGoogle Scholar
  85. Johnston JP (1968) Some observations upon a new inhibitor of monoamine oxidase in brain tissue. Biochem Pharmacol 17:1285–1297. CrossRefGoogle Scholar
  86. Kanagy NL (2005) Alpha(2)-adrenergic receptor signalling in hypertension. Clin Sci 109:431–437CrossRefGoogle Scholar
  87. Kaumann AJ (1996) (−)-CGP 12177-induced increase of human atrial contraction through a putative third beta-adrenoceptor. Br J Pharmacol 117:93–98CrossRefGoogle Scholar
  88. Kava MS, Blue DR, Vimont RL et al (1998) Alpha1L-adrenoceptor mediation of smooth muscle contraction in rabbit bladder neck: a model for lower urinary tract tissues of man. Br J Pharmacol 123:1359–1366CrossRefGoogle Scholar
  89. Khan ZP, Ferguson CN, Jones RM (1999) Alpha-2 and imidazoline receptor agonists. Their pharmacology and therapeutic role. Anaesthesia 54:146–165CrossRefGoogle Scholar
  90. Knepper SM, Buckner SA, Brune ME et al (1995) A-61603, a potent alpha 1-adrenergic receptor agonist, selective for the alpha 1A receptor subtype. J Pharmacol Exp Ther 274:97–103Google Scholar
  91. Kobilka BK (2011) Structural insights into adrenergic receptor function and pharmacology. Trends Pharmacol Sci 32:213–218CrossRefGoogle Scholar
  92. Kobilka B, Matsui H, Kobilka T et al (1987) Cloning, sequencing, and expression of the gene coding for the human platelet alpha 2-adrenergic receptor. Science (80-) 238:650–656CrossRefGoogle Scholar
  93. Kohout TA, Lefkowitz RJ (2003) Regulation of G protein-coupled receptor kinases and Arrestins during receptor desensitization. Mol Pharmacol 63:9–18CrossRefGoogle Scholar
  94. Lachnit WG, Tran AM, Clarke DE, Ford APDW (1997) Pharmacological characterization of an α 1A -adrenoceptor mediating contractile responses to noradrenaline in isolated caudal artery of rat. Br J Pharmacol 120:819–826CrossRefGoogle Scholar
  95. Lafontan M, Berlan M (1980) Evidence for the α2 nature of the α-adrenergic receptor inhibiting lipolysis in human fat cells. Eur J Pharmacol 66:87–93CrossRefGoogle Scholar
  96. Lafontan M, Barbe P, Galitzky J et al (1997) Adrenergic regulation of adipocyte metabolism. Hum Reprod 12:6–20CrossRefGoogle Scholar
  97. Langlois M, Brémont B, Rousselle D, Gaudy F (1993) Structural analysis by the comparative molecular field analysis method of the affinity of beta-adrenoreceptor blocking agents for 5-HT1A and 5-HT1B receptors. Eur J Pharmacol 244:77–87CrossRefGoogle Scholar
  98. Laurila JMM (2011) α2-adrenoceptors: structure and ligand binding properties at the molecular level. University of TurkuGoogle Scholar
  99. Lefkowitz RJ (2000) The superfamily of heptahelical receptors. Nat Cell Biol 2:E133–E136CrossRefGoogle Scholar
  100. Lemke KA (2004) Perioperative use of selective alpha-2 agonists and antagonists in small animals. Can Vet J 45:475–480Google Scholar
  101. Lenders JWM, Pacak K, Walther MM et al (2002) Biochemical diagnosis of Pheochromocytoma. JAMA 287:1427–1434CrossRefGoogle Scholar
  102. Liu JH, Dacus AC, Bartels SP (1991) Adrenergic mechanism in circadian elevation of intraocular pressure in rabbits. Invest Ophthalmol Vis Sci 32:2178–2183Google Scholar
  103. Lomasney JW, Lorenz W, Allen LF et al (1990) Expansion of the alpha 2-adrenergic receptor family: cloning and characterization of a human alpha 2-adrenergic receptor subtype, the gene for which is located on chromosome 2. Proc Natl Acad Sci 87:5094–5098CrossRefGoogle Scholar
  104. Lund-Johansen P, Omvik P (1991) Acute and chronic hemodynamic effects of drugs with different actions on adrenergic receptors: a comparison between alpha blockers and different types of beta blockers with and without vasodilating effect. Cardiovasc Drugs Ther 5:605–615CrossRefGoogle Scholar
  105. Ma YC, Huang XY (2002) Novel signaling pathway through the beta-adrenergic receptor. Trends Cardiovasc Med 12:46–49CrossRefGoogle Scholar
  106. Marshall I, Burt RP, Chappie CR (1995) Noradrenaline contractions of human prostate mediated by α1c-(α1c-) adrenoceptor subtype. Br J Pharmacol 115:781–786CrossRefGoogle Scholar
  107. Martí D, Miquel R, Ziani K et al (2005) Correlation between mRNA levels and functional role of alpha1-adrenoceptor subtypes in arteries: evidence of alpha1L as a functional isoform of the alpha1A-adrenoceptor. Am J Physiol Heart Circ Physiol 289:H1923–H1932CrossRefGoogle Scholar
  108. Martin CA, Advenier C (1995) Beta 3-adrenoceptors and airways. Fundam Clin Pharmacol 9:114–118CrossRefGoogle Scholar
  109. Mills K, Hausman N, Chess-Williams R (2008) Characterization of the alpha1-adrenoceptor subtype mediating contractions of the pig internal anal sphincter. Br J Pharmacol 155:110–117CrossRefGoogle Scholar
  110. Morigny P, Houssier M, Mouisel E, Langin D (2016) Adipocyte lipolysis and insulin resistance. Biochimie 125:259–266CrossRefGoogle Scholar
  111. Morilak DA, Barrera G, Echevarria DJ et al (2005) Role of brain norepinephrine in the behavioral response to stress. Prog Neuropsychopharmacol Biol Psychiatry 29:1214–1224CrossRefGoogle Scholar
  112. Moriyama N, Nasu K, Takeuchi T et al (1997) Quantification and distribution of α 1 -adrenoceptor subtype mRNAs in human vas deferens: comparison with those of epididymal and pelvic portions. Br J Pharmacol 122:1009–1014CrossRefGoogle Scholar
  113. Morrow AL, Creese I (1986) Characterization of alpha 1-adrenergic receptor subtypes in rat brain: a reevaluation of [3H]WB4104 and [3H]prazosin binding. Mol Pharmacol 29:321–330Google Scholar
  114. Mottram AR, Erickson TB (2009) Toxicology in emergency cardiovascular care. In: Field JM, Kudenchuk PJ, O’Connor R, Terry V (eds) The textbook of emergency cardiovascular care and CPR. Lippincott Williams & Wilkins, Philadelphia, pp 443–452Google Scholar
  115. Müller P, Schier AF (2011) Extracellular movement of signaling molecules. Dev Cell 21:145–158CrossRefGoogle Scholar
  116. Muramatsu I, Ohmura T, Kigoshi S et al (1990) Pharmacological subclassification of α1-adrenoceptors in vascular smooth muscle. Br J Pharmacol 99:197–201CrossRefGoogle Scholar
  117. Nagatomo T, Hosohata Y, Ohnuki T et al (2001) Bopindolol: pharmacological basis and clinical implications. Cardiovasc Drug Rev 19:9–24CrossRefGoogle Scholar
  118. Nakajima D, Negoro N, Nakaboh A et al (2006) Effectiveness of low dose denopamine, a β1-adrenoceptor agonist, in a patient with vasospastic angina refractory to intensive medical treatment. Int J Cardiol 108:281–283CrossRefGoogle Scholar
  119. Nakamura S, Taniguchi T, Suzuki F et al (1999) Evaluation of alpha1-adrenoceptors in the rabbit iris: pharmacological characterization and expression of mRNA. Br J Pharmacol 127:1367–1374CrossRefGoogle Scholar
  120. Nguyen V, Tiemann D, Park E, Salehi A (2017) Alpha-2 Agonists. Anesthesiol Clin 35:233–245CrossRefGoogle Scholar
  121. Nicholas AP, Pieribone V, Hökfelt T (1993) Distributions of mRNAs for alpha-2 adrenergic receptor subtypes in rat brain: an in situ hybridization study. J Comp Neurol 328:575–594CrossRefGoogle Scholar
  122. Nishio R, Matsumori A, Shioi T et al (1998) Denopamine, a beta1-adrenergic agonist, prolongs survival in a murine model of congestive heart failure induced by viral myocarditis: suppression of tumor necrosis factor-alpha production in the heart. J Am Coll Cardiol 32:808–815CrossRefGoogle Scholar
  123. Noble AJ, Chess-Williams R, Couldwell C et al (1997) The effects of tamsulosin, a high affinity antagonist at functional α 1A - and α 1D -adrenoceptor subtypes. Br J Pharmacol 120:231–238CrossRefGoogle Scholar
  124. Nuttall SL, Routledge HC, Kendall MJ (2003) A comparison of the beta1-selectivity of three beta1-selective beta-blockers. J Clin Pharm Ther 28:179–186CrossRefGoogle Scholar
  125. Nyrönen T, Pihlavisto M, Peltonen JM et al (2001) Molecular mechanism for agonist-promoted alpha(2A)-adrenoceptor activation by norepinephrine and epinephrine. Mol Pharmacol 59:1343–1354CrossRefGoogle Scholar
  126. Ohmura T, Oshita M, Kigoshi S, Muramatsu I (1992) Identification of α1-adrenoceptor subtypes in the rat vas deferens: binding and functional studies. Br J Pharmacol 107:697–704CrossRefGoogle Scholar
  127. Okajima M, Takamura M, Taniguchi T (2015) Landiolol, an ultra-short-acting β1-blocker, is useful for managing supraventricular tachyarrhythmias in sepsis. World J Crit Care Med 4:251–257CrossRefGoogle Scholar
  128. Oliver G, Schäfer EA (1895) The physiological effects of extracts of the suprarenal capsules. J Physiol 18:230–276. CrossRefGoogle Scholar
  129. Palluk R, Hoefke W, Gaida W et al (1986) Interactions of MEN 935 (adimolol), a long acting beta- and alpha-adrenolytic antihypertensive agent, with postsynaptic alpha-adrenoceptors in different isolated blood vessels--influence of angiotensin II. Naunyn Schmiedeberg’s Arch Pharmacol 333:277–283CrossRefGoogle Scholar
  130. Parker K, Brunton L, Goodman LS et al (2008) Goodman and Gilman’s manual of pharmacology and therapeutics. McGraw-Hill Medical, New York, NYGoogle Scholar
  131. Perez DM, Piascik MT, Graham RM (1991) Solution-phase library screening for the identification of rare clones: isolation of an alpha 1D-adrenergic receptor cDNA. Mol Pharmacol 40:876–883Google Scholar
  132. Perez DM, Piascik MT, Malik N et al (1994) Cloning, expression, and tissue distribution of the rat homolog of the bovine alpha 1C-adrenergic receptor provide evidence for its classification as the alpha 1A subtype. Mol Pharmacol 46:823–831Google Scholar
  133. Philipp M, Brede M, Hein L (2002) Physiological significance of α 2 -adrenergic receptor subtype diversity: one receptor is not enough. Am J Physiol Integr Comp Physiol 283:R287–R295CrossRefGoogle Scholar
  134. Piascik MT, Kusiak JW, Barron KW (1990) Alpha 1-adrenoceptor subtypes and the regulation of peripheral hemodynamics in the conscious rat. Eur J Pharmacol 186:273–278CrossRefGoogle Scholar
  135. Pickering TG, Levenstein M, Walmsley P (1994) Nighttime dosing of doxazosin has peak effect on morning ambulatory Blood pressure. Am J Hypertens 7:844–847CrossRefGoogle Scholar
  136. Pringle TH, Francis RJ, East PB, Shanks RG (1986) Pharmacodynamic and pharmacokinetic studies on bufuralol in man. Br J Clin Pharmacol 22:527–534CrossRefGoogle Scholar
  137. Prokai L, Wu WM, Somogyi G, Bodor N (1995) Ocular delivery of the beta-adrenergic antagonist alprenolol by sequential bioactivation of its methoxime analogue. J Med Chem 38:2018–2020CrossRefGoogle Scholar
  138. Ramsay D, Carr IC, Pediani J et al (2004) High-affinity interactions between human 1A-adrenoceptor C-terminal splice variants produce Homo- and heterodimers but do not generate the 1L-adrenoceptor. Mol Pharmacol 66:228–239CrossRefGoogle Scholar
  139. Rang HP, Dale MM, Ritter J et al (1999) Rang and Dale’s pharmacology, 5th edn. Churchill Livingstone, EdinburghGoogle Scholar
  140. Recio P, Orensanz LM, Martínez MP et al (2008) Noradrenergic vasoconstriction of pig prostatic small arteries. Naunyn Schmiedeberg’s Arch Pharmacol 376:397–406CrossRefGoogle Scholar
  141. Regan JW, Kobilka TS, Yang-Feng TL et al (1988) Cloning and expression of a human kidney cDNA for an alpha 2-adrenergic receptor subtype. Proc Natl Acad Sci U S A 85:6301–6305CrossRefGoogle Scholar
  142. Ross S, Rorabaugh BR, Chalothorn D et al (2003) The α1B-adrenergic receptor decreases the inotropic response in the mouse Langendorff heart model. Cardiovasc Res 60:598–607CrossRefGoogle Scholar
  143. Ruffolo RR, Gellai M, Hieble JP et al (1990) The pharmacology of carvedilol. Eur J Clin Pharmacol 38(Suppl 2):S82–S88CrossRefGoogle Scholar
  144. Sakuma T, Hida M, Nambu Y et al (2001) Beta1-adrenergic agonist is a potent stimulator of alveolar fluid clearance in hyperoxic rat lungs. Jpn J Pharmacol 85:161–166CrossRefGoogle Scholar
  145. Schena G, Caplan MJ (2019) Everything you always wanted to know about β3-AR ∗ (∗ but were afraid to ask). Cell 8:357CrossRefGoogle Scholar
  146. Schramm NL, McDonald MP, Limbird LE (2001) The alpha(2a)-adrenergic receptor plays a protective role in mouse behavioral models of depression and anxiety. J Neurosci 21:4875–4882CrossRefGoogle Scholar
  147. Schwinn DA, Lomasney JW, Lorenz W et al (1990) Molecular cloning and expression of the cDNA for a novel alpha 1-adrenergic receptor subtype. J Biol Chem 265:8183–8189Google Scholar
  148. Shibata K, Hirasawa A, Moriyama N et al (1996) Alpha 1a-adrenoceptor polymorphism: pharmacological characterization and association with benign prostatic hypertrophy. Br J Pharmacol 118:1403–1408CrossRefGoogle Scholar
  149. Shorr RGL, McCaslin DR, Strohsacker MW et al (1985) Molecular structure of the beta-adrenergic receptor. Biochemistry 24:6869–6875CrossRefGoogle Scholar
  150. Skeberdis VA (2004) Structure and function of beta3-adrenergic receptors. Medicina (Kaunas) 40:407–413Google Scholar
  151. Smith KM, Macmillan JB, McGrath JC (1997) Investigation of alpha1-adrenoceptor subtypes mediating vasoconstriction in rabbit cutaneous resistance arteries. Br J Pharmacol 122:825–832CrossRefGoogle Scholar
  152. Spence K, Hunter S, Brown C et al (2018) The role of plasma metanephrines and plasma catecholamines in the biochemical testing for Pheochromocytoma. Endocr Abstr 59:P018Google Scholar
  153. Stanaszek WF, Kellerman D, Brogden RN, Romankiewicz JA (1983) Prazosin update a review of its pharmacological properties and therapeutic use in hypertension and congestive heart failure. Drugs 25:339–384CrossRefGoogle Scholar
  154. Starke K, Gothert M, Kilbinger H (1989) Modulation of neurotransmitter release by presynaptic autoreceptors. Physiol Rev 69:864–989CrossRefGoogle Scholar
  155. Steinle JJ, Booz GW, Meininger CJ et al (2003) β 3 -adrenergic receptors regulate retinal endothelial cell migration and proliferation. J Biol Chem 278:20681–20686CrossRefGoogle Scholar
  156. Steinle JJ, Zamora DO, Rosenbaum JT, Granger HJ (2005) β3-adrenergic receptors mediate choroidal endothelial cell invasion, proliferation, and cell elongation. Exp Eye Res 80:83–91CrossRefGoogle Scholar
  157. Stone EA, Quartermain D (1999) Alpha-1-noradrenergic neurotransmission, corticosterone, and behavioral depression. Biol Psychiatry 46:1287–1300CrossRefGoogle Scholar
  158. Strosberg AD (1993) Structure, function, and regulation of adrenergic receptors. Protein Sci 2:1198–1209. CrossRefGoogle Scholar
  159. Summers RJ, Papaioannou M, Harris S, Evans BA (1995) Expression of beta 3-adrenoceptor mRNA in rat brain. Br J Pharmacol 116:2547–2548CrossRefGoogle Scholar
  160. Suryanarayana S, von Zastrow M, Kobilka BK (1992) Identification of intramolecular interactions in adrenergic receptors. J Biol Chem 267:21991–21994Google Scholar
  161. Szentirmai É, Kapás L (2017) The role of the brown adipose tissue in β3-adrenergic receptor activation-induced sleep, metabolic and feeding responses. Sci Rep 7:958CrossRefGoogle Scholar
  162. Szymonowicz L (1896) Die Function der Nebenniere. Pflüger, Arch 64:97–164. CrossRefGoogle Scholar
  163. Tagaya E, Tamaoki J, Takemura H et al (1999) Atypical adrenoceptor-mediated relaxation of canine pulmonary artery through a cyclic adenosine monophosphate-dependent pathway. Lung 177:321–332CrossRefGoogle Scholar
  164. Takamine J (1902) The blood-pressure raising principle of the suprarenal gland. JAMA XXXVIII:153–155. CrossRefGoogle Scholar
  165. Tamaoki J, Yamauchi F, Chiyotani A et al (1993) Atypical beta-adrenoceptor- (beta 3-adrenoceptor) mediated relaxation of canine isolated bronchial smooth muscle. J Appl Physiol 74:297–302CrossRefGoogle Scholar
  166. Teng C-M, Guh J-H, Ko F-N (1994) Functional identification of α1-adrenoceptor subtypes in human prostate: comparison with those in rat vas deferens and spleen. Eur J Pharmacol 265:61–66CrossRefGoogle Scholar
  167. Tran TM, Friedman J, Qunaibi E et al (2004) Characterization of agonist stimulation of cAMP-dependent protein kinase and G protein-coupled receptor kinase phosphorylation of the 2-adrenergic receptor using phosphoserine-specific antibodies. Mol Pharmacol 65:196–206CrossRefGoogle Scholar
  168. Trendelenburg U (1991) The TiPS lecture: functional aspects of the neuronal uptake of noradrenaline. Trends Pharmacol Sci 12:334–337Google Scholar
  169. Vargas HM, Gorman AJ (1995) Vascular alpha-1 adrenergic receptor subtypes in the regulation of arterial pressure. Life Sci 57:2291–2308CrossRefGoogle Scholar
  170. Vaughan Williams EM (1987) Bevantolol: a beta-1 adrenoceptor antagonist with unique additional actions. J Clin Pharmacol 27:450–460CrossRefGoogle Scholar
  171. Villalobos-Molina R, López-Guerrero JJ, Ibarra M (1997) Alpha 1D- and alpha 1A-adrenoceptors mediate contraction in rat renal artery. Eur J Pharmacol 322:225–227CrossRefGoogle Scholar
  172. Vinay HK, Paul A, Goswami SS, Santani D (2002) Effect of SR 58611A, a beta-3 receptor agonist, against experimental gastro-duodenal ulcers. Indian J Physiol Pharmacol 46:36–44Google Scholar
  173. Wada Y, Aiba T, Tsujita Y et al (2016) Practical applicability of landiolol, an ultra-short-acting β1-selective blocker, for rapid atrial and ventricular tachyarrhythmias with left ventricular dysfunction. J Arrhythm 32:82–88CrossRefGoogle Scholar
  174. Wallukat G (2002) The β-adrenergic receptors. Herz 27:683–690CrossRefGoogle Scholar
  175. Warne T, Serrano-Vega MJ, Baker JG et al (2008) Structure of a beta1-adrenergic G-protein-coupled receptor. Nature 454:486–491CrossRefGoogle Scholar
  176. Warren K, Burden H, Abrams P (2016) Mirabegron in overactive bladder patients: efficacy review and update on drug safety. Ther Adv drug Saf 7:204–216CrossRefGoogle Scholar
  177. Wassall RD, Teramoto N, Cunnane TC (2009) Noradrenaline. In: Encyclopedia of Neuroscience. Academic Press, Cambridge, pp 1221–1230CrossRefGoogle Scholar
  178. Webb DJ, Fulton JD, Leckie BJ et al (1987) The effect of chronic prazosin therapy on the response of the renin-angiotensin system in patients with essential hypertension. J Hum Hypertens 1:195–200Google Scholar
  179. Wei L, Zhu Y-M, Zhang Y-X et al (2016) The α1 adrenoceptors in ventrolateral orbital cortex contribute to the expression of morphine-induced behavioral sensitization in rats. Neurosci Lett 610:30–35CrossRefGoogle Scholar
  180. Westlund KN, Denney RM, Rose RM, Abell CW (1988) Localization of distinct monoamine oxidase a and monoamine oxidase b cell populations in human brainstem. Neuroscience 25:439–456CrossRefGoogle Scholar
  181. White WB, Moon T (2005) Treatment of benign prostatic hyperplasia in hypertensive men. J Clin Hypertens 7:212–217CrossRefGoogle Scholar
  182. Woodcock EA (2007) Roles of α1A- and α1B-adrenoceptors in heart: insights from studies of genetically modified mice. In: Clinical and experimental pharmacology and physiology. Wiley, ChichesterGoogle Scholar
  183. Wurtman RJ, Axelrod J (1966) Control of enzymatic synthesis of adrenaline in the adrenal medulla by adrenal cortical steroids. J Biol Chem 241:2301–2305Google Scholar
  184. Xie F, Petitti D, Chen W (2005) Prescribing patterns for antihypertensive drugs after the antihypertensive and lipid-lowering treatment to prevent heart attack trial: report of experience in a health maintenance organization. Am J Hypertens 18:464–469CrossRefGoogle Scholar
  185. Yu GS, Han C (1994) Role of alpha 1A- and alpha 1B-adrenoceptors in phenylephrine-induced positive inotropic response in isolated rat left atrium. J Cardiovasc Pharmacol 24:745–752CrossRefGoogle Scholar
  186. Zhao T-J, Sakata I, Li RL et al (2010) Ghrelin secretion stimulated by 1-adrenergic receptors in cultured ghrelinoma cells and in fasted mice. Proc Natl Acad Sci 107:15868–15873CrossRefGoogle Scholar
  187. Zuscik MJ, Chalothorn D, Hellard D et al (2001) Hypotension, autonomic failure, and cardiac hypertrophy in transgenic mice overexpressing the α 1B -adrenergic receptor. J Biol Chem 276:13738–13743CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2020

Authors and Affiliations

  1. 1.School of Pharmacy, Faculty of Health and Medical ScienceTaylor’s UniversitySubang JayaMalaysia
  2. 2.Department of Oral Biology and Biomedical Sciences, Faculty of DentistryMAHSA UniversityKuala LumpurMalaysia
  3. 3.PK-PD, Toxicology and Formulation DivisionCSIR-Indian Institute of Integrative MedicineJammuIndia
  4. 4.Department of Physiology, Faculty of Medicine, Bioscience and NursingMAHSA UniversityKuala LumpurMalaysia
  5. 5.School of PharmacyInternational Medical University, Bukit JalilKuala LumpurMalaysia

Personalised recommendations