Skip to main content

Neurotransmitters and Their Receptors—State of the Art

  • Chapter
  • First Online:
Frontiers in Pharmacology of Neurotransmitters

Abstract

Neurotransmitters are endogenous chemical messengers that are responsible for neuronal communication throughout the body. These compounds serve to facilitate various functions controlled by the central nervous system via a process known as chemical synaptic transmission. The discovery of various types of neurotransmitters has taken place over the past years where the neurotransmitters have been classified based on their chemical, functional, and molecular properties along with their location in the body. This chapter highlights all the important neurotransmitters including GABA and glycine, glutamate, melatonin, histamine, serotonin, acetylcholine along with other neurotransmitters, taking into account their synthesis, release, mechanism of action, and metabolism. This chapter also briefly discusses the physiological roles of these neurotransmitters and their contribution in different pathological conditions, in addition to the therapeutic effects of their agonists/antagonists.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Abbreviations

5-HIAA:

5-Hydroxyindoleacetic acid

5-HT:

5-Hydroxytryptamine

Ach:

Acetylcholine

AchE:

Acetylcholinesterase

AD:

Alzheimer’s disease

BuchE:

Butyrylcholinesterase

cAMP:

Cyclic adenosine monophosphate

CBD:

Cannabidiol

CNS:

Central nervous system

DAO:

Diamine oxidase

ECs:

Endogenous cannabinoids

EOPs:

Endogenous opioid peptides

GABA:

γ-Aminobutyric acid

GPCRs:

G-protein-coupled receptors

HDC:

L-histidine decarboxylase

HNMT:

Histamine N-methyltransferase

KO:

Knockout

MAO- A:

Monoamine oxidase A

NO:

Nitric oxide

NOP:

Nociceptin opioid receptor

NOS:

Nitric oxide synthase

PKG:

Protein kinase G

PNS:

Peripheral nervous system

TCA:

Tricarboxylic acid

THC:

Tetrahydrocannabinol

VGAT:

Vesicular GABA transporter

References

  • Ahluwalia J et al (2000) Cannabinoid 1 receptors are expressed in nociceptive primary sensory neurons. Neuroscience 100(4):685–688

    Article  CAS  Google Scholar 

  • Al-Attraqchi O, Attimarad M, Venugopala K, Nair A, Al-Attraqchi N (2019) Adenosine A2A receptor as a potential drug target-current status and future perspectives. Curr Pharm Des 25:2716–2740

    Article  CAS  Google Scholar 

  • Appendino G, Chianese G (2011) Cannabinoids: occurrence and medicinal chemistry. Curr Med Chem 18(7):1085–1099

    Article  CAS  Google Scholar 

  • Axelrod J (1974) The pineal gland: a neurochemical transducer. Science 184(4144):1341–1348

    Article  CAS  Google Scholar 

  • Baker KM, Booz GW, Dostal DE (1992) Cardiac actions of angiotensin II: role of an intracardiac renin-angiotensin system. Annu Rev Physiol 54(1):227–241

    Article  CAS  Google Scholar 

  • Bakker RA et al (2001) Histamine H(1)-receptor activation of nuclear factor-kappa B: roles for G beta gamma- and G alpha(q/11)-subunits in constitutive and agonist-mediated signaling. Mol Pharmacol 60(5):1133–1142

    Article  CAS  Google Scholar 

  • Baraldi PG, Tabrizi MA, Gessi S, Borea PA (2008) Adenosine receptor antagonists: translating medicinal chemistry and pharmacology into clinical utility. Chem Rev 108:238–263

    Article  CAS  Google Scholar 

  • Bauer JH, Reams GP (1986) Renal effects of angiotensin converting enzyme inhibitors in hypertension. Am J Med 81(4):19–27

    Article  CAS  Google Scholar 

  • Beaulieu J, Espinoza S, Gainetdinov RR (2015) Dopamine receptors–IUPHAR review 13. Br J Pharmacol. Wiley Online Library 172(1):1–23

    Article  CAS  Google Scholar 

  • Berger M, Gray JA, Roth BL (2009) The expanded biology of serotonin. Annu Rev Med 60:355–366. https://doi.org/10.1146/annurev.med.60.042307.110802

    Article  CAS  Google Scholar 

  • Biegański T (1983) Biochemical, physiological and pathophysiological aspects of intestinal diamine oxidase. Acta Physiol Pol 34(1):139–154

    Google Scholar 

  • Bochkov DV et al (2012) Shikimic acid: review of its analytical, isolation, and purification techniques from plant and microbial sources. J Chem Biol 5:5–17. https://doi.org/10.1007/s12154-011-0064-8

    Article  Google Scholar 

  • Boonstra TW et al (2007) Effects of sleep deprivation on neural functioning: an integrative review. Cell Mol Life Sci 64(7–8):934–946. https://doi.org/10.1007/s00018-007-6457-8

    Article  CAS  Google Scholar 

  • Borah P, Deka S, Mailavaram RP, Deb PK (2019) P1 receptor agonists/antagonists in clinical trials-potential drug candidates of the future. Curr Pharm Des 25:2792–2807

    Article  CAS  Google Scholar 

  • Borea PA, Gessi S, Merighi S, Varani K (2016) Adenosine as a multi-signalling guardian angel in human diseases: when, where and how does it exert its protective effects? Trends Pharmacol Sci 37:419–434

    Article  CAS  Google Scholar 

  • Borea PA, Gessi S, Merighi S, Vincenzi F, Varani K (2018) Pharmacology of adenosine receptors: the state of the art. Physiol Rev 98:1591–1625

    Article  CAS  Google Scholar 

  • Borg L, Kreek MJ (2003) The pharmacology of opioids. In: Graham A et al (eds) Principles of addiction medicine. Chevy Chase, MD, American Society of Addiction Medicine, pp 141–155

    Google Scholar 

  • Bouche N, Lacombe B, Fromm H (2003) GABA signaling: a conserved and ubiquitous mechanism. Trends Cell Biol 13(12):607–610

    Article  CAS  Google Scholar 

  • Chandrasekaran B, Deb PK, Kachler S, Akkinepalli RR, Mailavaram R, Klotz K-N (2018) Synthesis and adenosine receptors binding studies of new fluorinated analogues of pyrido [2,3-d] pyrimidines and quinazolines. Med Chem Res 27:756–767

    Article  CAS  Google Scholar 

  • Chandrasekaran B, Samarneh S, Jaber AMY, Kassab G, Agrawal N (2019) Therapeutic potentials of A2B adenosine receptor ligands: current status and perspectives. Curr Pharm Des 25:2741–2771

    Article  CAS  Google Scholar 

  • Chen J-F, Eltzschig HK, Fredholm BB (2013) Adenosine receptors as drug targets—what are the challenges? Nat Rev Drug Discov 12:265

    Article  CAS  Google Scholar 

  • Church MK, Church DS (2013) Pharmacology of antihistamines. Indian J Dermatol 58(3):219–224

    Article  Google Scholar 

  • Civantos Calzada B, Aleixandre De Artiñano A (2001) Alpha-adrenoceptor subtypes. Pharmacol Res. https://doi.org/10.1006/phrs.2001.0857

  • Cogan MG (1990) Angiotensin II: a powerful controller of sodium transport in the early proximal tubule. Hypertension 15(5):451–458

    Article  CAS  Google Scholar 

  • Cotecchia S (2010) The α1-adrenergic receptors: diversity of signaling networks and regulation. J Recept Sig Transduct Res 30(6):410–419. Taylor & Francis

    Article  CAS  Google Scholar 

  • Dahlitz M et al (1991) Delayed sleep phase syndrome response to melatonin. Lancet 337(8750):1121–1124

    Article  CAS  Google Scholar 

  • Danbolt NC, Furness DN, Zhou Y (2016) Neuronal vs glial glutamate uptake: resolving the conundrum. Neurochem Int 98:29–45. Elsevier Ltd

    Article  CAS  Google Scholar 

  • Daubner SC, Le T, Wang S (2011) Tyrosine hydroxylase and regulation of dopamine synthesis. Arch Biochem Biophys 508(1):1–12. NIH Public Access

    Article  CAS  Google Scholar 

  • De Ponti F (2004) Pharmacology of serotonin: what a clinician should know. Gut 53:1520–1535

    Article  CAS  Google Scholar 

  • Deb PK (2019a) Therapeutic potentials of adenosine receptors: the state of the art. Curr Pharm Des 25:2789–2791

    Article  CAS  Google Scholar 

  • Deb PK (2019b) Progress in the development of agonists, antagonists and allosteric modulators of adenosine receptors. Curr Pharm Des 25:2695–2696

    Article  CAS  Google Scholar 

  • Deb PK (2019c) Recent updates in the computer aided drug design strategies for the discovery of agonists and antagonists of adenosine receptors. Curr Pharm Des 25:747–749

    Article  CAS  Google Scholar 

  • Deb PK, Balakumar C, Rao AR, Roy PP, Roy K (2011) QSAR of adenosine receptor antagonists: exploring physicochemical requirements for binding of pyrazolo[4,3-e]-1,2,4-triazolo[1,5-c]pyrimidine derivatives with human adenosine A3 receptor subtype. Bioorg Med Chem Lett 21:818–823

    Article  CAS  Google Scholar 

  • Deb PK, Mailavaram R, Chandrasekaran B, Kaki VR, Kaur R, Kachler S, Karl-Norbert K, Akkinepally RR (2018) Synthesis, adenosine receptor binding and molecular modeling studies of novel thieno[2,3-d]pyrimidine derivatives. Chem Biol Drug Des 91:962–969

    Article  CAS  Google Scholar 

  • Deb PK, Chandrasekaran B, Mailavaram R, Tekade RK, Muttaleb A, Jaber Y (2019a) Molecular modeling approaches for the discovery of adenosine A2B receptor antagonists : current status and future perspectives. Drug Discov Today 24:1854–1864

    Article  CAS  Google Scholar 

  • Deb PK, Deka S, Borah P, Abed SN, Klotz K (2019b) Medicinal chemistry and therapeutic potential of agonists, antagonists and allosteric modulators of A1 adenosine receptor: current status and perspectives. Curr Pharm Des 25:2697–2715

    Article  CAS  Google Scholar 

  • Deussen A (2000) Metabolic flux rates of adenosine in the heart. Naunyn Schmiedeberg's Arch Pharmacol 362:351–363

    Article  CAS  Google Scholar 

  • Deussen A, Bading B, Kelm M, Schrader J (1993) Formation and salvage of adenosine by macrovascular endothelial cells. Am J Phys Heart Circ Phys 264:H692–H700

    CAS  Google Scholar 

  • Deussen A, Stappert M, Schäfer S, Kelm M (1999) Quantification of extracellular and intracellular adenosine production: understanding the transmembranous concentration gradient. Circulation 99:2041–2047

    Article  CAS  Google Scholar 

  • Dubbels R et al (1995) Melatonin in edible plants identified by radioimmunoassay and by high performance liquid chromatography-mass spectrometry. J Pineal Res 18:28–31

    Article  CAS  Google Scholar 

  • Dubocovich ML (1995) Melatonin receptors: are there multiple subtypes ? Trends Pharmacol Sci 16(2):50–56

    Article  CAS  Google Scholar 

  • Džoljić E, Grabatinić I, Kostić V (2015) Why is nitric oxide important for our brain? Funct Neurol 30(3):159–163

    Google Scholar 

  • Ekmekcioglu C (2006) Melatonin receptors in humans: biological role and clinical relevance. Biomed Pharmacother 60:97–108. https://doi.org/10.1016/j.biopha.2006.01.002

    Article  CAS  Google Scholar 

  • Fredholm BB (2014) Adenosine—a physiological or pathophysiological agent? J Mol Med 92:201–206

    Article  CAS  Google Scholar 

  • Fredholm BB, IJzerman AP, Jacobson KA, Klotz K-N, Linden J (2001) International Union of Pharmacology. XXV. Nomenclature and classification of adenosine receptors. Pharmacol Rev 53:527–552

    CAS  Google Scholar 

  • Fredholm BB, IJzerman AP, Jacobson KA, Linden J, Müller CE (2011) International Union of Basic and Clinical Pharmacology. LXXXI. Nomenclature and classification of adenosine receptors—an update. Pharmacol Rev 63:1–34

    Article  CAS  Google Scholar 

  • Galano A, Tan D-X, Reiter RJ (2018) Melatonin: a versatile protector against oxidative DNA damage. Molecules 23:E530. https://doi.org/10.3390/molecules23030530

    Article  CAS  Google Scholar 

  • Gentilucci L, Tolomelli A (2004) Recent advances in the investigation of the bioactive conformation of peptides active at the μ-opioid receptor. Conformational analysis of endomorphins. Curr Top Med Chem 4(1):105–121

    Article  CAS  Google Scholar 

  • Goldstein DS (2010) ‘Adrenaline and Noradrenaline’, in Encyclopedia of Life Sciences. John Wiley & Sons, Ltd, Chichester, pp 1–9. https://doi.org/10.1002/9780470015902.a0001401.pub2

    Book  Google Scholar 

  • Gracia E, Farré D, Cortés A, Ferrer-Costa C, Orozco M, Mallol J, Lluís C, Canela EI, McCormick PJ, Franco R (2013) The catalytic site structural gate of adenosine deaminase allosterically modulates ligand binding to adenosine receptors. FASEB J 27:1048–1061

    Article  CAS  Google Scholar 

  • Grotenhermen F (2003) Pharmacokinetics and Pharmacodynamics of Cannabinoids. Clin Pharmacokinet 42(4):327–360

    Article  CAS  Google Scholar 

  • Hourani W, Alexander SP. (2018) Cannabinoid ligands, receptors and enzymes: Pharmacological tools and therapeutic potential. Brain and Neuroscience Advances, 2, 2398212818783908.

    Google Scholar 

  • Hall JE et al (2019) Obesity, kidney dysfunction and hypertension: mechanistic links. Nature Reviews Nephrology 15:367–385. Springer US

    Article  Google Scholar 

  • Hamel E, Current H (2007) Serotonin and migraine: biology and clinical implications. Cephalalgia 27(11):1293–1300

    Article  CAS  Google Scholar 

  • Hardeland R (2015) Melatonin in plants and other phototrophs: advances and gaps concerning the diversity of functions. J Exp Bot 66(3):627–646

    Article  CAS  Google Scholar 

  • Hasbi A, O’Dowd BF, George SR (2011) Dopamine D1-D2 receptor heteromer signaling pathway in the brain: emerging physiological relevance. Mol Brain 4(1):26. BioMed Central

    Article  Google Scholar 

  • Hattori A et al (1995) Identification of melatonin in plants and its effects on plasma melatonin levels and binding to melatonin receptors in vertebrates. Biochem Mol Biol Int 35(3):627–634

    CAS  Google Scholar 

  • Herlenius E, Lagercrantz H (2001) Neurotransmitters and neuromodulators during early human development. Early Hum Dev 65:21–37

    Article  CAS  Google Scholar 

  • Herlenius E, Lagercrantz H (2004) Development of neurotransmitter systems during critical periods. Exp Neurol 190:8–21. https://doi.org/10.1016/j.expneurol.2004.03.027

    Article  CAS  Google Scholar 

  • Hoffman M (2019) Istradefylline approved for Parkinson add-on therapy

    Google Scholar 

  • Howlett AC (2002) The cannabinoid receptors. Prostaglandins Other Lipid Mediat 68–69:619–631

    Article  Google Scholar 

  • Ishii M, Kurachi Y (2006) Muscarinic acetylcholine receptors. Curr Pharm Des 12(28):3573–3581

    Article  CAS  Google Scholar 

  • Jin X et al (2003) Targeted disruption of the mouse Mel1b melatonin receptor. Mol Cell Biol 23(3):1054–1060. https://doi.org/10.1128/MCB.23.3.1054

    Article  CAS  Google Scholar 

  • Jinwala FN, Gupta M (2012) Synthetic cannabis and respiratory depression. J Child Adolesc Psychopharmacol 22(6):459–462. https://doi.org/10.1089/cap.2011.0122

    Article  CAS  Google Scholar 

  • Jou M-J, Peng T-I (2018) Protective stabilization of mitochondrial permeability transition and mitochondrial oxidation during mitochondrial Ca2+ stress by melatonin’s cascade metabolites C3-OHM and AFMK in RBA1 astrocytes. J Pineal Res:e12538. https://doi.org/10.1111/jpi.12538

  • Jou M-J et al (2007) Melatonin protects against common deletion of mitochondrial DNA-augmented mitochondrial oxidative stress and apoptosis. J Pineal Res 43:389–403. https://doi.org/10.1111/j.1600-079X.2007.00490.x

    Article  CAS  Google Scholar 

  • Jutel M, Akdis CA (2007) Histamine as an immune modulator in chronic inflammatory responses. Clin Exp Allergy 37:308–310

    Article  CAS  Google Scholar 

  • Kagami S et al (1994) Angiotensin II stimulates extracellular matrix protein synthesis through induction of transforming growth factor-beta expression in rat glomerular mesangial cells. J Clin Invest 93(6):2431–2437

    Article  CAS  Google Scholar 

  • Karasek M, Winczyk K (2006) Melatonin in humans. J Physiol Pharmacol 57:19–39

    Google Scholar 

  • Kavalali ET (2015) The mechanisms and functions of spontaneous neurotransmitter release. Nat Rev Neurosci 16(1):5–16. Nature Publishing Group

    Article  CAS  Google Scholar 

  • Kohout TA, Lefkowitz RJ (2003) Regulation of G protein-coupled receptor kinases and arrestins during receptor desensitization. Mol Pharmacol 63(1):9–18

    Article  CAS  Google Scholar 

  • Komatsu H (2015) Novel therapeutic GPCRs for psychiatric disorders. Int J Mol Sci:14109–14121. https://doi.org/10.3390/ijms160614109

  • Koneru A, Satyanarayana S, Rizwan S (2009) Endogenous opioids: their physiological role and receptors. Global J Pharmacol 3(3):149–153

    Google Scholar 

  • Lefkowitz RJ (2000) The superfamily of heptahelical receptors. Nat Cell Biol 2(7):E133–E136

    Article  CAS  Google Scholar 

  • Lerner AB et al (1958) Isolation of melatonin, the pineal gland factor that lightens melanocytes. J Am Chem Soc 58:2587

    Article  Google Scholar 

  • Leurs R et al (2009) Molecular and biochemical pharmacology of the histamine H4 receptor. Br J Pharmacol 157:14–23

    Article  CAS  Google Scholar 

  • Li Y et al (2012) A novel role of intestine epithelial GABAergic signaling in regulating intestinal fluid secretion. Am J Physiol Gastrointest Liver Physiol 303(4):453–460. https://doi.org/10.1152/ajpgi.00497.2011

    Article  CAS  Google Scholar 

  • Liu J et al (2016) MT1 and MT2 melatonin receptors: a therapeutic perspective. Annu Rev Pharmacol Toxicol 56:361–383

    Article  CAS  Google Scholar 

  • Liu J et al (2019) (Pro) renin receptor regulates lung development via the Wnt/B-catenin signaling pathway. Am J Physiol Lung Cell Mol Physiol 317(2):202–211

    Article  CAS  Google Scholar 

  • Lochner A, Marais E, Huisamen B (2018) Melatonin and cardioprotection against ischaemia/reperfusion injury: what’s new? A review. J Pineal Res 65(1):e12490

    Article  CAS  Google Scholar 

  • Luján R, Shigemoto R, López-Bendito G (2005) Review glutamate And GABA receptor signalling in the developing brain. Neuroscience 130(3):567–580

    Article  CAS  Google Scholar 

  • Lv C et al (2018) Dopamine D2-like receptors (DRD2 and DRD4) in chickens: Tissue distribution, functional analysis, and their involvement in dopamine inhibition of pituitary prolactin expression. Gene 651:33–43. Elsevier

    Article  CAS  Google Scholar 

  • Ma YC, Huang XY (2002) Novel signaling pathway through the beta-adrenergic receptor. Trends Cardiovasc Med 12(1):46–49

    Article  CAS  Google Scholar 

  • Mackie K (2006) Cannabinoid receptors as therapeutic targets. Annu Rev Pharmacol Toxicol 46:101–122. https://doi.org/10.1146/annurev.pharmtox.46.120604.141254

    Article  CAS  Google Scholar 

  • Mailavaram R, Al-Attraqchi O, Kar S, Ghosh S (2019) Current status in the design and development of agonists and antagonists of adenosine A3 receptor as potential therapeutic agents. Curr Pharm Des 25:2772–2787

    Article  CAS  Google Scholar 

  • Majidinia M et al (2018) The role of melatonin, a multitasking molecule, in retarding the processes of ageing. Ageing Res Rev 47:198–213. https://doi.org/10.1016/j.arr.2018.07.010

    Article  CAS  Google Scholar 

  • Manchester LC et al (2000) High levels of melatonin in the seeds of edible plants Possible function in germ tissue protection. Life Sci 67:3023–3029

    Article  CAS  Google Scholar 

  • Manchester LC et al (2015) Melatonin: an ancient molecule that makes oxygen metabolically tolerable. J Pineal Res 59:403–419. https://doi.org/10.1111/jpi.12267

    Article  CAS  Google Scholar 

  • Markwardt S, Overstreet-wadiche L (2008) GABAergic signalling to adult-generated neurons. J Physiol 586(16):3745–3749. https://doi.org/10.1113/jphysiol.2008.155713

    Article  CAS  Google Scholar 

  • Merighi S, Gessi S, Borea PA (2018) Adenosine receptors: structure, distribution, and signal transduction. In: Borea P, Varani K, Gessi S, Merighi S, Vincenzi F (eds) The adenosine receptors, The receptors, vol 34, pp 33–57

    Chapter  Google Scholar 

  • Mishra GP et al (2011) Recent patents and emerging therapeutics in the treatment of allergic conjunctivitis. Recent Patents Inflamm Allergy Drug Discov 5:26–36

    Article  CAS  Google Scholar 

  • Mohammad-Zadeh LF, Moses L, Gwaltney-Brant SM (2008) Serotonin: a review. J Vet Pharmacol Ther 31:187–199

    Article  CAS  Google Scholar 

  • Morgan PJ et al (1994) Melatonin receptors: localization, molecular pharmacology and physiological significance. Neurochem Int 24(2):101–146

    Article  CAS  Google Scholar 

  • Murrough JW, Abdallah CG, Mathew SJ (2017) Targeting glutamate signalling in depression: progress and prospects. Nat Rev Drug Discov 16(7):472. Nature Publishing Group

    Article  CAS  Google Scholar 

  • Nabavi SM et al (2019) Anti-inflammatory effects of melatonin: a mechanistic review. Crit Rev Food Sci Nutr 59(sup1):4–16. https://doi.org/10.1080/10408398.2018.1487927

    Article  CAS  Google Scholar 

  • Naganuma F et al (2017) Histamine N-methyltransferase regulates aggression and the sleep-wake cycle. Sci Rep 7(1):15899. https://doi.org/10.1038/s41598-017-16019-8

    Article  CAS  Google Scholar 

  • Nathan C (1997) Inducible nitric oxide synthase: what difference does it make? J Clin Invest 100:2417–2423

    Article  CAS  Google Scholar 

  • Ni W, Watts SW (2006) 5-hydroxytryptamine in the cardiovascular system: focus on the serotonin transporter (SERT). Clin Exp Pharmacol Physiol 33:575–583

    Article  CAS  Google Scholar 

  • Nyberg L et al (2016) Dopamine D2 receptor availability is linked to hippocampal–caudate functional connectivity and episodic memory. Proc Natl Acad Sci 113(28):7918–7923. National Acad Sciences

    Article  CAS  Google Scholar 

  • O’Mahony L, Akdis M, Akdis CA (2013) Regulation of the immune response and inflammation by histamine and histamine receptors. J Allergy Clin Immunol 128(6):1153–1162

    Article  CAS  Google Scholar 

  • Oddo S, Laferla FM (2006) The role of nicotinic acetylcholine receptors in Alzheimer’s disease. J Physiol Paris 99(2–3):172–179

    Article  CAS  Google Scholar 

  • Olsen R (2002) GABA’. In: Charney D et al (eds) Neuropsychopharmacology the fifth generation of progress. Cambridge University Press, Cambridge, pp 159–168

    Google Scholar 

  • Onaolapo AY, Onaolapo OJ (2018) Circadian dysrhythmia-linked diabetes mellitus: examining melatonin’s roles in prophylaxis and management. World J Diabetes 9(7):99–114

    Article  Google Scholar 

  • Owens DF, Kriegstein AR (2002) Is there more to GABA than synaptic inhibition? Nat Rev Neurosci 3:715–727

    Article  CAS  Google Scholar 

  • Pacheco R, Lejeune M, Climent N, Oliva H, Gatell JM, Gallart T, Mallol J (2005) CD26, adenosine deaminase, and adenosine receptors mediate costimulatory signals in the immunological synapse. PNAS 102:9583–9588

    Article  CAS  Google Scholar 

  • Pauwels PJ (2003) 5-HT receptors and their ligands. Neuropharmacology 1083:38–50

    Google Scholar 

  • Peterlin BL, Rapoport AM (2007) Clinical pharmacology of the serotonin receptor agonist, zolmitriptan. Expert Opin Drug Metab Toxicol 3(6):899–912

    Article  CAS  Google Scholar 

  • Poeggeler B (2005) Melatonin, aging, and age-related diseases. Endocrine 27(2):201–212

    Article  CAS  Google Scholar 

  • Pytliak M et al (2011) Serotonin receptors – from molecular biology to clinical applications. Physiol Res 60:15–25

    Article  CAS  Google Scholar 

  • Rangel-Barajas C, Coronel I, Florán B (2015) Dopamine receptors and neurodegeneration. Aging Dis 6(5):349. JKL International LLC

    Article  Google Scholar 

  • Rangel-gomez M, Meeter M (2016) Neurotransmitters and novelty: a systematic review. J Psychopharmacol 30(1):1–13. https://doi.org/10.1177/0269881115612238

    Article  CAS  Google Scholar 

  • Rasakham K (2008) Kappa Opioid Receptor regulation of ERK1/2 MAP kinase signaling cascade: molecular mechanisms modulating cocaine reward. Northeastern University, Boston, MA

    Google Scholar 

  • Reiter RJ et al (2014) Melatonin: exceeding expectations. Physiology 29:325–333. https://doi.org/10.1152/physiol.00011.2014

    Article  CAS  Google Scholar 

  • Rizo J (2018) Mechanism of neurotransmitter release coming into focus. Protein Sci 27:1364–1391. https://doi.org/10.1002/pro.3445

    Article  CAS  Google Scholar 

  • Sarter M, Parikh V (2005) Choline transporters, cholinergic transmission and cognition. Nat Rev Neurosci 6(1):48–56

    Article  CAS  Google Scholar 

  • Sasamura H et al (1992) Cloning, characterization, and expression of two angiotensin receptor (AT-1) isoforms from the mouse genome. Biochem Biophys Res Commun 185(1):253–259

    Article  CAS  Google Scholar 

  • Schmidt MJ, Mirnics K (2015) Neurodevelopment, GABA system dysfunction, and schizophrenia. Neuropsychopharmacol Rev 40:190–206. https://doi.org/10.1038/npp.2014.95. Nature Publishing Group

    Article  Google Scholar 

  • Seifert R et al (2013) Molecular and cellular analysis of human histamine receptor subtypes. Trends Pharmacol Sci 34(1):33–58. Elsevier Ltd

    Article  CAS  Google Scholar 

  • Shad KF (2017) Introductory chapter: Serotonin - the most ancient neurotransmitter, hormone and trophic factor. In: Serotonin - a chemical messenger between all types of living cells. BoD – Books on Demand, Norderstedt, pp 3–6

    Chapter  Google Scholar 

  • Shaik K, Deb PK, Mailavaram RP, Chandrasekaran B, Kachler S, Klotz KN, Jaber AMY (2019) 7-Amino-2-aryl/hetero-aryl-5-oxo-5,8-dihydro[1,2,4]triazolo[1,5-a] pyridine-6-carbonitriles: synthesis and adenosine receptor binding studies. Chem Biol Drug Des 94:1568–1573

    CAS  Google Scholar 

  • Shi H et al (2016) Fundamental issues of melatonin-mediated stress signaling in plants. Front Plant Sci 7(1124):1–6. https://doi.org/10.3389/fpls.2016.01124

    Article  Google Scholar 

  • Shim YK, Kim N (2017) The effect of H2 receptor antagonist in acid inhibition and its clinical efficacy. Korean J Gastroenterol 70(1):4–12

    Article  Google Scholar 

  • Singh M, Jadhav HR (2013) Histamine H3 receptor function and ligands: recent developments. Mini-Rev Med Chem 13:47–57

    Article  CAS  Google Scholar 

  • Smee ML, Overstreet DH (1976) Alterations in the effects of dopamine agonists and antagonists on general activity in rats following chronic morphine treatment. Psychopharmacology 49(2):125–130. Springer

    Article  CAS  Google Scholar 

  • Stanley JA et al (2017) Functional dynamics of hippocampal glutamate during associative learning assessed with in vivo 1H functional magnetic resonance spectroscopy. Neuroimage., Elsevier 153:189–197

    Article  CAS  Google Scholar 

  • Strosberg AD (1993) Structure, function, and regulation of adrenergic receptors. Protein Sci 2(8):1198–1209. https://doi.org/10.1002/pro.5560020802

    Article  CAS  Google Scholar 

  • Su K et al (2014) The essential role of transient receptor potential vanilloid 1 in simvastatin-induced activation of endothelial nitric oxide synthase and angiogenesis. Acta Physiol (Oxf) 212:191–204. https://doi.org/10.1111/apha.12378

    Article  CAS  Google Scholar 

  • Sulzer D, Cragg SJ, Rice ME (2016) Striatal dopamine neurotransmission: regulation of release and uptake. Basal Ganglia 6(3):123–148. Elsevier

    Article  Google Scholar 

  • Tamtaji OR et al (2018) Melatonin, a toll - like receptor inhibitor: current status and future perspectives. J Cell Physiol. https://doi.org/10.1002/jcp.27698

  • Tan D-X (1993) Melatonin: a potent, endogenous hydroxyl radical scavenger. Endocr J 1:57–60

    Google Scholar 

  • Tan D et al (2010) The changing biological roles of melatonin during evolution: from an antioxidant to signals of darkness, sexual selection and fitness. Biol Rev 85:607–623. https://doi.org/10.1111/j.1469-185X.2009.00118.x

    Article  Google Scholar 

  • Tan D et al (2013) Mitochondria and chloroplasts as the original sites of melatonin synthesis: a hypothesis related to melatonin’s primary function and evolution in eukaryotes. J Pineal Res 54:127–138. https://doi.org/10.1111/jpi.12026

    Article  CAS  Google Scholar 

  • Tan D et al (2015) Melatonin as a potent and inducible endogenous antioxidant: synthesis and metabolism. Molecules 20:18886–18906. https://doi.org/10.3390/molecules201018886

    Article  CAS  Google Scholar 

  • Tan D-X et al (2016) On the significance of an alternate pathway of melatonin synthesis via 5-methoxytryptamine: comparisons across species. J Pineal Res 61:27–40. https://doi.org/10.1111/jpi.12336

    Article  CAS  Google Scholar 

  • Thorne BM (2010) Neurotransmitters’. In: Weiner IB, Craighead WE (eds) The corsini encyclopedia of psychology. Wiley, Hoboken, NJ, pp 1–2

    Google Scholar 

  • Thurmond RL (2015) The histamine H4 receptor: from orphan to the clinic. Front Pharmacol 6(65):1–11

    CAS  Google Scholar 

  • Tieu K, Ischiropoulos H, Przedborski S (2003) Nitric oxide and reactive oxygen species in Parkinson’s disease. IUBMB Life 55(6):329–335. https://doi.org/10.1080/1521654032000114320

    Article  CAS  Google Scholar 

  • Tiligada E (2012) Editorial: Is histamine the missing link in chronic inflammation. J Leukoc Biol 92:4–6

    Article  CAS  Google Scholar 

  • Tordjman S et al (2017) Melatonin: pharmacology, functions and therapeutic benefits. Curr Neuropharmacol 15(3):434–443

    Article  CAS  Google Scholar 

  • Upadhyay SN (2003) Serotonin receptors, agonists and antagonists. IJNM 18(1 & 2):1–11

    Google Scholar 

  • Virarkar M et al (2013) L-arginine and nitric oxide in CNS function and neurodegenerative diseases. Crit Rev Food Sci Nutr 53(11):1157–1167. https://doi.org/10.1080/10408398.2011.573885

    Article  CAS  Google Scholar 

  • Voelker R (2019) Add-on drug approved for “Off” episodes of Parkinson disease. JAMA 322:1246–1246

    Google Scholar 

  • Von Gall C, Stehle JH, Weaver DR (2002) Mammalian melatonin receptors: molecular biology and signal transduction. Cell Tissue Res 309:151–162. https://doi.org/10.1007/s00441-002-0581-4

    Article  CAS  Google Scholar 

  • Walker MC, van der Donk WA (2016) The many roles of glutamate in metabolism. J Ind Microbiol Biotechnol 43(2–3):419–430. Springer

    Article  CAS  Google Scholar 

  • Wang H et al (2005) Presynaptic and postsynaptic roles of NO, cGK, and RhoA in long-lasting potentiation and aggregation of synaptic proteins. Neuron 45(3):389–403. https://doi.org/10.1016/j.neuron.2005.01.011

    Article  CAS  Google Scholar 

  • Wassall RD, Teramoto N, Cunnane TC (2009) Noradrenaline. In: Encyclopedia of neuroscience. Academic Press, Cambridge, pp 1221–1230

    Chapter  Google Scholar 

  • Wu H et al (2019) Beyond a neurotransmitter: The role of serotonin in inflammation and immunity. Pharmacol Res 140:100–114. https://doi.org/10.1016/j.phrs.2018.06.015

    Article  CAS  Google Scholar 

  • Yaksh TL, Wallace MS (2011) Opioids, analgesia, and pain management. In: Goodman and Gilman’s the pharmacological basis of therapeutics. McGraw-Hill Medical, New York, NY, pp 481–526

    Google Scholar 

  • Yamamoto K et al (2015) Presynaptic cell type-dependent regulation of GABAergic synaptic transmission by nitric oxide in rat insular cortex. Neuroscience 284:65–77. IBRO

    Article  CAS  Google Scholar 

  • Yoshikawa T et al (2013) molecular mechanism of histamine clearance by primary human astrocytes. Glia 61:905–916. https://doi.org/10.1002/glia.22484

    Article  Google Scholar 

  • Zhdanova IV, Lynch HJ, Wurtman RJ (1997) Melatonin: a sleep-promoting hormone. Sleep 20(10):899–907

    CAS  Google Scholar 

  • Zhou Y, Danbolt NC (2014) Glutamate as a neurotransmitter in the healthy brain. J Neural Transm 121(8):799–817. https://doi.org/10.1007/s00702-014-1180-8

    Article  CAS  Google Scholar 

  • Zimmermann H (2000) Extracellular metabolism of ATP and other nucleotides. Naunyn Schmiedeberg's Arch Pharmacol 362:299–309

    Article  CAS  Google Scholar 

  • Zisapel N (2001) Circadian rhythm sleep disorders pathophysiology and potential approaches to management. CNS Drugs 15(4):311–328

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kumar, P., Abed, S.N., Bataineh, Y.A., Salem, M.S. (2020). Neurotransmitters and Their Receptors—State of the Art. In: Kumar, P., Deb, P.K. (eds) Frontiers in Pharmacology of Neurotransmitters. Springer, Singapore. https://doi.org/10.1007/978-981-15-3556-7_1

Download citation

Publish with us

Policies and ethics