Skip to main content

Pharmacology of Endocannabinoids and Their Receptors

  • Chapter
  • First Online:
Frontiers in Pharmacology of Neurotransmitters

Abstract

The identification of cannabinoid (CB) receptors has contributed to the state-of-the-art on the endocannabinoid system and its elements. Endocannabinoids (eCBs) are the endogenous agonists, derived from the conjugation of arachidonic acid with either ethanolamine (i.e. anandamide) or glycerol (i.e. 2-arachidonoylglycerol) acting as a lipid signaling mediator via two types of cannabinoid receptors (i.e. CB1 and CB2). Introduction of selective CB antagonists, inhibitors of eCB transport and metabolism, cannabinoid receptor-deficient mice and highlights on amidohydrolase have greatly facilitated the subsequent investigation of the eCB system. Moreover, modulation of the eCB system holds a promising therapeutic potential in the management of a myriad of pathophysiological conditions such as anxiety or mood disorders, neuropathic pain, multiple sclerosis, neurodegenerative diseases, osteoporosis, obesity and cancer among others. This chapter is comprehensively focused on the signal transduction and metabolic pathways, physiological roles, pharmacology and therapeutic potential of the endocannabinoids, with particular emphasis on cannabinoid addiction.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Abbreviations

Abh4:

α/β-Hydrolase 4

2-AG:

2-Arachidonoylglycerol

CB:

Cannabinoid

CB1R:

Cannabinoid 1 receptor

CB2R:

Cannabinoid 2 receptor

CBD:

Cannabidiol

CBN:

Cannabinol

DAG:

Diacylglycerol

eCBs:

Endocannabinoids

FAAH:

Fatty acid amide hydrolase

GPCRs:

G protein-coupled receptors

MAGL:

Monoacylglycerol lipase

MAPK:

Mitogen-activated protein kinase

NAPE:

N-arachidonoyl phosphatidylethanolamine

PA2:

Phospholipase A2

pCBs:

Phytocannabinoids

PLA1:

PI-explicit phospholipase A1

PLC:

Phospholipase C

THC:

Δ9-Tetrahydrocannabinol

References

  • Abood M, Martin B (1992) Neurobiology of marijuana abuse. Trends Pharmacol Sci 13:201–206

    Article  CAS  Google Scholar 

  • Adler BL, Deleo VA (2019) Allergenic ingredients in commercial topical cannabinoid preparations. J Am Acad Dermatol. https://doi.org/10.1016/j.jaad.2019.03.015

  • Adriani W, Caprioli A, Granstrem O, Carli M, Laviola G (2003) The spontaneously hypertensive-rat as an animal model of ADHD: evidence for impulsive and non-impulsive subpopulations. Neurosci Biobehav Rev 27:639–651

    Article  Google Scholar 

  • Afaq F, Sarfaraz S, Syed DN, Khan N, Malik A, Bailey HH, Mukhtar H (2006) Cannabinoid receptors as a target for therapy of ovarian cancer. AACR Meeting, Washington, DC

    Google Scholar 

  • Akram H, Mokrysz C, Curran HV (2019) What are the psychological effects of using synthetic cannabinoids? A systematic review. J Psychopharmacol 33:271–283

    Article  CAS  Google Scholar 

  • Alexander SP (2016) Therapeutic potential of cannabis-related drugs. Prog Neuropsychopharmacol Biol Psychiatry 64:157–166

    Article  CAS  Google Scholar 

  • Alipour A, Patel PB, Shabbir Z, Gabrielson S (2019) Review of the many faces of synthetic cannabinoid toxicities. Ment Health Clin 9:93–99

    Article  Google Scholar 

  • Andrade AK, Renda B, Murray JE (2019) Cannabinoids, interoception, and anxiety. Pharmacol Biochem Behav 180:60–73

    Article  CAS  Google Scholar 

  • Bara A, Manduca A, Bernabeu A, Borsoi M, Serviado M, Lassalle O, Murphy M, Wager-Miller J, Mackie K, Pelissier-Alicot AL, Trezza V, Manzoni OJ (2018) Sex-dependent effects of in utero cannabinoid exposure on cortical function. Elife 7

    Google Scholar 

  • Baron EP (2018) Medicinal properties of cannabinoids, terpenes, and flavonoids in cannabis, and benefits in migraine, headache, and pain: an update on current evidence and cannabis science. Headache 58:1139–1186

    Article  Google Scholar 

  • Battista N, Di Tommaso M, Bari M, Maccarrone M (2012) The endocannabinoid system: an overview. Front Behav Neurosci 6:9

    Article  CAS  Google Scholar 

  • Bilbao A, Cippitelli A, Bermudez-Silva FJ, Del Arco I, Navarro M, Rodríguez De Fonseca F (2004) The endocannabinoid system: physiology and pharmacology. Alcohol Alcohol 40:2–14

    Google Scholar 

  • Bingham B, Jones P, Uveges A, Kotnis S, Lu P, Smith V, Sun SC, Resnick L, Chlenov M, He Y (2007) Species-specific in vitro pharmacological effects of the cannabinoid receptor 2 (CB2) selective ligand AM1241 and its resolved enantiomers. Br J Pharmacol 151:1061–1070

    Article  CAS  Google Scholar 

  • Blankman JL, Simon GM, Cravatt BF (2007) A comprehensive profile of brain enzymes that hydrolyze the endocannabinoid 2-arachidonoylglycerol. Chem Biol 14:1347–1356

    Article  CAS  Google Scholar 

  • Blázquez C, Carracedo A, Barrado L, Real PJ, Fernández-Luna JL, Velasco G, Malumbres M, GuzmáN M (2006) Cannabinoid receptors as novel targets for the treatment of melanoma. FASEB J 20:2633–2635

    Article  CAS  Google Scholar 

  • Bonini SA, Premoli M, Tambaro S, Kumar A, Maccarinelli G, Memo M, Mastinu A (2018) Cannabis sativa: a comprehensive ethnopharmacological review of a medicinal plant with a long history. J Ethnopharmacol 227:300–315

    Article  CAS  Google Scholar 

  • Bonn-Miller MO, Elsohly MA, Loflin MJE, Chandra S, Vandrey R (2018) Cannabis and cannabinoid drug development: evaluating botanical versus single molecule approaches. Int Rev Psychiatry 30:277–284

    Article  Google Scholar 

  • Borsoi M, Manduca A, Bara A, Lassalle O, Pelissier-Alicot AL, Manzoni OJ (2019) Sex differences in the behavioral and synaptic consequences of a single in vivo exposure to the synthetic cannabimimetic WIN55,212-2 at puberty and adulthood. Front Behav Neurosci 13:23

    Article  CAS  Google Scholar 

  • Bramness JG, Dom G, Gual A, Mann K, Wurst FM (2018) A survey on the medical use of cannabis in Europe: a position paper. Eur Addict Res 24:201–205

    Article  Google Scholar 

  • Breit KR, Zamudio B, Thomas JD (2019) Altered motor development following late gestational alcohol and cannabinoid exposure in rats. Neurotoxicol Teratol 73:31–41

    Article  CAS  Google Scholar 

  • Caffarel MM, Andradas C, Mira E, Pérez-Gómez E, Cerutti C, Moreno-Bueno G, Flores JM, García-Real I, Palacios J, Mañes S (2010) Cannabinoids reduce ErbB2-driven breast cancer progression through Akt inhibition. Mol Cancer 9:196

    Article  CAS  Google Scholar 

  • Cardenia V, Gallina Toschi T, Scappini S, Rubino RC, Rodriguez-Estrada MT (2018) Development and validation of a Fast gas chromatography/mass spectrometry method for the determination of cannabinoids in Cannabis sativa L. J Food Drug Anal 26:1283–1292

    Article  CAS  Google Scholar 

  • Carr C, Vertelney H, Fronk J, Trieu S (2019) Dronabinol for the treatment of paraneoplastic night sweats in cancer patients: a report of five cases. J Palliat Med. https://doi.org/10.1089/jpm.2018.0551

  • Carracedo A, Gironella M, Lorente M, Garcia S, GuzmáN M, Velasco G, Iovanna JL (2006) Cannabinoids induce apoptosis of pancreatic tumor cells via endoplasmic reticulum stress–related genes. Cancer Res 66:6748–6755

    Article  CAS  Google Scholar 

  • Chen C (2016) Endocannabinoid metabolism in neurodegenerative diseases. Neuroimmunol Neuroinflammation 3:268–270

    Article  Google Scholar 

  • Rosanna Chianese and Rosaria Meccariello (2016) The endocannabinoid system in human physiology. In: Meccariello R (ed.) Cannabinoids in health and disease. IntechOpen. https://doi.org/10.5772/63818

  • Chopra GS, Smith JW (1974) Psychotic reactions following cannabis use in East Indians. Arch Gen Psychiatry 30:24–27

    Article  CAS  Google Scholar 

  • Chye Y, Christensen E, Solowij N, Yucel M (2019) The endocannabinoid system and cannabidiol’s promise for the treatment of substance use disorder. Front Psychiatry 10:63

    Article  Google Scholar 

  • Citti C, Palazzoli F, Licata M, Vilella A, Leo G, Zoli M, Vandelli MA, Forni F, Pacchetti B, Cannazza G (2018) Untargeted rat brain metabolomics after oral administration of a single high dose of cannabidiol. J Pharm Biomed Anal 161:1–11

    Article  CAS  Google Scholar 

  • Cohen K, Weinstein AM (2018) Synthetic and non-synthetic cannabinoid drugs and their adverse effects-a review from public health prospective. Front Public Health 6:162–162

    Article  Google Scholar 

  • Cohen K, Abraham W, Aviv W (2019) Modulatory effects of cannabinoids on brain neurotransmission. Eur J Neurosci. https://doi.org/10.1111/ejn.14407

  • Colizzi M, McGuire P, Giampietro V, Williams S, Brammer M, Bhattacharyya S (2018) Previous cannabis exposure modulates the acute effects of delta-9-tetrahydrocannabinol on attentional salience and fear processing. Exp Clin Psychopharmacol 26:582–598

    Article  CAS  Google Scholar 

  • Collin C, Davies P, Mutiboko I, Ratcliffe S (2007) Randomized controlled trial of cannabis-based medicine in spasticity caused by multiple sclerosis. Eur J Neurol 14:290–296

    Article  CAS  Google Scholar 

  • Costa B, Colleoni M, Conti S, Parolaro D, Franke C, Trovato AE, Giagnoni G (2004) Oral anti-inflammatory activity of cannabidiol, a non-psychoactive constituent of cannabis, in acute carrageenan-induced inflammation in the rat paw. Naunyn-Schmiedeberg’s Arch Pharmacol 369:294–299

    Article  CAS  Google Scholar 

  • Crowley K, De Vries ST, Moreno-Sanz G (2018) Self-reported effectiveness and safety of Trokie((R)) lozenges: a standardized formulation for the buccal delivery of cannabis extracts. Front Neurosci 12:564

    Article  Google Scholar 

  • Curran HV, Hindocha C, Morgan CJA, Shaban N, Das RK, Freeman TP (2019) Which biological and self-report measures of cannabis use predict cannabis dependency and acute psychotic-like effects? Psychol Med 49:1574–1580

    Article  Google Scholar 

  • Cyr C, Arboleda MF, Aggarwal SK, Balneaves LG, Daeninck P, Neron A, Prosk E, Vigano A (2018) Cannabis in palliative care: current challenges and practical recommendations. Ann Palliat Med 7:463–477

    Article  Google Scholar 

  • Da Silva VK, De Freitas BS, Garcia RCL, Monteiro RT, Hallak JE, Zuardi AW, Crippa JAS, Schroder N (2018) Antiapoptotic effects of cannabidiol in an experimental model of cognitive decline induced by brain iron overload. Transl Psychiatry 8:176

    Article  CAS  Google Scholar 

  • Dale T, Downs J, Olson H, Bergin AM, Smith S, Leonard H (2019) Cannabis for refractory epilepsy in children: a review focusing on CDKL5 Deficiency Disorder. Epilepsy Res 151:31–39

    Article  CAS  Google Scholar 

  • Daris B, Tancer Verboten M, Knez Z, Ferk P (2019) Cannabinoids in cancer treatment: therapeutic potential and legislation. Bosn J Basic Med Sci 19:14–23

    Article  CAS  Google Scholar 

  • De Petrocellis L, Ligresti A, Schiano Moriello A, Iappelli M, Verde R, Stott CG, Cristino L, Orlando P, Di Marzo V (2013) Non-THC cannabinoids inhibit prostate carcinoma growth in vitro and in vivo: pro-apoptotic effects and underlying mechanisms. Br J Pharmacol 168:79–102

    Article  CAS  Google Scholar 

  • Devane W, Hanus L, Breuer A, Pertwee R, Stevenson L, Griffin G, Gibson D, Mandelbaum A, Etinger A, Mechoulam R (1992) Isolation and structure of a brain constituent that binds to the cannabinoid receptor. Science 258:1946–1949

    Article  CAS  Google Scholar 

  • Deveaux V, Cadoudal T, Ichigotani Y, Teixeira-Clerc F, Louvet A, Manin S, Tran-Van Nhieu J, Belot MP, Zimmer A, Even P (2009) Cannabinoid CB2 receptor potentiates obesity-associated inflammation, insulin resistance and hepatic steatosis. PLoS One 4:e5844

    Article  CAS  Google Scholar 

  • Diao X, Huestis MA (2019) New synthetic cannabinoids metabolism and strategies to best identify optimal marker metabolites. Front Chem 7:109

    Article  CAS  Google Scholar 

  • Dinis-Oliveira RJ (2019) [The clinical toxicology perspective on the therapeutic use of cannabis and cannabinoids]. Acta Med Port 32: 87–90

    Google Scholar 

  • Dol-Gleizes F, Paumelle R, Visentin V, Mares AM, Desitter P, Hennuyer N, Gilde A, Staels B, Schaeffer P, Bono F (2009) Rimonabant, a selective cannabinoid CB1 receptor antagonist, inhibits atherosclerosis in LDL receptor-deficient mice. Arterioscler Thromb Vasc Biol 29:12–18

    Article  CAS  Google Scholar 

  • Elliott J, McCoy B, Clifford T, Potter BK, Skidmore B, Wells GA, Coyle D (2019) Cost-effectiveness of cannabinoids for pediatric drug-resistant epilepsy: protocol for a systematic review of economic evaluations. Syst Rev 8:75

    Article  Google Scholar 

  • Ferrini M, Hong S, Stierle A, Stierle D, Stella N, Roberts K, Jaffar Z (2017) CB 2 receptors regulate natural killer cells that limit allergic airway inflammation in a murine model of asthma. Allergy 72:937–947

    Article  CAS  Google Scholar 

  • Fiore D, Ramesh P, Proto MC, Piscopo C, Franceschelli S, Anzelmo S, Medema JP, Bifulco M, Gazzerro P (2018) Rimonabant kills colon cancer stem cells without inducing toxicity in normal colon organoids. Front Pharmacol 8:949

    Article  CAS  Google Scholar 

  • Foltin RW, Brady JV, Fischman MW (1986) Behavioral analysis of marijuana effects on food intake in humans. Pharmacol Biochem Behav 25:577–582

    Article  CAS  Google Scholar 

  • Fong TM, Guan X-M, Marsh DJ, Shen C-P, Stribling DS, Rosko KM, Lao J, Yu H, Feng Y, Xiao JC, Van Der Ploeg LHT, Goulet MT, Hagmann WK, Lin LS, Lanza TJ, Jewell JP, Liu P, Shah SK, Qi H, Tong X, Wang J, Xu SS, Francis B, Strack AM, Macintyre DE, Shearman LP (2007) Antiobesity efficacy of a novel cannabinoid-1 receptor inverse agonist, N-[(1S,2S)-3-(4-chlorophenyl)-2-(3-cyanophenyl)-1-methylpropyl]-2-methyl-2-[[5-(trifluoromethyl)pyridin-2-yl]oxy]propanamide (MK-0364), in rodents. J Pharmacol Exp Ther 321:1013–1022

    Article  CAS  Google Scholar 

  • Fowler C (2007) The contribution of cyclooxygenase-2 to endocannabinoid metabolism and action. Br J Pharmacol 152:594–601

    Article  CAS  Google Scholar 

  • Friedman D, French JA, Maccarrone M (2019) Safety, efficacy, and mechanisms of action of cannabinoids in neurological disorders. Lancet Neurol 18:504–512

    Article  CAS  Google Scholar 

  • Galiègue S, Mary S, Marchand J, Dussossoy D, CarriÈre D, Carayon P, Bouaboula M, Shire D, Fur G, Casellas P (1995) Expression of central and peripheral cannabinoid receptors in human immune tissues and leukocyte subpopulations. Eur J Biochem 232:54–61

    Article  Google Scholar 

  • Galiegue S, Mary S, Marchand J, Dussossoy D, Carriere D, Carayon P, Bouaboula M, Shire D, Le Fur G, Casellas P (1995) Expression of central and peripheral cannabinoid receptors in human immune tissues and leukocyte subpopulations. Eur J Biochem 232:54–61

    Article  CAS  Google Scholar 

  • Gaoni Y, Mechoulam R (1964) Isolation, structure, and partial synthesis of an active constituent of hashish. J Am Chem Soc 86:1646–1647

    Article  CAS  Google Scholar 

  • Gertsch J, Pertwee RG, Di Marzo V (2010) Phytocannabinoids beyond the Cannabis plant - do they exist? Br J Pharmacol 160:523–529

    Article  CAS  Google Scholar 

  • Giang DK, Cravatt BF (1997) Molecular characterization of human and mouse fatty acid amide hydrolases. Proc Natl Acad Sci U S A 94:2238–2242

    Article  CAS  Google Scholar 

  • Giannini L, Nistri S, Mastroianni R, Cinci L, Vannacci A, Mariottini C, Passani M, Mannaioni P, Bani D, Masini E (2008) Activation of cannabinoid receptors prevents antigen-induced asthma-like reaction in guinea pigs. J Cell Mol Med 12:2381–2394

    Article  CAS  Google Scholar 

  • Gobbi G, Bambico FR, Mangieri R, Bortolato M, Campolongo P, Solinas M, Cassano T, Morgese MG, Debonnel G, Duranti A, Tontini A, Tarzia G, Mor M, Trezza V, Goldberg SR, Cuomo V, Piomelli D (2005) Antidepressant-like activity and modulation of brain monoaminergic transmission by blockade of anandamide hydrolysis. Proc Natl Acad Sci U S A 102:18620–18625

    Article  CAS  Google Scholar 

  • Goncalves J, Rosado T, Soares S, Simao AY, Caramelo D, Luis A, Fernandez N, Barroso M, Gallardo E, Duarte AP (2019) Cannabis and its secondary metabolites: their use as therapeutic drugs, toxicological aspects, and analytical determination. Medicines (Basel) 6. https://doi.org/10.3390/medicines6010031

  • Gonsiorek W, Lunn C, Fan X, Narula S, Lundell D, Hipkin RW (2000) Endocannabinoid 2-arachidonyl glycerol is a full agonist through human type 2 cannabinoid receptor: antagonism by anandamide. Mol Pharmacol 57:1045–1050

    CAS  Google Scholar 

  • Griffin G, Tao Q, Abood ME (2000) Cloning and pharmacological characterization of the rat CB(2) cannabinoid receptor. J Pharmacol Exp Ther 292:886–894

    CAS  Google Scholar 

  • Guindon J, Hohmann A (2008) Cannabinoid CB2 receptors: a therapeutic target for the treatment of inflammatory and neuropathic pain. Br J Pharmacol 153:319–334

    Article  CAS  Google Scholar 

  • Gustafsson K, Christensson B, Sander B, Flygare J (2006) Cannabinoid receptor-mediated apoptosis induced by R (+)-methanandamide and Win55, 212-2 is associated with ceramide accumulation and p38 activation in mantle cell lymphoma. Mol Pharmacol 70:1612–1620

    Article  CAS  Google Scholar 

  • Guzman M (2003) Cannabinoids: potential anticancer agents. Nature reviews cancer 3:745

    Article  CAS  Google Scholar 

  • Guzman M, Duarte M, Blazquez C, Ravina J, Rosa M, Galve-Roperh I, Sanchez C, Velasco G, Gonzalez-Feria L (2006) A pilot clinical study of Δ9-tetrahydrocannabinol in patients with recurrent glioblastoma multiforme. Br J Cancer 95:197–203

    Article  CAS  Google Scholar 

  • Hartley J, Nogrady S, Seaton A (1978) Bronchodilator effect of delta1-tetrahydrocannabinol. Br J Clin Pharmacol 5:523–525

    Article  CAS  Google Scholar 

  • He Y, De Witte LD, Schubart CD, Van Gastel WA, Koeleman BPC, De Jong S, Ophoff RA, Hol EM, Boks MP (2019) Liprin alfa 2 gene expression is increased by cannabis use and associated with neuropsychological function. Eur Neuropsychopharmacol 29:643–652

    Article  CAS  Google Scholar 

  • Henschke P (2019) Cannabis: an ancient friend or foe? What works and doesn’t work. Semin Fetal Neonatal Med 24:149–154

    Article  Google Scholar 

  • Herkenham M, Lynn AB, Johnson MR, Melvin LS, De Costa BR, Rice KC (1991) Characterization and localization of cannabinoid receptors in rat brain: a quantitative in vitro autoradiographic study. J Neurosci 11:563–583

    Article  CAS  Google Scholar 

  • Ho C, Martinusen D, Lo C (2019) A review of cannabis in chronic kidney disease symptom management. Can J Kidney Health Dis 6:2054358119828391

    Article  Google Scholar 

  • Hollander PA, Amod A, Litwak LE, Chaudhari U (2010) Effect of rimonabant on glycemic control in insulin-treated type 2 diabetes: the ARPEGGIO trial. Diabetes Care 33:605–607

    Article  CAS  Google Scholar 

  • Hollister LE (1971) Hunger and appetite after single doses of marihuana, alcohol, and dextroamphetamine. Clin Pharmacol Ther 12:44–49

    Article  CAS  Google Scholar 

  • Holt S, Comelli F, Costa B, Fowler CJ (2005) Inhibitors of fatty acid amide hydrolase reduce carrageenan-induced hind paw inflammation in pentobarbital-treated mice: comparison with indomethacin and possible involvement of cannabinoid receptors. Br J Pharmacol 146:467–476

    Article  CAS  Google Scholar 

  • Horváth B, Mukhopadhyay P, Haskó G, Pacher P (2012) The endocannabinoid system and plant-derived cannabinoids in diabetes and diabetic complications. Am J Pathol 180:432–442

    Article  Google Scholar 

  • Howlett AC, Barth F, Bonner TI, Cabral G, Casellas P, Devane WA, Felder CC, Herkenham M, Mackie K, Martin BR, Mechoulam R, Pertwee RG (2002) International Union of Pharmacology. Xxvii. Classification of cannabinoid receptors. Pharmacol Rev 54:161–202

    Article  CAS  Google Scholar 

  • Huang Z-B, Zheng Y-X, Li N, Cai S-L, Huang Y, Wang J, Hu X-W, Wang Y, Wu J, Fan X-G (2019) Protective effects of specific cannabinoid receptor 2 agonist GW405833 on concanavalin A-induced acute liver injury in mice. Acta Pharmacol Sinica

    Google Scholar 

  • Huestis MA, Blount BC, Milan DF, Newmeyer MN, Schroeder J, Smith ML (2019) Correlation of creatinine- and specific gravity-normalized free and glucuronidated urine cannabinoid concentrations following smoked, vaporized, and oral cannabis in frequent and occasional cannabis users. Drug Test Anal. https://doi.org/10.1002/dta.2576

  • Izzo AA, Camilleri M (2008) Emerging role of cannabinoids in gastrointestinal and liver diseases: basic and clinical aspects. Gut 57:1140–1155

    Article  CAS  Google Scholar 

  • Jampel H (2009) Position statement on marijuana and the treatment of glaucoma. American Glaucoma Society, San Francisco

    Google Scholar 

  • Javed H, Azimullah S, Haque ME, Ojha SK (2016) Cannabinoid type 2 (CB2) receptors activation protects against oxidative stress and neuroinflammation associated dopaminergic neurodegeneration in rotenone model of Parkinson’s Disease. Front Neurosci 10:321

    Article  Google Scholar 

  • Jeske NA, Patwardhan AM, Gamper N, Price TJ, Akopian AN, Hargreaves KM (2006) Cannabinoid WIN 55,212-2 regulates TRPV1 phosphorylation in sensory neurons. J Biol Chem 281:32879–32890

    Article  CAS  Google Scholar 

  • Jordan CJ, Xi ZX (2019) Progress in brain cannabinoid CB2 receptor research: from genes to behavior. Neurosci Biobehav Rev 98:208–220

    Article  CAS  Google Scholar 

  • Kaminski NE (1998) Inhibition of the cAMP signaling cascade via cannabinoid receptors: a putative mechanism of immune modulation by cannabinoid compounds. Toxicol Lett 102:59–63

    Article  Google Scholar 

  • Karsak M, Cohen-Solal M, Freudenberg J, Ostertag A, Morieux C, Kornak U, Essig J, Erxlebe E, Bab I, Kubisch C (2005) Cannabinoid receptor type 2 gene is associated with human osteoporosis. Human Mol Genet 14:3389–3396

    Article  CAS  Google Scholar 

  • Kathuria S, Gaetani S, Fegley D, ValiñO F, Duranti A, Tontini A, Mor M, Tarzia G, Rana GL, Calignano A, Giustino A, Tattoli M, Palmery M, Cuomo V, Piomelli D (2002) Modulation of anxiety through blockade of anandamide hydrolysis. Nat Med 9:76

    Article  CAS  Google Scholar 

  • Kaur R, Singh P, Kaur A, Mahajan D, Kaur H (2013) Effect of rimonabant on the components of metabolic syndrome: a randomized, controlled study done on Punjabi population. J Pharm Negat Results 4:46–53

    Article  CAS  Google Scholar 

  • Khuja I, Yekhtin Z, Or R, Almogi-Hazan O (2019) Cannabinoids reduce inflammation but inhibit lymphocyte recovery in murine models of bone marrow transplantation. Int J Mol Sci 20. https://doi.org/10.3390/ijms20030668

  • Kim W, Doyle ME, Liu Z, Lao Q, Shin Y-K, Carlson OD, Kim HS, Thomas S, Napora JK, Lee EK (2011) Cannabinoids inhibit insulin receptor signaling in pancreatic β-cells. Diabetes 60:1198–1209

    Article  CAS  Google Scholar 

  • Kisková T, Mungenast F, Suváková M, Jäger W, Thalhammer T (2019) Future aspects for cannabinoids in breast cancer therapy. Int J Mol Sci 20:1673

    Article  CAS  Google Scholar 

  • Klegeris A, Bissonnette CJ, Mcgeer PL (2003) Reduction of human monocytic cell neurotoxicity and cytokine secretion by ligands of the cannabinoid-type CB2 receptor. Br J Pharmacol 139:775–786

    Article  CAS  Google Scholar 

  • Knowles BB, Howe CC, Aden DP (1980) Human hepatocellular carcinoma cell lines secrete the major plasma proteins and hepatitis B surface antigen. Science 209:497–499

    Article  CAS  Google Scholar 

  • Koch M, Varela L, Kim JG, Kim JD, Hernández-NuñO F, Simonds SE, Castorena CM, Vianna CR, Elmquist JK, Morozov YM (2015) Hypothalamic POMC neurons promote cannabinoid-induced feeding. Nature 519:45–50

    Article  CAS  Google Scholar 

  • Kogan NM, Schlesinger M, Peters M, Marincheva G, Beeri R, Mechoulam R (2007) A cannabinoid anticancer quinone, HU-331, is more potent and less cardiotoxic than doxorubicin: a comparative in vivo study. J Pharmacol Exp Ther 322:646–653

    Article  CAS  Google Scholar 

  • Kogan NM, Melamed E, Wasserman E, Raphael B, Breuer A, Stok KS, Sondergaard R, Escudero AV, Baraghithy S, Attar-Namdar M (2015) Cannabidiol, a major non-psychotropic cannabis constituent enhances fracture healing and stimulates lysyl hydroxylase activity in osteoblasts. J Bone Miner Res 30:1905–1913

    Article  CAS  Google Scholar 

  • Korem N, Akirav I (2014) Cannabinoids prevent the effects of a footshock followed by situational reminders on emotional processing. Neuropsychopharmacology 39:2709–2722

    Article  CAS  Google Scholar 

  • Kowal M, Hazekamp A, Grotenhermen F (2016) Review on clinical studies with cannabis and cannabinoids 2010-2014

    Google Scholar 

  • Krebs MO, Kebir O, Jay TM (2019) Exposure to cannabinoids can lead to persistent cognitive and psychiatric disorders. Eur J Pain. https://doi.org/10.1002/ejp.1377

  • Kumar A, Premoli M, Aria F, Bonini SA, Maccarinelli G, Gianoncelli A, Memo M, Mastinu A (2019) Cannabimimetic plants: are they new cannabinoidergic modulators? Planta 249:1681–1694

    Article  CAS  Google Scholar 

  • Lattanzi S, Trinka E, Russo E, Striano P, Citraro R, Silvestrini M, Brigo F (2019) Cannabidiol as adjunctive treatment of seizures associated with Lennox-Gastaut syndrome and Dravet syndrome. Drugs Today (Barc) 55:177–196

    Article  CAS  Google Scholar 

  • Li X, Kaminski NE, Fischer LJ (2001) Examination of the immunosuppressive effect of Δ 9-tetrahydrocannabinol in streptozotocin-induced autoimmune diabetes. Int Immunopharmacol 1:699–712

    Article  CAS  Google Scholar 

  • Li Q, Wang F, Zhang Y-M, Zhou J-J, Zhang Y (2013) Activation of cannabinoid type 2 receptor by JWH133 protects heart against ischemia/reperfusion-induced apoptosis. Cell Physiol Biochem 31:693–702

    Article  CAS  Google Scholar 

  • Liu J, Wang L, Harvey-White J, Huang BX, Kim H-Y, Luquet S, Palmiter RD, Krystal G, Rai R, Mahadevan A (2008) Multiple pathways involved in the biosynthesis of anandamide. Neuropharmacology 54:1–7

    Article  CAS  Google Scholar 

  • Lopez-Rodriguez AB, Siopi E, Finn DP, Marchand-Leroux C, Garcia-Segura LM, Jafarian-Tehrani M, Viveros M-P (2013) CB1 and CB2 cannabinoid receptor antagonists prevent minocycline-induced neuroprotection following traumatic brain injury in mice. Cereb Cortex 25:35–45

    Article  Google Scholar 

  • Lossignol D (2019) Cannabinoids: a new approach for pain control? Curr Opin Oncol. https://doi.org/10.1097/CCO.0000000000000523

  • Lowin T, Schneider M, Pongratz G (2019) Joints for joints: cannabinoids in the treatment of rheumatoid arthritis. Curr Opin Rheumatol 31:271–278

    Article  CAS  Google Scholar 

  • Lu M, Agito MD (2015) Cannabinoid hyperemesis syndrome: marijuana is both antiemetic and proemetic. Cleve Clin J Med 82:429–434

    Article  Google Scholar 

  • Lukhele ST, Motadi LR (2016) Cannabidiol rather than Cannabis sativa extracts inhibit cell growth and induce apoptosis in cervical cancer cells. BMC Complement Altern Med 16:335

    Article  CAS  Google Scholar 

  • Mackie K, Devane WA, Hille B (1993) Anandamide, an endogenous cannabinoid, inhibits calcium currents as a partial agonist in N18 neuroblastoma cells. Mol Pharmacol 44:498–503

    CAS  Google Scholar 

  • Malfait A, Gallily R, Sumariwalla P, Malik A, Andreakos E, Mechoulam R, Feldmann M (2000) The nonpsychoactive cannabis constituent cannabidiol is an oral anti-arthritic therapeutic in murine collagen-induced arthritis. Proc Natl Acad Sci U S A 97:9561–9566

    Article  CAS  Google Scholar 

  • Massi P, Vaccani A, Ceruti S, Colombo A, Abbracchio MP, Parolaro D (2004) Antitumor effects of cannabidiol, a nonpsychoactive cannabinoid, on human glioma cell lines. J Pharmacol Exp Ther 308:838–845

    Article  CAS  Google Scholar 

  • Matsuda LA, Lolait SJ, Brownstein MJ, Young AC, Bronner TI (1990) Structure of a cannabinoid receptor and functional expression of the cloned cDNA. Nature 346:561

    Article  CAS  Google Scholar 

  • May MB, Glode AE (2016) Dronabinol for chemotherapy-induced nausea and vomiting unresponsive to antiemetics. Cancer Manag Res 8:49–55

    CAS  Google Scholar 

  • Mechoulam R, Ben-Shabat S, Hanus L, Ligumsky M, Kaminski NE, Schatz AR, Gopher A, Almog S, Martin BR, Compton DR (1995) Identification of an endogenous 2-monoglyceride, present in canine gut, that binds to cannabinoid receptors. Biochem Pharmacol 50:83–90

    Article  CAS  Google Scholar 

  • Miller LK, Devi LA (2011) The highs and lows of cannabinoid receptor expression in disease: mechanisms and their therapeutic implications. Pharmacol Rev 63:461–470

    Article  CAS  Google Scholar 

  • Moreira FA, Crippa JAS (2009) The psychiatric side-effects of rimonabant. Braz J Psychiatry 31:145–153

    Article  Google Scholar 

  • Mukherjee S, Adams M, Whiteaker K, Daza A, Kage K, Cassar S, Meyer M, Yao BB (2004) Species comparison and pharmacological characterization of rat and human CB 2 cannabinoid receptors. Eur J Pharmacol 505:1–9

    Article  CAS  Google Scholar 

  • Munro S, Thomas KL, Abu-Shaar M (1993) Molecular characterization of a peripheral receptor for cannabinoids. Nature 365:61

    Article  CAS  Google Scholar 

  • Naftali T, Mechulam R, Lev LB, Konikoff FM (2014) Cannabis for inflammatory bowel disease. Dig Dis 32:468–474

    Article  Google Scholar 

  • Nagarkatti P, Pandey R, Rieder SA, Hegde VL, Nagarkatti M (2009) Cannabinoids as novel anti-inflammatory drugs. Future Med Chem 1:1333–1349

    Article  CAS  Google Scholar 

  • National Research Council (US) Committee on Substance Abuse and Habitual Behavior 1982) An analysis of Marijuana Policy [Online]. Accessed https://www.ncbi.nlm.nih.gov/books/NBK217602/

  • Navarrete F, Pérez-Ortiz JM, Manzanares J (2012) Cannabinoid CB2 receptor-mediated regulation of impulsive-like behaviour in DBA/2 mice. Br J Pharmacol 165:260–273

    Article  CAS  Google Scholar 

  • Nunez E, Benito C, Pazos MR, Barbachano A, Fajardo O, Gonzalez S, Tolon RM, Romero J (2004) Cannabinoid CB2 receptors are expressed by perivascular microglial cells in the human brain: an immunohistochemical study. Synapse 53:208–213

    Article  CAS  Google Scholar 

  • Ofek O, Karsak M, Leclerc N, Fogel M, Frenkel B, Wright K, Tam J, Attar-Namdar M, Kram V, Shohami E (2006) Peripheral cannabinoid receptor, CB2, regulates bone mass. Proc Natl Acad Sci U S A:103, 696–701

    Google Scholar 

  • Okamoto Y, Morishita J, Tsuboi K, Tonai T, Ueda N (2004) Molecular characterization of a phospholipase D generating anandamide and its congeners. J Biol Chem 279:5298–5305

    Article  CAS  Google Scholar 

  • Onaivi ES, Ishiguro H, Gong JP, Patel S, Perchuk A, Meozzi PA, Myers L, Mora Z, Tagliaferro P, Gardner E, Brusco A, Akinshola BE, Liu QR, Hope B, Iwasaki S, Arinami T, Teasenfitz L, Uhl GR (2006) Discovery of the presence and functional expression of cannabinoid CB2 receptors in brain. Ann N Y Acad Sci 1074:514–536

    Article  CAS  Google Scholar 

  • Onaivi ES, Ishiguro H, Gong JP, Patel S, Meozzi PA, Myers L, Perchuk A, Mora Z, Tagliaferro PA, Gardner E, Brusco A, Akinshola BE, Hope B, Lujilde J, Inada T, Iwasaki S, Macharia D, Teasenfitz L, Arinami T, Uhl GR (2008) Brain neuronal CB2 cannabinoid receptors in drug abuse and depression: from mice to human subjects. PLoS One 3:e1640

    Article  CAS  Google Scholar 

  • Park JM, Xian XS, Choi MG, Park H, Cho YK, Lee IS, Kim SW, Chung IS (2011) Antiproliferative mechanism of a cannabinoid agonist by cell cycle arrest in human gastric cancer cells. J Cell Biochem 112:1192–1205

    Article  CAS  Google Scholar 

  • Pertwee R (1997) Pharmacology of cannabinoid CB1 and CB2 receptors. Pharmacol Ther 74:129–180

    CAS  Google Scholar 

  • Pertwee RG (2005) The therapeutic potential of drugs that target cannabinoid receptors or modulate the tissue levels or actions of endocannabinoids. AAPS J 7

    Google Scholar 

  • Pertwee R (2010) Receptors and channels targeted by synthetic cannabinoid receptor agonists and antagonists. Curr Med Chem 17:1360

    Article  CAS  Google Scholar 

  • Pertwee R, Howlett A, Abood ME, Alexander S, Di Marzo V, Elphick M, Greasley P, Hansen HS, Kunos G, Mackie K (2010) International Union of Basic and Clinical Pharmacology. LXXIX. Cannabinoid receptors and their ligands: beyond CB1 and CB2. Pharmacol Rev 62:588–631

    Article  CAS  Google Scholar 

  • Piomelli D (2003) The molecular logic of endocannabinoid signalling. Nat Rev Neurosci 4:873–884

    Article  CAS  Google Scholar 

  • Portella G, Laezza C, Laccetti P, De Petrocellis L, Di Marzo V, Bifulco M (2003) Inhibitory effects of cannabinoid CB1 receptor stimulation on tumor growth and metastatic spreading: actions on signals involved in angiogenesis and metastasis. FASEB J 17:1771–1773

    Article  CAS  Google Scholar 

  • Preet A, Qamri Z, Nasser MW, Prasad A, Shilo K, Zou X, Groopman JE, Ganju RK (2011) Cannabinoid receptors, CB1 and CB2, as novel targets for inhibition of non–small cell lung cancer growth and metastasis. Cancer Prev Res 4:65–75

    Article  CAS  Google Scholar 

  • Pryce G, Ahmed Z, Hankey DJ, Jackson SJ, Croxford JL, Pocock JM, Ledent C, Petzold A, Thompson AJ, Giovannoni G (2003) Cannabinoids inhibit neurodegeneration in models of multiple sclerosis. Brain 126:2191–2202

    Article  Google Scholar 

  • Regelson W, Butler J, Schulz J, Kirk T, Peek L, Green M, Zalis M (1976) Delta-9-THC as an effective antidepressant and appetite-stimulating agent in advanced cancer patients. In: Braude MC, Szara S (eds). The pharmacology of marihuana. Raven press, New york, pp. 763-776.

    Google Scholar 

  • Rhee MH, Bayewitch M, Avidor-Reiss T, Levy R, Vogel Z (1998) Cannabinoid receptor activation differentially regulates the various adenylyl cyclase isozymes. J Neurochem 71:1525–1534

    Article  CAS  Google Scholar 

  • Rossi F, Punzo F, Umano GR, Argenziano M, Miraglia Del Giudice E (2018) Role of cannabinoids in obesity. Int J Mol Sci 19

    Google Scholar 

  • Russo R, Loverme J, La Rana G, Compton TR, Parrott J, Duranti A, Tontini A, Mor M, Tarzia G, Calignano A, Piomelli D (2007) The fatty acid amide hydrolase inhibitor URB597 (cyclohexylcarbamic acid 3’-carbamoylbiphenyl-3-yl ester) reduces neuropathic pain after oral administration in mice. J Pharmacol Exp Ther 322:236–242

    Article  CAS  Google Scholar 

  • Sam AH, Salem V, Ghatei MA (2011) Rimonabant: from RIO to Ban. J Obes 2011:432607–432607

    Article  CAS  Google Scholar 

  • Schatz AR, Lee M, Condie RB, Pulaski JT, Kaminski NE (1997) Cannabinoid receptors CB1 and CB2: a characterization of expression and adenylate cyclase modulation within the immune system. Toxicol Appl Pharmacol 142:278–287

    Article  CAS  Google Scholar 

  • Schley M, Legler A, Skopp G, Schmelz M, Konrad C, Rukwied R (2006) Delta-9-THC based monotherapy in fibromyalgia patients on experimentally induced pain, axon reflex flare, and pain relief. Curr Med Res Opin 22:1269–1276

    Article  CAS  Google Scholar 

  • Schlicker E, Kathmann M (2001) Modulation of transmitter release via presynaptic cannabinoid receptors. Trends Pharmacol Sci 22:565–572

    Article  CAS  Google Scholar 

  • Schmid P, Reddy P, Natarajan V, Schmid H (1983) Metabolism of N-acylethanolamine phospholipids by a mammalian phosphodiesterase of the phospholipase D type. J Biol Chem 258:9302–9306

    CAS  Google Scholar 

  • Shiling DJ, Stillman RC, Chang AE, Goldberg NH, Seipp CA, Barofsky I, Rosenberg SA (1981) A prospective evaluation of delta-9-tetrahydrocannabinol as an antiemetic in patients receiving adriamycin and cytoxan chemotherapy. Cancer 47:1746–1751

    Article  Google Scholar 

  • Śledziński P, Zeyland J, SŁomski R, Nowak A (2018) The current state and future perspectives of cannabinoids in cancer biology. Cancer Med 7:765–775

    Article  Google Scholar 

  • Small E, Pocock T, Cavers PB (2002) The biology of Canadian weeds. 119. Cannabis sativa L. Can J Plant Sci 83:217–237

    Article  Google Scholar 

  • Soderstrom K, Leid M, Moore FL, Murray TF (2000) Behavioral, pharmacological, and molecular characterization of an amphibian cannabinoid receptor. J Neurochem 75:413–423

    Article  CAS  Google Scholar 

  • Stanley CP, Hind WH, O’sullivan SE (2013) Is the cardiovascular system a therapeutic target for cannabidiol? Br J Clin Pharmacol 75:313–322

    Article  CAS  Google Scholar 

  • Steinberg MB, Foulds J (2007) Rimonabant for treating tobacco dependence. Vasc Health Risk Manag 3:307–311

    CAS  Google Scholar 

  • Stella N, Schweitzer P, Piomelli D (1997) A second endogenous cannabinoid that modulates long-term potentiation. Nature 388:773–778

    Article  CAS  Google Scholar 

  • Strohbeck-Kuehner P, Skopp G, Mattern R (2008) Cannabis improves symptoms of ADHD. Cannabinoids 3:1–3

    Google Scholar 

  • Svíženská I, Dubový P, Šulcová A (2008) Cannabinoid receptors 1 and 2 (CB1 and CB2), their distribution, ligands and functional involvement in nervous system structures—a short review. Pharmacol Biochem Behav 90:501–511

    Article  CAS  Google Scholar 

  • Tang G, Gudsnuk K, Kuo S-H, Cotrina ML, Rosoklija G, Sosunov A, Sonders MS, Kanter E, Castagna C, Yamamoto A (2014) Loss of mTOR-dependent macroautophagy causes autistic-like synaptic pruning deficits. Neuron 83:1131–1143

    Article  CAS  Google Scholar 

  • Tomida I, Pertwee R, Azuara-Blanco A (2004) Cannabinoids and glaucoma. Br J Ophthalmol 88:708–713

    Article  CAS  Google Scholar 

  • Tsuboi K, Uyama T, Okamoto Y, Ueda N (2018) Endocannabinoids and related N-acylethanolamines: biological activities and metabolism. Inflamm Regen 38:28

    Article  CAS  Google Scholar 

  • Turcotte C, Blanchet M-R, Laviolette M, Flamand N (2016) The CB 2 receptor and its role as a regulator of inflammation. Cell Mol Life Sci 73:4449–4470

    Article  CAS  Google Scholar 

  • Vachon L, Fitzgerald MX, Solliday NH, Gould IA, Gaensler EA (1973) Single-dose effect of marihuana smoke: bronchial dynamics and respiratory-center sensitivity in normal subjects. N Engl J Med 288:985–989

    Article  CAS  Google Scholar 

  • Van Klingeren B, Ten Ham M (1976) Antibacterial activity of Δ 9-tetrahydrocannabinol and cannabidiol. Antonie Van Leeuwenhoek 42:9–12

    Article  Google Scholar 

  • Varma N, Carlson GC, Ledent C, Alger BE (2001) Metabotropic glutamate receptors drive the endocannabinoid system in hippocampus. J Neurosci 21:188

    Article  Google Scholar 

  • Viudez-Martinez A, Garcia-Gutierrez MS, Medrano-Relinque J, Navarron CM, Navarrete F, Manzanares J (2019) Cannabidiol does not display drug abuse potential in mice behavior. Acta Pharmacol Sin 40:358–364

    Article  CAS  Google Scholar 

  • Volkow ND, Baler RD, Compton WM, Weiss SR (2014) Adverse health effects of marijuana use. N Engl J Med 370:2219–2227

    Article  CAS  Google Scholar 

  • Vuolo F, Petronilho F, Sonai B, Ritter C, Hallak JE, Zuardi AW, Crippa JA, Dal-Pizzol F (2015) Evaluation of serum cytokines levels and the role of cannabidiol treatment in animal model of asthma. Mediators Inflamm 2015

    Google Scholar 

  • Waldman M, Hochhauser E, Fishbein M, Aravot D, Shainberg A, Sarne Y (2013) An ultra-low dose of tetrahydrocannabinol provides cardioprotection. Biochem Pharmacol 85:1626–1633

    Article  CAS  Google Scholar 

  • Wang T, Collet J-P, Shapiro S, Ware MA (2008) Adverse effects of medical cannabinoids: a systematic review. CMAJ:178, 1669–1678

    Google Scholar 

  • Ware MA, Daeninck P, Maida V (2008) A review of nabilone in the treatment of chemotherapy-induced nausea and vomiting. Ther Clin Risk Manag 4:99–107

    Article  CAS  Google Scholar 

  • Weiss L, Zeira M, Reich S, Slavin S, Raz I, Mechoulam R, Gallily R (2008) Cannabidiol arrests onset of autoimmune diabetes in NOD mice. Neuropharmacology 54:244–249

    Article  CAS  Google Scholar 

  • Whiteside GT, Lee G, Valenzano KJ (2007) The role of the cannabinoid CB2 receptor in pain transmission and therapeutic potential of small molecule CB2 receptor agonists. Curr Med Chem 14:917–936

    Article  CAS  Google Scholar 

  • Whyte DA, Al-Hammadi S, Balhaj G, Brown OM, Penefsky HS, Souid A-K (2010) Cannabinoids inhibit cellular respiration of human oral cancer cells. Pharmacology 85:328–335

    Article  CAS  Google Scholar 

  • Wilkinson ST, Radhakrishnan R, D’souza DC (2014) Impact of cannabis use on the development of psychotic disorders. Curr Addict Rep 1:115–128

    Article  Google Scholar 

  • Wright K, Duncan M, Sharkey K (2008) Cannabinoid CB2 receptors in the gastrointestinal tract: a regulatory system in states of inflammation. Br J Pharmacol 153:263–270

    Article  CAS  Google Scholar 

  • Yamaguchi F, Macrae AD, Brenner S (1996) molecular cloning of two cannabinoid type 1-like receptor genes from the puffer fishfugu rubripes. Genomics 35:603–605

    Article  CAS  Google Scholar 

  • Yang X, Hegde VL, Rao R, Zhang J, Nagarkatti PS, Nagarkatti M (2014) Histone modifications are associated with Δ9-tetrahydrocannabinol-mediated alterations in antigen-specific T cell responses. J Biol Chem 289:18707–18718

    Article  CAS  Google Scholar 

  • Zhang H-Y, Gao M, Liu Q-R, Bi G-H, Li X, Yang H-J, Gardner EL, Wu J, Xi Z-X (2014) Cannabinoid CB2 receptors modulate midbrain dopamine neuronal activity and dopamine-related behavior in mice. Proc Natl Acad Sci U S A 111:E5007–E5015

    Article  CAS  Google Scholar 

  • Zhong L, Geng L, Njie Y, Feng W, Song Z-H (2005) CB2 cannabinoid receptors in trabecular meshwork cells mediate JWH015-induced enhancement of aqueous humor outflow facility. Invest Ophthalmol Vis Sci 46:1988–1992

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wafa Hourani .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Gupta, G. et al. (2020). Pharmacology of Endocannabinoids and Their Receptors. In: Kumar, P., Deb, P.K. (eds) Frontiers in Pharmacology of Neurotransmitters. Springer, Singapore. https://doi.org/10.1007/978-981-15-3556-7_13

Download citation

Publish with us

Policies and ethics