Skip to main content

Pharmacology of Endogenous Opioids, Opiates and Their Receptors

Abstract

The search for analgesia is the main drive for the discovery of opioid receptors and their endogenous ligand peptides. Although opioid peptides are very similar in their N-terminal sequence, they are classified into different types according to their precursor proteins. The peptides activate opioid receptors by binding to orthosteric-binding sites to mediate intracellular second messengers. Biased signaling and allosteric modulation is a new approach to obtain receptor subtype selectivity and separates the desirable from a myriad of unwanted pharmacological effects. This chapter describes endogenous opioids and opiates with an emphasis on structure, origin and processing, receptors, physiological roles, and potential involvement in therapeutic interventions. Further, it also provides a brief discussion on the effect of opioids on various ion channels and recent developments of established and investigational opioid molecules.

Keywords

  • Opioids receptors
  • Endorphin
  • Enkephalin
  • Dynorphin
  • GPCR
  • Neurological disorders
  • Ion channels

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-981-15-3556-7_12
  • Chapter length: 34 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   219.00
Price excludes VAT (USA)
  • ISBN: 978-981-15-3556-7
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   279.99
Price excludes VAT (USA)
Hardcover Book
USD   279.99
Price excludes VAT (USA)
Fig. 12.1
Fig. 12.2
Fig. 12.3

Abbreviations

ACTH:

Adrenocorticotropin

BACE1:

Beta-site APP cleaving enzyme 1

CLIP:

Corticotropin-like intermediate peptide

DOR:

Delta opioid receptor

GPCR:

G protein-coupled receptor

KOR:

Kappa opioid receptor

MOR:

Mu opioid receptor

MSH:

Melanotropins or melanocyte-stimulating hormone

N/OFQ:

Nociceptin/orphanin FQ

OP:

Opioid peptide

OR:

Opioid receptor

ORL-1:

Opioid receptor-like-1

POMC:

Proopiomelanocortin

References

  • Agnati LF, Bjelke B, Fuxe K (1995) Volume versus wiring transmission in the brain: a new theoretical frame for neuropsychopharmacology. Med Res Rev 15:33–45

    CrossRef  CAS  Google Scholar 

  • Al-Hasani R, Bruchas MR (2011) Molecular mechanisms of opioid receptor-dependent signaling and behavior. Anesthesiology 115:1363–1381

    Google Scholar 

  • Allouche SP, Noble F, Marie N (2014) Opioid receptor desensitization: mechanisms and its link to tolerance. Front Pharmacol 5:280

    CrossRef  CAS  Google Scholar 

  • Asvadi NH, Morgan M, Herath HM, Hewavitharana AK, Shaw PN, Cabot PJ (2014a) Beta-endorphin 1-31 biotransformation and cAMP modulation in inflammation. PLoS One 9:e90380

    CrossRef  CAS  Google Scholar 

  • Asvadi NH, Morgan M, Hewavitharana AK, Shaw PN, Cabot PJ (2014b) Biotransformation of beta-endorphin and possible therapeutic implications. Front Pharmacol 5:18–18

    CrossRef  CAS  Google Scholar 

  • Bailey CR, Cordell E, Sobin SM, Neumeister A (2013) Recent progress in understanding the pathophysiology of post-traumatic stress disorder. CNS Drugs 27:221–232

    CrossRef  CAS  Google Scholar 

  • Basbaum AI, Fields HL (1984) Endogenous pain control systems: brainstem spinal pathways and endorphin circuitry. Annu Rev Neurosci 7:309–338

    CrossRef  CAS  Google Scholar 

  • Bennett GJ (2000) Update on the neurophysiology of pain transmission and modulation: focus on the NMDA-receptor. J Pain Symptom Manage 19:2–6

    CrossRef  Google Scholar 

  • Bermudez M, Nguyen TN, Omieczynski C, Wolber G (2019) Strategies for the discovery of biased GPCR ligands. Drug Discov Today 24:1031–1037

    CrossRef  CAS  Google Scholar 

  • Berrocoso E, Mico J-A (2009) Cooperative opioid and serotonergic mechanisms generate superior antidepressant-like effects in a mice model of depression. Int J Neuropsychopharmacol 12:1033–1044

    CrossRef  CAS  Google Scholar 

  • Bie B (2005) cAMP-mediated mechanisms for pain sensitization during opioid withdrawal. J Neurosci 25:3824–3832

    CrossRef  CAS  Google Scholar 

  • Bisson JI, Cosgrove S, Lewis C, Roberts NP (2015) Post-traumatic stress disorder. BMJ 351:h6161 

    Google Scholar 

  • Bodnar RJ (2018) Endogenous opiates and behavior: 2016. Peptides 101:167–212

    CrossRef  CAS  Google Scholar 

  • Bohn LM, Lefkowitz RJ, Gainetdinov RR, Peppel K, Caron MG, Lin FT (1999) Enhanced morphine analgesia in mice lacking beta-arrestin 2. Science 286:2495–2498

    CrossRef  CAS  Google Scholar 

  • Bohn LM, Gainetdinov RR, Lin FT, Lefkowitz RJ, Caron MG (2000) Mu-opioid receptor desensitization by beta-arrestin-2 determines morphine tolerance but not dependence. Nature 408:720–723

    CrossRef  CAS  Google Scholar 

  • Bologna Z, Teoh JP, Bayoumi AS, Tang Y, Kim IM (2017) Biased G protein-coupled receptor signaling: new player in modulating physiology and pathology. Biomol Ther (Seoul) 25:12–25

    CrossRef  Google Scholar 

  • Browne CA, Lucki I (2019) Targeting opioid dysregulation in depression for the development of novel therapeutics. Pharmacol Ther. https://doi.org/10.1016/j.pharmthera.2019.04.009

  • Brownstein MJ (1993) A brief history of opiates, opioid peptides, and opioid receptors. Proc Natl Acad Sci U S A 90:5391–5393

    CrossRef  CAS  Google Scholar 

  • Brust TF, Morgenweck J, Kim SA, Rose JH, Locke JL, Schmid CL, Zhou L, Stahl EL, Cameron MD, Scarry SM, AubÉ J, Jones SR, Martin TJ, Bohn LM (2016) Biased agonists of the kappa opioid receptor suppress pain and itch without causing sedation or dysphoria. Sci Signal 9:ra117

    CrossRef  CAS  Google Scholar 

  • Burford NT, Livingston KE, Canals M, Ryan MR, Budenholzer LM, Han Y, Shang Y, Herbst JJ, O’connell J, Banks M, Zhang L, Filizola M, Bassoni DL, Wehrman TS, Christopoulos A, Traynor JR, Gerritz SW, Alt A (2015) Discovery, synthesis, and molecular pharmacology of selective positive allosteric modulators of the delta-opioid receptor. J Med Chem 58:4220–4229

    CrossRef  CAS  Google Scholar 

  • Butt AM, Kalsi A (2006) Inwardly rectifying potassium channels (Kir) in central nervous system glia: a special role for Kir4.1 in glial functions. J Cell Mol Med 10:33–44

    CrossRef  CAS  Google Scholar 

  • Cai Z, Ratka A (2012) Opioid system and Alzheimer’s disease. Neuromol Med 14:91–111

    CrossRef  CAS  Google Scholar 

  • Calo G, Guerrini R, Rizzi A, Salvadori S, Regoli D (2000) Pharmacology of nociceptin and its receptor: a novel therapeutic target. Br J Pharmacol 129:1261–1283

    CrossRef  CAS  Google Scholar 

  • Carlezon WA, Krystal AD (2016) Kappa-opioid antagonists for psychiatric disorders: from bench to clinical trials. Depress Anxiety 33:895–906

    CrossRef  CAS  Google Scholar 

  • Castro MG, Morrison E (1997) Post-translational processing of proopiomelanocortin in the pituitary and in the brain. Crit Rev Neurobiol 11:35–37

    CrossRef  CAS  Google Scholar 

  • Catterall WA (2011) Voltage-gated calcium channels. Cold Spring Harb Perspect Biol 3:a003947–a003947

    CrossRef  CAS  Google Scholar 

  • Catterall WA, Leal K, Nanou E (2013) Calcium channels and short-term synaptic plasticity. J Biol Chem 288:10742–10749

    CrossRef  CAS  Google Scholar 

  • Cawley NX, Li Z, Loh YP (2016) 60 years of POMC: biosynthesis, trafficking, and secretion of pro-opiomelanocortin-derived peptides. J Mol Endocrinol 56:T77–T97

    CrossRef  CAS  Google Scholar 

  • Chattopadhyay M, Mata M, Fink DJ (2008) Continuous δ-opioid receptor activation reduces neuronal voltage-gated sodium channel (NaV1. 7) levels through activation of protein kinase C in painful diabetic neuropathy. J Neurosci 28:6652–6658

    CrossRef  CAS  Google Scholar 

  • Chaudhary AMD, Khan MF, Dhillon SS, Naveed S (2019) A review of samidorphan: a novel opioid antagonist. Cureus. https://doi.org/10.7759/cureus.5139

  • Chavkin C, Koob GF (2016) Dynorphin, dysphoria, and dependence: the stress of addiction. Neuropsychopharmacology 41:373–374

    CrossRef  CAS  Google Scholar 

  • Che T, Majumdar S, Zaidi SA, Ondachi P, Mccorvy JD, Wang S, Mosier PD, Uprety R, Vardy E, Krumm BE, Han GW, Lee MY, Pardon E, Steyaert J, Huang XP, Strachan RT, Tribo AR, Pasternak GW, Carroll FI, Stevens RC, Cherezov V, Katritch V, Wacker D, Roth BL (2018) Structure of the nanobody-stabilized active state of the kappa opioid receptor. Cell 172:55–67.e15

    CrossRef  CAS  Google Scholar 

  • Chieng B, Bekkers JM (2001) Inhibition of calcium channels by opioid-and adenosine-receptor agonists in neurons of the nucleus accumbens. Br J Pharmacol 133:337–344

    CrossRef  CAS  Google Scholar 

  • Clark SD, Abi-Dargham A (2019) The role of dynorphin and the kappa opioid receptor in the symptomatology of schizophrenia: a review of the evidence. Biol Psychiatry 86:502–511

    CrossRef  CAS  Google Scholar 

  • Coimbra JRM, Marques DFF, Baptista SJ, Pereira CMF, Moreira PI, Dinis TCP, Santos AE, Salvador JAR (2018) Highlights in BACE1 inhibitors for Alzheimer’s disease treatment. Front Chem 6:178

    CrossRef  CAS  Google Scholar 

  • Collard MW, Day R, Akil H, Uhler MD, Douglass JO (1990) Sertoli cells are the primary site of prodynorphin gene expression in rat testis: regulation of mRNA and secreted peptide levels by cyclic adenosine 3’,5’-monophosphate analogs in cultured cells. Mol Endocrinol 4:1488–1496

    CrossRef  CAS  Google Scholar 

  • Commons KG (2010) Neuronal pathways linking substance P to drug addiction and stress. Brain Res 1314:175–182

    CrossRef  CAS  Google Scholar 

  • Conibear AE, Kelly E (2019) A biased view of mu-opioid receptors? Mol Pharmacol 96:542–549

    CrossRef  CAS  Google Scholar 

  • Connor M, Christie MJ (1999) Opioid receptor signalling mechanisms. Clin Exp Pharmacol Physiol 26:493–499

    CrossRef  CAS  Google Scholar 

  • Corder G, Castro DC, Bruchas MR, Scherrer G (2018) Endogenous and exogenous opioids in pain. Annu Rev Neurosci. https://doi.org/10.1146/annurev-neuro-080317-061522

  • Corsetti M, Pannemans J, Whorwell P (2019) Targeting mu opioid receptors to modulate gastrointestinal function: what have we learnt so far from the studies in functional bowel disorders? F1000Res 8:257

    CrossRef  CAS  Google Scholar 

  • Coward P, Wada HG, Falk MS, Chan SDH, Meng F, Akil H, Conklin BR (1998) Controlling signaling with a specifically designed Gi-coupled receptor. Proc Natl Acad Sci 95:352–357

    CrossRef  CAS  Google Scholar 

  • Cox BM, Opheim KE, Teschemacher H, Goldstein A (1975) Purification and properties. Life Sci 16:1777–1782

    CrossRef  CAS  Google Scholar 

  • Cox BM, Goldstein A, Hi CH (1976) Opioid activity of a peptide, beta-lipotropin-(61-91), derived from beta-lipotropin. Proc Natl Acad Sci U S A 73:1821–1823

    CrossRef  CAS  Google Scholar 

  • Creed MC, Ntamati NR, Tan KR (2014) VTA GABA neurons modulate specific learning behaviors through the control of dopamine and cholinergic systems. Front Behav Neurosci 8:8

    CrossRef  CAS  Google Scholar 

  • Cui J, Wang Y, Dong Q, Wu S, Xiao X, Hu J, Chai Z, Zhang Y (2011) Morphine protects against intracellular amyloid toxicity by inducing estradiol release and upregulation of Hsp70. J Neurosci 31:16227–16240

    CrossRef  CAS  Google Scholar 

  • Cunningham CW, Rothman RB, Prisinzano TE (2011) Neuropharmacology of the naturally occurring κ-opioid hallucinogen salvinorin A. Pharmacol Rev 63:316–347

    CrossRef  CAS  Google Scholar 

  • Day R (2009) Proopiomelanocortin. In: Squire LR (ed) Encyclopedia of neuroscience. Academic Press, Oxford

    Google Scholar 

  • De Lanerolle NC, Williamson A, Meredith C, Kim JH, Tabuteau H, Spencer DD, Brines ML (1997) Dynorphin and the kappa 1 ligand [3H]U69,593 binding in the human epileptogenic hippocampus. Epilepsy Res 28:189–205

    CrossRef  Google Scholar 

  • De Wied D (1999) Behavioral pharmacology of neuropeptides related to melanocortins and the neurohypophyseal hormones. Eur J Pharmacol 375:1–11

    CrossRef  Google Scholar 

  • Deakin JF, DostrÖvsky JO, Smyth DG (1980) Influence of N-terminal acetylation and C-terminal proteolysis on the analgesic activity of beta-endorphin. Biochem J 189:501–506

    CrossRef  CAS  Google Scholar 

  • Dekan Z, Sianati S, Yousuf A, Sutcliffe KJ, Gillis A, Mallet C, Singh P, Jin AH, Wang AM, Mohammadi SA, Stewart M, Ratnayake R, Fontaine F, Lacey E, Piggott AM, Du YP, Canals M, Sessions RB, Kelly E, Capon RJ, Alewood PF, Christie MJ (2019) A tetrapeptide class of biased analgesics from an Australian fungus targets the μ-opioid receptor. Proc Natl Acad Sci U S A 116:22353–22358

    CrossRef  CAS  Google Scholar 

  • Demaagd G, Philip A (2015) Parkinson’s disease and its management: part 1: disease entity, risk factors, pathophysiology, clinical presentation, and diagnosis. Pharm Ther 40:504

    Google Scholar 

  • Denning GM, Ackermann LW, Barna TJ, Armstrong JG, Stoll LL, Weintraub NL, Dickson EW (2008) Proenkephalin expression and enkephalin release are widely observed in non-neuronal tissues. Peptides 29:83–92

    CrossRef  CAS  Google Scholar 

  • Dewire SM, Yamashita DS, Rominger DH, Liu G, Cowan CL, Graczyk TM, Chen XT, Pitis PM, Gotchev D, Yuan C, Koblish M, Lark MW, Violin JD (2013) A G protein-biased ligand at the mu-opioid receptor is potently analgesic with reduced gastrointestinal and respiratory dysfunction compared with morphine. J Pharmacol Exp Ther 344:708–717

    CrossRef  CAS  Google Scholar 

  • Dhawan B, Cesselin F, Raghubir R, Reisine T, Bradley P, Portoghese PS, Hamon M (1996) International Union of Pharmacology. XII. Classification of opioid receptors. Pharmacol Rev 48:567–592

    CAS  Google Scholar 

  • Dickenson AH (1994). Where and how do opioids act?. In: Gebhart GF, Hammond DL, Jensen TS (eds) Progress in pain research and management. Vol. 2. Proceedings of the 7th World Congress on Pain, Seattle: IASP Press, Seattle

    Google Scholar 

  • Dietis N, Rowbotham DJ, Lambert DG (2011) Opioid receptor subtypes: fact or artifact? Br J Anaesth 107:8–18

    CrossRef  CAS  Google Scholar 

  • Douglass J, Cox B, Quinn B, Civelli O, Herbert E (1987) Expression of the prodynorphin gene in male and female mammalian reproductive tissues. Endocrinology 120:707–713

    CrossRef  CAS  Google Scholar 

  • Dubhashi J (2018) Analysis of the genetic and neurological components of opioid addiction, with public health perspectives of the opioid epidemic in the United States of America. Discovery 4:4

    CrossRef  Google Scholar 

  • Egleton RD, Mitchell SA, Huber JD, Janders J, Stropova D, Polt R, Yamamura HI, Hruby VJ, Davis TP (2000) Improved bioavailability to the brain of glycosylated Met-enkephalin analogs. Brain Res 881:37–46

    CrossRef  CAS  Google Scholar 

  • Ehrich E, Turncliff R, Du Y, Leigh-Pemberton R, Fernandez E, Jones R, Fava M (2014) Evaluation of opioid modulation in major depressive disorder. Neuropsychopharmacology 40:1448–1455

    CrossRef  CAS  Google Scholar 

  • Elman I, Borsook D (2019) The failing cascade: comorbid post traumatic stress- and opioid use disorders. Neurosci Biobehav Rev 103:374–383

    CrossRef  Google Scholar 

  • Evans RM, You H, Hameed S, Altier C, Mezghrani A, Bourinet E, Zamponi GW (2010) Heterodimerization of ORL1 and opioid receptors and its consequences for N-type calcium channel regulation. J Biol Chem 285:1032–1040

    CrossRef  CAS  Google Scholar 

  • Feng Y, He X, Yang Y, Chao D, Lazarus LH, Xia Y (2012) Current research on opioid receptor function. Current Drug Targets 13:230–246

    CrossRef  CAS  Google Scholar 

  • Fields HL, Margolis EB (2015) Understanding opioid reward. Trends Neurosci 38:217–225

    CrossRef  CAS  Google Scholar 

  • Finnegan TF, Chen S-R, Pan H-L (2006) μ opioid receptor activation inhibits GABAergic inputs to basolateral amygdala neurons through Kv1.1/1.2 channels. J Neurophysiol 95:2032–2041

    CrossRef  CAS  Google Scholar 

  • Froehlich JC (1997) Opioid peptides. Alcohol health Res World 21:132–135

    CAS  Google Scholar 

  • Gendron L, Mittal N, Beaudry H, Walwyn W (2015) Recent advances on the δ opioid receptor: from trafficking to function. Br J Pharmacol 172:403–419

    CrossRef  CAS  Google Scholar 

  • Geracioti TD, Strawn JR, Ekhator NN, Wortman M, Kasckow J (2009) 82 - Neuroregulatory peptides of central nervous system origin: from laboratory to clinic. In: PFAFF DW, Arnold AP, Etgen AM, Fahrbach SE, Rubin RT (eds) Hormones, brain and behavior, 2nd edn. Academic Press, San Diego

    Google Scholar 

  • Ghelardini C, Mannelli LDC, Bianchi E (2015) The pharmacological basis of opioids. Clin Cases Miner Bone Metab 12:219

    Google Scholar 

  • Gill BJA, Khan FA, Mckhann GM (2018) You’re not hallucinating: potential new targets for schizophrenia treatment. Neurosurgery 84:E146–E147

    CrossRef  Google Scholar 

  • Granier S, Manglik A, Kruse AC, Kobilka TS, Thian FS, Weis WI, Kobilka BK (2012) Structure of the delta-opioid receptor bound to naltrindole. Nature 485:400–404

    CrossRef  CAS  Google Scholar 

  • Greenwald JD, Shafritz KM (2018) An integrative neuroscience framework for the treatment of chronic pain: from cellular alterations to behavior. Front Integr Neurosci 12:18

    CrossRef  CAS  Google Scholar 

  • Groer CE, Tidgewell K, Moyer RA, Harding WW, Rothman RB, Prisinzano TE, Bohn LM (2007) An opioid agonist that does not induce mu-opioid receptor – arrestin interactions or receptor internalization. Mol Pharmacol 71:549–557

    CrossRef  CAS  Google Scholar 

  • Gu ZH, Wang B, Kou ZZ, Bai Y, Chen T, Dong YL, Li H, Li YQ (2017) Endomorphins: promising endogenous opioid peptides for the development of novel analgesics. Neurosignals 25:98–116

    CrossRef  Google Scholar 

  • Guerrero M, Urbano M, Kim E-K, Gamo AM, Riley S, Abgaryan L, Leaf N, Van Orden LJ, Brown SJ, Xie JY, Porreca F, Cameron MD, Rosen H, Roberts E (2019) Design and synthesis of a novel and selective kappa opioid receptor (KOR) antagonist (Btrx-335140). J Med Chem 62:1761–1780

    CrossRef  CAS  Google Scholar 

  • Günther T, Dasgupta P, Mann A, Miess E, Kliewer A, Fritzwanker S, Steinborn R, Schulz S (2017) Targeting multiple opioid receptors – improved analgesics with reduced side effects? Br J Pharmacol 175:2857–2868

    CrossRef  CAS  Google Scholar 

  • Hassan AN, Foll BL, Imtiaz S, Rehm J (2017) The effect of post-traumatic stress disorder on the risk of developing prescription opioid use disorder: results from the National Epidemiologic Survey on Alcohol and Related Conditions III. Drug Alcohol Depend 179:260–266

    CrossRef  Google Scholar 

  • Heinke B, Gingl E, SandkÜhler J (2011) Multiple targets of μ-opioid receptor-mediated presynaptic inhibition at primary afferent Aδ- and C-fibers. J Neurosci 31:1313–1322

    CrossRef  CAS  Google Scholar 

  • Herath HMDR, Cabot PJ, Shaw PN, Hewavitharana AK (2012) Study of beta endorphin metabolism in inflamed tissue, serum and trypsin solution by liquid chromatography–tandem mass spectrometric analysis. Anal Bioanal Chem 402:2089–2100

    CrossRef  CAS  Google Scholar 

  • Hersh LB, Rodgers DW (2008) Neprilysin and amyloid beta peptide degradation. Curr Alzheimer Res 5:225–231

    CrossRef  CAS  Google Scholar 

  • Ho JH, Stahl EL, Schmid CL, Scarry SM, Aube J, Bohn LM (2018) G protein signaling-biased agonism at the kappa-opioid receptor is maintained in striatal neurons. Sci Signal 11. https://doi.org/10.1126/scisignal.aar4309

  • Hökfelt T, Broberger C, Xu Z-QD, Sergeyev V, Ubink R, Diez M (2000) Neuropeptides — an overview. Neuropharmacology 39:1337–1356

    CrossRef  Google Scholar 

  • Holzer P (2009) Opioid receptors in the gastrointestinal tract. Regul Pept 155:11–17

    CrossRef  CAS  Google Scholar 

  • Huang W, Manglik A, Venkatakrishnan AJ, Laeremans T, Feinberg EN, Sanborn AL, Kato HE, Livingston KE, Thorsen TS, Kling RC, Granier S, Gmeiner P, Husbands SM, Traynor JR, Weis WI, Steyaert J, Dror RO, Kobilka BK (2015) Structural insights into micro-opioid receptor activation. Nature 524:315–321

    CrossRef  CAS  Google Scholar 

  • Hughes J, Smith T, Morgan B, Fothergill L (1975) Purification and properties of enkephalin — The possible endogenous ligand for the morphine receptor. Life Sci 16:1753–1758

    CrossRef  CAS  Google Scholar 

  • Hughes J, Beaumont A, Fuentes JA, Malfroy B, Unsworth C (1980) Opioid peptides: aspects of their origin, release and metabolism. J Exp Biol 89:239–255

    CAS  Google Scholar 

  • Hurd YL (2002) Subjects with major depression or bipolar disorder show reduction of prodynorphin mRNA expression in discrete nuclei of the amygdaloid complex. Mol Psychiatry 7:75–81

    CrossRef  CAS  Google Scholar 

  • Ingram SL, Vaughan CW, Bagley EE, Connor M, Christie MJ (1998) Enhanced Opioid Efficacy in Opioid Dependence Is Caused by an Altered Signal Transduction Pathway. J Neurosci 18:10269–10276

    CrossRef  CAS  Google Scholar 

  • Iwaszkiewicz KS, Schneider JJ, Hua S (2013) Targeting peripheral opioid receptors to promote analgesic and anti-inflammatory actions. Front Pharmacol 4:132

    CrossRef  CAS  Google Scholar 

  • Jeon HJ, Baek JH, Ahn Y-M, Kim SJ, Ha TH, Cha B, Moon E, Kang H-J, Ryu V, Cho C-H, Heo J-Y, Kim K, Lee H-J (2016) Review of cohort studies for mood disorders. Psychiatry Investig 13:265

    CrossRef  Google Scholar 

  • Ji H, Wang Y, Liu G, Chang L, Chen Z, Zhou D, Xu X, Cui W, Hong Q, Jiang L, Li J, Zhou X, Li Y, Guo Z, Zha Q, Niu Y, Weng Q, Duan S, Wang Q (2017) Elevated OPRD1 promoter methylation in Alzheimer’s disease patients. PLoS One 12:e0172335

    CrossRef  CAS  Google Scholar 

  • Johnston TH, Versi E, Howson PA, Ravenscroft P, Fox SH, Hill MP, Reidenberg BE, Corey R, Brotchie JM (2018) DPI-289, a novel mixed delta opioid agonist / mu opioid antagonist (DAMA), has L-DOPA-sparing potential in Parkinson’s disease. Neuropharmacology 131:116–127

    CrossRef  CAS  Google Scholar 

  • Kalia LV, Lang AE (2015) Parkinson’s disease. Lancet 386:896–912

    CrossRef  CAS  Google Scholar 

  • Kerage D, Sloan EK, Mattarollo SR, Mccombe PA (2019) Interaction of neurotransmitters and neurochemicals with lymphocytes. J Neuroimmunol 332:99–111

    CrossRef  CAS  Google Scholar 

  • Khan SM, Sleno R, Gora S, Zylbergold P, Laverdure J-P, LabbÉ J-C, Miller GJ, HÉbert TE (2013) The expanding roles of Gβγ subunits in G protein–coupled receptor signaling and drug action. Pharmacol Rev 65:545–577

    CrossRef  CAS  Google Scholar 

  • Knoll AT, Carlezon WA (2010) Dynorphin, stress, and depression. Brain Res 1314:56–73

    CrossRef  CAS  Google Scholar 

  • Koehl A, Hu H, Maeda S, Zhang Y, Qu Q, Paggi JM, Latorraca NR, Hilger D, Dawson R, Matile H, Schertler GFX, Granier S, Weis WI, Dror RO, Manglik A, Skiniotis G, Kobilka BK (2018) Structure of the micro-opioid receptor-Gi protein complex. Nature 558:547–552

    CrossRef  CAS  Google Scholar 

  • Koob GF, Bloom FE (1988) Cellular and molecular mechanisms of drug dependence. Science 242:715–723

    CrossRef  CAS  Google Scholar 

  • Kosten T, George T (2002) The neurobiology of opioid dependence: implications for treatment. Sci Pract Perspect 1:13–20

    CrossRef  Google Scholar 

  • Kosterlitz HW, Hughes J (1975) Some thoughts on the significance of enkephalin, the endogenous ligand. Life Sci 17:91–96

    CrossRef  CAS  Google Scholar 

  • Kruegel AC, Gassaway MM, Kapoor A, VÁradi A, Majumdar S, Filizola M, Javitch JA, Sames D (2016) Synthetic and receptor signaling explorations of the mitragyna alkaloids: mitragynine as an atypical molecular framework for opioid receptor modulators. J Am Chem Soc 138:6754–6764

    CrossRef  CAS  Google Scholar 

  • Lacy BE, Mearin F, Chang L, Chey WD, Lembo AJ, Simren M, Spiller R (2016) Bowel disorders. Gastroenterology 150:1393–1407.e5

    CrossRef  Google Scholar 

  • Lalanne L, Ayranci G, Kieffer BL, Lutz P-E (2014) The kappa opioid receptor: from addiction to depression, and back. Front Psychiatry 5:170

    CrossRef  Google Scholar 

  • Lamberts JT, Jutkiewicz EM, Mortensen RM, Traynor JR (2011) mu-Opioid receptor coupling to Galpha(o) plays an important role in opioid antinociception. Neuropsychopharmacology 36:2041–2053

    CrossRef  CAS  Google Scholar 

  • Latremoliere A, Woolf CJ (2009) Central sensitization: a generator of pain hypersensitivity by central neural plasticity. J Pain 10:895–926

    CrossRef  Google Scholar 

  • Law PY (2011) Opioid receptor signal transduction mechanisms. In: Pasternak GW (ed) The opiate receptors. Humana Press, Totowa, NJ

    Google Scholar 

  • Leith JL, Wilson AW, Donaldson LF, Lumb BM (2007) Cyclooxygenase-1-derived prostaglandins in the periaqueductal gray differentially control C- versus A-fiber-evoked spinal nociception. J Neurosci 27:11296–11305

    CrossRef  CAS  Google Scholar 

  • Lembeck F (2008) The archeology of substance P. Neuropeptides 42:444–453

    CrossRef  CAS  Google Scholar 

  • Li CH, Chung D (1976) Isolation and structure of an untriakontapeptide with opiate activity from camel pituitary glands. Proc Natl Acad Sci U S A 73:1145–1148

    CrossRef  CAS  Google Scholar 

  • Li Y, Lefever MR, Muthu D, Bidlack JM, Bilsky EJ, Polt R (2012) Opioid glycopeptide analgesics derived from endogenous enkephalins and endorphins. Future Med Chem 4:205–226

    CrossRef  CAS  Google Scholar 

  • Li J, Blankenship ML, Baccei ML (2013) Inward-rectifying potassium (Kir) channels regulate pacemaker activity in spinal nociceptive circuits during early life. J Neurosci 33:3352–3362

    CrossRef  CAS  Google Scholar 

  • Listos J, Łupina M, Talarek S, Mazur A, Orzelska-GÓrka J, KotliŃska J (2019) The mechanisms involved in morphine addiction: an overview. Int J Mol Sci 20:4302

    CrossRef  CAS  Google Scholar 

  • Livingston KE, Traynor JR (2018) Allostery at opioid receptors: modulation with small molecule ligands. Br J Pharmacol 175:2846–2856

    CrossRef  CAS  Google Scholar 

  • Livingston KE, Stanczyk MA, Burford NT, Alt A, Canals M, Traynor JR (2018) Pharmacologic evidence for a putative conserved allosteric site on opioid receptors. Mol Pharmacol 93:157–167

    CrossRef  CAS  Google Scholar 

  • Loh YP, Gainer H (1978) The role of glycosylation on the biosynthesis, degradation, and secretion of the ACTH-beta-lipotropin common precursor and its peptide products. FEBS Lett 96:269–272

    CrossRef  CAS  Google Scholar 

  • Loose M, Ronnekleiv O, Kelly M (1990) Membrane properties and response to opioids of identified dopamine neurons in the guinea pig hypothalamus. J Neurosci 10:3627–3634

    CrossRef  CAS  Google Scholar 

  • Luca G, Federico S, Roberto A (2007) Re-discussion of the importance of ionic interactions in stabilizing ligand-opioid receptor complex and in activating signal transduction. Curr Drug Targets 8:185–196

    CrossRef  Google Scholar 

  • Ludwig M, Leng G (2006) Dendritic peptide release and peptide-dependent behaviours. Nat Rev Neurosci 7:126–136

    CrossRef  CAS  Google Scholar 

  • Lutz PE, Kieffer BL (2013) Opioid receptors: distinct roles in mood disorders. Trends Neurosci 36:195–206

    CrossRef  CAS  Google Scholar 

  • Mabrouk OS, Marti M, Salvadori S, Morari M (2009) The novel delta opioid receptor agonist UFP-512 dually modulates motor activity in hemiparkinsonian rats via control of the nigro-thalamic pathway. Neuroscience 164:360–369

    CrossRef  CAS  Google Scholar 

  • Mabrouk OS, Viaro R, Volta M, Ledonne A, Mercuri N, Morari M (2014) stimulation of opioid receptor and blockade of nociceptin/orphanin FQ receptor synergistically attenuate Parkinsonism. J Neurosci 34:12953–12962

    CrossRef  CAS  Google Scholar 

  • Machelska H, Celik MÖ (2018) Advances in achieving opioid analgesia without side effects. Front Pharmacol 9. https://doi.org/10.3389/fphar.2018.01388

  • Madariaga-MazÓN A, Marmolejo-Valencia AF, Li Y, Toll L, Houghten RA, Martinez-Mayorga K (2017) Mu-opioid receptor biased ligands: a safer and painless discovery of analgesics? Drug Discov Today 22:1719–1729

    CrossRef  CAS  Google Scholar 

  • Mahmod Al-Qattan MN, Mordi MN (2019) Molecular basis of modulating adenosine receptors activities. Curr Pharm Design 25:817–831

    CrossRef  CAS  Google Scholar 

  • Mains RE, Eipper BA (1981) Coordinate, equimolar secretion of smaller peptide products derived from pro-ACTH/endorphin by mouse pituitary tumor cells. J Cell Biol 89:21–28

    CrossRef  CAS  Google Scholar 

  • Malfroy B, Swerts JP, Guyon A, Roques BP, Schwartz JC (1978) High-affinity enkephalin-degrading peptidase in brain is increased after morphine. Nature 276:523–526

    CrossRef  CAS  Google Scholar 

  • Manglik A, Kruse AC, Kobilka TS, Thian FS, Mathiesen JM, Sunahara RK, Pardo L, Weis WI, Kobilka BK, Granier S (2012) Crystal structure of the micro-opioid receptor bound to a morphinan antagonist. Nature 485:321–326

    CrossRef  CAS  Google Scholar 

  • Manglik A, Lin H, Aryal DK, Mccorvy JD, Dengler D, Corder G, Levit A, Kling RC, Bernat V, Hubner H, Huang XP, Sassano MF, Giguere PM, Lober S, Da D, Scherrer G, Kobilka BK, Gmeiner P, Roth BL, Shoichet BK (2016) Structure-based discovery of opioid analgesics with reduced side effects. Nature 537:185–190

    CrossRef  CAS  Google Scholar 

  • Mansour A, Fox CA, Akil H, Watson SJ (1995) Opioid-receptor mRNA expression in the rat CNS: anatomical and functional implications. Trends Neurosci 18:22–29

    CrossRef  CAS  Google Scholar 

  • Markman J, Gudin J, Rauck R, Argoff C, Rowbotham M, Agaiby E, Gimbel J, Katz N, Doberstein SK, Tagliaferri M, Lu L, Siddhanti S, Hale M (2019) SUMMIT-07. Pain 160:1374–1382

    CrossRef  CAS  Google Scholar 

  • Martin WF, Correll CU, Weiden PJ, Jiang Y, Pathak S, Dipetrillo L, Silverman BL, Ehrich EW (2019) Mitigation of olanzapine-induced weight gain with samidorphan, an opioid antagonist: a randomized double-blind phase 2 study in patients with schizophrenia. Am J Psychiatry 176:457–467

    CrossRef  Google Scholar 

  • Mathieu-Kia A-M, Fan L-Q, Kreek MJ, Simon EJ, Hiller JM (2001) μ-, δ- and κ-opioid receptor populations are differentially altered in distinct areas of postmortem brains of Alzheimer’s disease patients. Brain Res 893:121–134

    CrossRef  CAS  Google Scholar 

  • Matsushima A, Sese J, Koyanagi KO (2019) Biosynthetic short neuropeptides: a rational theory based on experimental results for the missing pain-relief opioid endomorphin precursor gene. Chembiochem 20:2054–2058

    CrossRef  CAS  Google Scholar 

  • Maves TJ, Pechman PS, Meller ST, Gebhart G (1994) Ketorolac potentiates morphine antinociception during visceral nociception in the rat. Anesthesiology 80:1094–1101

    CrossRef  CAS  Google Scholar 

  • McCarty D, Priest KC, Korthuis PT (2018) Treatment and prevention of opioid use disorder: challenges and opportunities. Annu Rev Public Health 39:525–541

    CrossRef  Google Scholar 

  • McDonald J, Lambert D (2005) Opioid receptors. Contin Educ Anaesth Crit Care Pain 5:22–25

    CrossRef  Google Scholar 

  • Meguro Y, Miyano K, Hirayama S, Yoshida Y, Ishibashi N, Ogino T, Fujii Y, Manabe S, Eto M, Nonaka M, Fujii H, Ueta Y, Narita M, Sata N, Yada T, Uezono Y (2018) Neuropeptide oxytocin enhances μ opioid receptor signaling as a positive allosteric modulator. J Pharmacol Sci 137:67–75

    CrossRef  CAS  Google Scholar 

  • Meilandt WJ, Yu G-Q, Chin J, Roberson ED, Palop JJ, Wu T, Scearce-Levie K, Mucke L (2008) Enkephalin elevations contribute to neuronal and behavioral impairments in a transgenic mouse model of Alzheimer’s disease. J Neurosci 28:5007–5017

    CrossRef  CAS  Google Scholar 

  • Mello NK, Negus SS (2006) Interactions between kappa opioid agonists and cocaine: preclinical studies. Annal N Y Acad Sci 909:104–132

    CrossRef  Google Scholar 

  • Ménard C, Herzog H, Schwarzer C, Quirion R (2013) Possible role of dynorphins in Alzheimer’s disease and age-related cognitive deficits. Neurodegener Dis 13:82–85

    CrossRef  CAS  Google Scholar 

  • Mendell LM (2011) Computational functions of neurons and circuits signaling injury: relationship to pain behavior. Proc Natl Acad Sci U S A 108:15596–15601

    CrossRef  CAS  Google Scholar 

  • Metzger TG, Ferguson DM (1995) On the role of extracellular loops of opioid receptors in conferring ligand selectivity. FEBS Lett 375:1–4

    CrossRef  CAS  Google Scholar 

  • Mika J, Obara I, Przewlocka B (2011) The role of nociceptin and dynorphin in chronic pain: implications of neuro-glial interaction. Neuropeptides 45:247–261

    CrossRef  CAS  Google Scholar 

  • Mitznegg P, Domschke W, Sprugel W, Domschke S, Subramanian N, Wunsch E, Moroder L, Demling L (1977) Enkephalins inhibit intestinal motility: mode of action. Acta Hepatogastroenterol (Stuttg) 24:119–120

    CAS  Google Scholar 

  • Mogil JS, Pasternak GW (2001) The molecular and behavioral pharmacology of the orphanin Fq/nociceptin peptide and receptor family. Pharmacol Rev 53:381–415

    CAS  Google Scholar 

  • Mores KL, Cummins BR, Cassell RJ, Van Rijn RM (2019) A review of the therapeutic potential of recently developed G protein-biased kappa agonists. Front Pharmacol 10

    Google Scholar 

  • Motel CW, Coop A, Cunningham CW (2013) Cholinergic modulation by opioid receptor ligands: potential application to Alzheimer’s disease. Mini Rev Med Chem 13:456–466

    CAS  Google Scholar 

  • Nandhu MS, Naijil G, Smijin S, Jayanarayanan S, Paulose CS (2010) Opioid system functional regulation in neurological disease management. J Neurosci Res 88:3215–3221

    CrossRef  CAS  Google Scholar 

  • Neves SR, Ram PT, Iyengar R (2002) G protein pathways. Science 296:1636–1639

    CrossRef  CAS  Google Scholar 

  • Niciu MJ, Arias AJ (2013) Targeted opioid receptor antagonists in the treatment of alcohol use disorders. CNS Drugs 27:777–787

    CrossRef  CAS  Google Scholar 

  • Nieto MM, Guen SL, Kieffer BL, Roques BP, Noble F (2005) Physiological control of emotion-related behaviors by endogenous enkephalins involves essentially the delta opioid receptors. Neuroscience 135:305–313

    CrossRef  CAS  Google Scholar 

  • Norn S, Kruse PR, Kruse E (2005) History of opium poppy and morphine. Dan Medicinhist Arbog 33:171–184

    Google Scholar 

  • North R (1993) Opioid actions on membrane ion channels. In: Opioids. Springer, New York, NY

    Google Scholar 

  • North RA, Williams JT (1983) How do opiates inhibit neurotransmitter release? Trends Neurosci 6:337–339

    CrossRef  CAS  Google Scholar 

  • Nuechterlein EB (2016) Alterations in endogenous opioid neurotransmission associated with acute and long-term use of drugs of abuse. PhD Thesis, University of Michigan, Ann Arbor, USA. https://deepblue.lib.umich.edu/bitstream/handle/2027.42/120787/emilybn_1.pdf?sequence=1

  • O’malley SS, Jaffe AJ, Chang G, Schottenfeld RS, Meyer RE, Rounsaville B (1992) Naltrexone and coping skills therapy for alcohol dependence: a controlled study. Arch Gen Psychiatry 49:881–887

    CrossRef  Google Scholar 

  • Ohbuchi K, Miyagi C, Suzuki Y, Mizuhara Y, Mizuno K, Omiya Y, Yamamoto M, Warabi E, Sudo Y, Yokoyama A, Miyano K, Hirokawa T, Uezono Y (2016) Ignavine: a novel allosteric modulator of the μ opioid receptor. Sci Rep 6:31748

    CrossRef  CAS  Google Scholar 

  • Owen MJ, Sawa A, Mortensen PB (2016) Schizophrenia. Lancet 388:86–97

    CrossRef  Google Scholar 

  • Pan J, Cai H (2017) Opioid system in L-Dopa-induced dyskinesia. Transl Neurodegener. https://deepblue.lib.umich.edu/bitstream/handle/2027.42/120787/emilybn_1.pdf?sequence=1

  • Papadimitriou A, Priftis KN (2009) Regulation of the hypothalamic-pituitary-adrenal axis. Neuroimmunomodulation 16:265–271

    CrossRef  CAS  Google Scholar 

  • Patel RM, Shulman ST (2015) Kawasaki disease: a comprehensive review of treatment options. J Clin Pharm Ther 40:620–625

    CrossRef  Google Scholar 

  • Pathan H, Williams J (2012) Basic opioid pharmacology: an update. Br J Pain 6:11–16

    CrossRef  Google Scholar 

  • Pert CB, Snyder SH (1973) Properties of opiate-receptor binding in rat brain. Proc Natl Acad Sci U S A 70:2243–2247

    CrossRef  CAS  Google Scholar 

  • Petrenko AB, Yamakura T, Baba H, Shimoji K (2003) The role of N-methyl-D-aspartate (NMDA) receptors in pain: a review. Anesth Analg 97:1108–1116

    CrossRef  CAS  Google Scholar 

  • Pleuvry BJ (1991) Opioid receptors and their ligands: natural and unnatural. Br J Anaesth 66:370–380

    CrossRef  CAS  Google Scholar 

  • Podvin S, Yaksh T, Hook V (2016) The emerging role of spinal dynorphin in chronic pain: a therapeutic perspective. Annu Rev Pharmacol Toxicol 56:511–533

    CrossRef  CAS  Google Scholar 

  • Polo S, DÍaz AF, Gallardo N, LeÁnez S, Balboni G, Pol O (2019) Treatment with the delta opioid agonist Ufp-512 alleviates chronic inflammatory and neuropathic pain: mechanisms implicated. Front Pharmacol 10:283

    CrossRef  CAS  Google Scholar 

  • Portoghese PS, Sultana M, Nagase H, Takemori AE (1988) Application of the message-address concept in the design of highly potent and selective non-peptide .delta. opioid receptor antagonists. J Med Chem 31:281–282

    CrossRef  CAS  Google Scholar 

  • Przewlocki R (2013) Opioid peptides. In: Pfaff DW (ed) Neuroscience in the 21st century: from basic to clinical. New York, NY, Springer

    Google Scholar 

  • Ramaswamy S, Langford R (2017) Antinociceptive and immunosuppressive effect of opioids in an acute postoperative setting: an evidence-based review. BJA Educ 17:105–110

    CrossRef  Google Scholar 

  • Ranjan R, Pandey S, Shukla AK (2017) Biased opioid receptor ligands: gain without pain. Trends Endocrinol Metab 28:247–249

    CrossRef  CAS  Google Scholar 

  • Reindl JD, Rowan K, Carey AN, Peng X, Neumeyer JL, McLaughlin JP (2008) Antidepressant-like effects of the novel kappa opioid antagonist MCL-144B in the forced-swim test. Pharmacology 81:229–235

    CrossRef  CAS  Google Scholar 

  • Reisine T, Bell GI (1993) Molecular biology of opioid receptors. Trends Neurosci 16:506–510

    CrossRef  CAS  Google Scholar 

  • Rodrı́guez-Manzo G, Asai M, Fernández-Guasti A (2002) Evidence for changes in brain enkephalin contents associated to male rat sexual activity. Behav Brain Res 131:47–55

    CrossRef  Google Scholar 

  • Roth BL, Baner K, Westkaemper R, Siebert D, Rice KC, Steinberg S, Ernsberger P, Rothman RB (2002) Salvinorin A: a potent naturally occurring nonnitrogenous opioid selective agonist. Proc Natl Acad Sci 99:11934–11939

    CrossRef  CAS  Google Scholar 

  • Rubinstein M, Mogil JS, JapÓN M, Chan EC, Allen RG, Low MJ (1996) Absence of opioid stress-induced analgesia in mice lacking beta-endorphin by site-directed mutagenesis. Proc Natl Acad Sci 93:3995–4000

    CrossRef  CAS  Google Scholar 

  • Rush AM, Cummins TR, Waxman SG (2007) Multiple sodium channels and their roles in electrogenesis within dorsal root ganglion neurons. J Physiol 579:1–14

    CrossRef  CAS  Google Scholar 

  • Russo AF (2017) Overview of neuropeptides: awakening the senses? Headache 57(Suppl 2):37–46

    CrossRef  Google Scholar 

  • Sarajarvi T, Marttinen M, Natunen T, Kauppinen T, MÄkinen P, Helisalmi S, Laitinen M, Rauramaa T, Leinonen V, PetÄJÄ-Repo U, Soininen H, Haapasalo A, Hiltunen M (2015) Genetic variation in δ-opioid receptor associates with increased β- and γ-secretase activity in the late stages of Alzheimer’s disease. J Alzheimer’s Dis 48:507–516

    CrossRef  CAS  Google Scholar 

  • Schaffer CB, Nordahl TE, Schaffer LC, Howe J (2007) Mood-elevating effects of opioid analgesics in patients with bipolar disorder. J Neuropsychiatry 19:449–452

    CrossRef  Google Scholar 

  • Schapira AHV, Chaudhuri KR, Jenner P (2017) Non-motor features of Parkinson disease. Nat Rev Neurosci 18:435–450

    CrossRef  CAS  Google Scholar 

  • Scheuer T (2011) Regulation of sodium channel activity by phosphorylation. Semin Cell Dev Biol 22:160–165

    CrossRef  CAS  Google Scholar 

  • Schuckit MA (2016) Treatment of opioid-use disorders. N Engl J Med 375:357–368

    CrossRef  Google Scholar 

  • Seseña E, Vega R, Soto E (2014) Activation of μ-opioid receptors inhibits calcium-currents in the vestibular afferent neurons of the rat through a cAMP dependent mechanism. Front Cell Neurosci 8:90

    Google Scholar 

  • Sgroi S, Tonini R (2018) Opioidergic modulation of striatal circuits, implications in Parkinson’s disease and levodopa induced dyskinesia. Front Neurol 9:524

    CrossRef  Google Scholar 

  • Shalev A, Liberzon I, Marmar C (2017) Post-traumatic stress disorder. N Engl J Med 376:2459–2469

    CrossRef  Google Scholar 

  • Sheffler DJ, Roth BL (2003) Salvinorin A: the ‘magic mint’ hallucinogen finds a molecular target in the kappa opioid receptor. Trends Pharmacol Sci 24:107–109

    CrossRef  CAS  Google Scholar 

  • Shekhar A (2019) Role of kappa opioid receptors in symptoms of schizophrenia: what is the neurobiology? Biol Psychiatry 86:494–496

    CrossRef  Google Scholar 

  • Sher L (2004) The role of endogenous opioids in the placebo effect in post-traumatic stress disorder. Complement Med Res 11:354–359

    CrossRef  CAS  Google Scholar 

  • Shippenberg TS, Elmer GI (1998) The neurobiology of opiate reinforcement. Crit Rev Neurobiol 12:267–303

    Google Scholar 

  • Shirayama Y, Chaki S (2006) Neurochemistry of the nucleus accumbens and its relevance to depression and antidepressant action in rodents. Curr Neuropharmacol 4:277–291

    CrossRef  CAS  Google Scholar 

  • Smrcka A (2008) G protein βγ subunits: central mediators of G protein-coupled receptor signaling. Cell Mol Life Sci 65:2191–2214

    CrossRef  CAS  Google Scholar 

  • Snyder SH (2004) Opiate receptors and beyond: 30 years of neural signaling research. Neuropharmacology 47:274–285

    CrossRef  CAS  Google Scholar 

  • Sprouse-Blum AS, Smith G, Sugai D, Parsa FD (2010) Understanding endorphins and their importance in pain management. Hawaii Med J 69:70–71

    Google Scholar 

  • Stanczyk MA, Livingston KE, Chang L, Weinberg ZY, Puthenveedu MA, Traynor JR (2019) The delta-opioid receptor positive allosteric modulator BMS 986187 is a G-protein-biased allosteric agonist. Br J Pharmacol 176:1649–1663

    CrossRef  CAS  Google Scholar 

  • Takahashi A (2016) Subchapter 7A - enkephalin. In: TAKEI Y, Ando H, Tsutsui K (eds) Handbook of hormones. Academic Press, San Diego

    Google Scholar 

  • Takeuchi M (2001) The mammalian pars intermedia—structure and function. Zoolog Sci 18(133-144):12

    Google Scholar 

  • Tejeda HA, Shippenberg TS, Henriksson R (2011) The dynorphin/κ-opioid receptor system and its role in psychiatric disorders. Cell Mol Life Sci 69:857–896

    CrossRef  CAS  Google Scholar 

  • Terskiy A, Wannemacher KM, Yadav PN, Tsai M, Tian B, Howells RD (2007) Search of the human proteome for endomorphin-1 and endomorphin-2 precursor proteins. Life Sci 81:1593–1601

    CrossRef  CAS  Google Scholar 

  • Theriot J, Azadfard M, Kum B (2019) Opioid antagonists. In: StatPearls. StatPearls Publishing, Treasure Island (FL)

    Google Scholar 

  • Thompson GL, Lane JR, Coudrat T, Sexton PM, Christopoulos A, Canals M (2015) Biased agonism of endogenous opioid peptides at the mu-opioid receptor. Mol Pharmacol 88:335–346

    CrossRef  CAS  Google Scholar 

  • Ting-A-Kee R, Van Der Kooy D (2012) The neurobiology of opiate motivation. Cold Spring Harb Perspect Med 2:a012096–a012096

    CrossRef  CAS  Google Scholar 

  • Tomkins DM, Sellers EM (2001) Addiction and the brain: the role of neurotransmitters in the cause and treatment of drug dependence. CMAJ 164:817–821

    CAS  Google Scholar 

  • Torres-Berrio A, Nava-Mesa MO (2019) The opioid system in stress-induced memory disorders: from basic mechanisms to clinical implications in post-traumatic stress disorder and Alzheimer’s disease. Prog Neuropsychopharmacol Biol Psychiatry 88:327–338

    CrossRef  CAS  Google Scholar 

  • Tortorici V, Vanegas H (1995) Anti-nociception induced by systemic or PAG-microinjected lysine-acetylsalicylate in rats. Effects on tail-flick related activity of medullary off-and on-cells. Eur J Neurosci 7:1857–1865

    CrossRef  CAS  Google Scholar 

  • Tsagareli MG, Tsiklauri N, Nozadze I, Gurtskaia G (2012) Tolerance effects of non-steroidal anti-inflammatory drugs microinjected into central amygdala, periaqueductal grey, and nucleus raphe. Neural Regen Res 7:1029–1039

    CAS  Google Scholar 

  • Turner AJ (2004) 108 - Neprilysin. In: Barrett AJ, Rawlings ND, Woessner JF (eds) Handbook of proteolytic enzymes, 2nd edn. Academic Press, London

    Google Scholar 

  • van den Pol AN (2012) Neuropeptide transmission in brain circuits. Neuron 76:98–115

    CrossRef  CAS  Google Scholar 

  • Vanderah TW, Ossipov MH, Lai J, Malan PTJ, Porreca F (2001) Mechanisms of opioid-induced pain and antinociceptive tolerance: descending facilitation and spinal dynorphin. Pain 92:5–9

    CrossRef  CAS  Google Scholar 

  • Varamini P, Mansfeld FM, Blanchfield JT, Wyse BD, Smith MT, Toth I (2012) Synthesis and biological evaluation of an orally active glycosylated endomorphin-1. J Med Chem 55:5859–5867

    CrossRef  CAS  Google Scholar 

  • Vaughan CW (1998) Enhancement of opioid inhibition of GABAergic synaptic transmission by cyclo-oxygenase inhibitors in rat periaqueductal grey neurones. Br J Pharmacol 123:1479–1481

    CrossRef  CAS  Google Scholar 

  • Vaughan C, Christie M (1997) Presynaptic inhibitory action of opioids on synaptic transmission in the rat periaqueductal grey in vitro. J Physiol 498:463–472

    CrossRef  CAS  Google Scholar 

  • Vaughan CW, Ingram SL, Connor MA, Christie MJ (1997) How opioids inhibit GABA-mediated neurotransmission. Nature 390:611–614

    CrossRef  CAS  Google Scholar 

  • Veening JG, Barendregt HP (2015) The effects of beta-endorphin: state change modification. Fluids Barriers CNS 12:3–3

    CrossRef  CAS  Google Scholar 

  • Veening JG, Gerrits PO, Barendregt HP (2012) Volume transmission of beta-endorphin via the cerebrospinal fluid; a review. Fluids Barriers CNS 9:16–16

    CrossRef  CAS  Google Scholar 

  • Venkatraman A, Edlow BL, Immordino-Yang MH (2017) The brainstem in emotion: a review. Front Neuroanat 11:15

    CrossRef  Google Scholar 

  • Vergura R, Balboni G, Spagnolo B, Gavioli E, Lambert DG, McDonald J, Trapella C, Lazarus LH, Regoli D, Guerrini R, Salvadori S, CalÓ G (2008) Anxiolytic- and antidepressant-like activities of H-Dmt-Tic-Nh-CH(CH2-COOH)-Bid (UFP-512), a novel selective delta opioid receptor agonist. Peptides 29:93–103

    CrossRef  CAS  Google Scholar 

  • Waldhoer M, Bartlett SE, Whistler JL (2004) Opioid receptors. Annu Rev Biochem 73:953–990

    CrossRef  CAS  Google Scholar 

  • Wang H, Subedi K (2020) δ-Opioid receptor as a potential therapeutic target for ischemic stroke. Neural Regen Res 15:20

    CrossRef  Google Scholar 

  • Wang H, Wessendorf MW (2001) Equal proportions of small and large DRG neurons express opioid receptor mRNAs. J Comp Neurol 429:590–600

    CrossRef  CAS  Google Scholar 

  • Wang W, Gu J, Li Y-Q, Tao Y-X (2011) Are voltage-gated sodium channels on the dorsal root ganglion involved in the development of neuropathic pain? Mol Pain 7:16

    Google Scholar 

  • Wang Y, Wang Y-X, Liu T, Law P-Y, Loh HH, Qiu Y, Chen H-Z (2014) μ-opioid receptor attenuates AβOligomers-induced neurotoxicity through mTOR signaling. CNS Neurosci Ther 21:8–14

    CrossRef  CAS  Google Scholar 

  • Williams WA, Grant JE, Winstanley CA, Potenza MN (2008) Current concepts in the classification, treatment, and modeling of pathological gambling and other impulse control disorders. In: McArthur RA, Borsini F (eds) Animal and translational models for CNS drug discovery, Academic Press, San Diego

    Google Scholar 

  • Wilson AM, Soignier RD, Zadina JE, Kastin AJ, Nores WL, Olson RD, Olson GA (2000) Dissociation of analgesic and rewarding effects of endomorphin-1 in rats. Peptides 21:1871–1874

    CrossRef  CAS  Google Scholar 

  • Wilson-Poe AR, Jeong H-J, Vaughan CW (2017) Chronic morphine reduces the readily releasable pool of GABA, a presynaptic mechanism of opioid tolerance. J Physiol 595:6541–6555

    CrossRef  CAS  Google Scholar 

  • Winters BL, Gregoriou GC, Kissiwaa SA, Wells OA, Medagoda DI, Hermes SM, Burford NT, Alt A, Aicher SA, Bagley EE (2017) Endogenous opioids regulate moment-to-moment neuronal communication and excitability. Nat Commun 8:14611

    CrossRef  CAS  Google Scholar 

  • Wu ZQ, Chen J, Chi ZQ, Liu JG (2007) Involvement of dopamine system in regulation of Na+,K+-ATPase in the striatum upon activation of opioid receptors by morphine. Mol Pharmacol 71:519–530

    CrossRef  CAS  Google Scholar 

  • Wu H, Wacker D, Mileni M, Katritch V, Han GW, Vardy E, Liu W, Thompson AA, Huang XP, Carroll FI, Mascarella SW, Westkaemper RB, Mosier PD, Roth BL, Cherezov V, Stevens RC (2012) Structure of the human kappa-opioid receptor in complex with JDTic. Nature 485:327–332

    CrossRef  CAS  Google Scholar 

  • Xi Z-X (2002) Gabaergic mechanisms of opiate reinforcement. Alcohol Alcohol 37:485–494

    CrossRef  CAS  Google Scholar 

  • Xia R, Mao Z-H (2012) Progression of motor symptoms in Parkinson’s disease. Neurosci Bull 28:39–48

    CrossRef  Google Scholar 

  • Xu C, Liu G, Ji H, Chen W, Dai D, Chen Z, Zhou D, Xu L, Hu H, Cui W, Chang L, Zha Q, Li L, Duan S, Wang Q (2018) Elevated methylation of OPRM1 and OPRL1 genes in Alzheimer’s disease. Mol Med Rep. https://doi.org/10.3892/mmr.2018.9424

  • Yakovleva T, Bazov I, Cebers G, Marinova Z, Hara Y, Ahmed A, Vlaskovska M, Johansson B, Hochgeschwender U, Singh IN, Bruce-Keller AJ, Hurd YL, Kaneko T, Terenius L, EkstrÖM TJ, Hauser KF, Pickel VM, Bakalkin G (2006) Prodynorphin storage and processing in axon terminals and dendrites. FASEB J 20:2124–2126

    CrossRef  CAS  Google Scholar 

  • Yakovleva T, Marinova Z, Kuzmin A, Seidah NG, Haroutunian V, Terenius L, Bakalkin G (2007) Dysregulation of dynorphins in Alzheimer disease. Neurobiol Aging 28:1700–1708

    CrossRef  CAS  Google Scholar 

  • Yam M, Loh Y, Tan C, Khadijah Adam S, Abdul Manan N, Basir R (2018) General pathways of pain sensation and the major neurotransmitters involved in pain regulation. Int J Mol Sci 19:2164

    CrossRef  CAS  Google Scholar 

  • Yang A, Tsai S-J (2017) New targets for schizophrenia treatment beyond the dopamine hypothesis. Int J Mol Sci 18:1689

    CrossRef  CAS  Google Scholar 

  • Yehuda R, Hoge CW, McFarlane AC, Vermetten E, Lanius RA, Nievergelt CM, Hobfoll SE, Koenen KC, Neylan TC, Hyman SE (2015) Post-traumatic stress disorder. Nat Rev Dis Primers 1:15057. https://doi.org/10.1038/nrdp.2015.57

  • Young J, Mendoza M (2018) Parkinson’s disease: A treatment guide. J Fam Pract 67:276–286

    Google Scholar 

  • Zadina JE, Hackler L, Ge LJ, Kastin AJ (1997) A potent and selective endogenous agonist for the mu-opiate receptor. Nature 386:499–502

    CrossRef  CAS  Google Scholar 

  • Zamponi GW, Currie KPM (2013) Regulation of CaV2 calcium channels by G protein coupled receptors. Biochim Biophys Acta 1828:1629–1643

    CrossRef  CAS  Google Scholar 

  • Zamponi GW, Striessnig J, Koschak A, Dolphin AC (2015) The physiology, pathology, and pharmacology of voltage-gated calcium channels and their future therapeutic Potential. Pharmacol Rev 67:821–870

    CrossRef  CAS  Google Scholar 

  • Zebraski SE, Kochenash SM, Raffa RB (2000) Lung opioid receptors: pharmacology and possible target for nebulized morphine in dyspnea. Life Sci 66:2221–2231

    CrossRef  CAS  Google Scholar 

  • Zhang Z, Pan ZZ (2011) Signaling cascades for δ-opioid receptor-mediated inhibition of GABA synaptic transmission and behavioral antinociception. Mol Pharmacol 81:375–383

    CrossRef  CAS  Google Scholar 

  • Zhang X, Bao L, Arvidsson U, Elde R, HÖkfelt T (1997) Localization and regulation of the delta-opioid receptor in dorsal root ganglia and spinal cord of the rat and monkey: evidence for association with the membrane of large dense-core vesicles. Neuroscience 82:1225–1242

    CrossRef  Google Scholar 

  • Zhao J, Li X, Li B, Chen L, Pei G (2015) A new delta opioid receptor antagonist as a novel drug against Alzheimer’s disease. Alzheimer’s Dement 11:P371

    CrossRef  Google Scholar 

  • Zieglgänsberger W (2018) Substance P and pain chronicity. Cell Tissue Res 375:227–241

    CrossRef  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Verify currency and authenticity via CrossMark

Cite this chapter

Al–Qattan, M.N., Das, N., Tripathi, R.K.P. (2020). Pharmacology of Endogenous Opioids, Opiates and Their Receptors. In: Kumar, P., Deb, P.K. (eds) Frontiers in Pharmacology of Neurotransmitters. Springer, Singapore. https://doi.org/10.1007/978-981-15-3556-7_12

Download citation