Skip to main content
  • 793 Accesses

Abstract

Radio frequency (RF) energy is generated from electricity via either a vacuum tube or a solid state device. Owing to recent advances in solid state device technology, high power amplifiers can be applied in microwave ovens. A wide band gap material like gallium nitride (GaN) is expected to be a good candidate for high power RF energy applications. GaN is usually applied as a blue light-emitting diode but can also be employed for power devices (e.g., converter). Historically, in contrast to wide band gap semiconductor-based devices, conventional silicon (Si)-based solid state devices were considered incompatible for high power applications. Recently, however, Si-based laterally diffused metal–oxide semiconductors (LDMOSs) have been applied successfully in RF energy systems. When solid state devices are applied for a microwave heating system, like a microwave oven, new microwave heating methods are realized and new applicators can be used with solid state devices. Frequency, phase, and power of the microwaves can be broadly controlled with the solid state devices. It is a merit in microwave chemical science to estimate the effects of the microwave frequency. If frequency and phase of the microwaves in the solid state devices can be controlled, then the power distribution in the applicator and in space can also be controlled. In this chapter, recent research and development (R&D) status of solid state devices and the R&D of RF heating systems that employ solid state devices are reviewed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Jones EA, Wang F, Costinett D (2016) Review of commercial GaN power devices and GaN-based converter design challenges. IEEE J Emerg Sel Top Power Electron 4(3):707–719

    Article  Google Scholar 

  2. Mudassir S, Muhammad J (2013) A review of gallium nitride (GaN) based devices for high power and high frequency applications. J Appl Emerg Sci 4(2):141–146

    Google Scholar 

  3. Theeuwen SJCH, Qureshi JH (2012) LDMOS technology for RF power amplifiers. IEEE Trans Microw Theory Tech 60(6):1755–1763

    Article  Google Scholar 

  4. Oliver S (2014) Optimize a power scheme for these transient times. Electron Des

    Google Scholar 

  5. Shinohara N (2014) Wireless power transfer via radiowaves (wave series). ISTE Ltd. and Wiley, London, UK and Hoboken, USA

    Google Scholar 

  6. Shinohara N (ed) (2018) Recent wireless power transfer technologies via radio waves. River Publishers, Delft, Netherlands

    Google Scholar 

  7. Zheng C, Yoshida T, Ishikawa R, Honjo K (2007) GaN HEMT class-f amplifier operating at 1.9 GHz (in Japanese). In: Proceedings of IEICE, Nagoya, Japan, C-2-27, 20–23 Mar 2007

    Google Scholar 

  8. Kamiyama M, Ishikawa R, Honjo K (2011) C-band high efficiency AlGaN/GaN HEMT power amplifier by controlling phase angle of harmonics (in Japanese). In: Proceedings of IEICE, Sapporo, Japan, CS-3-1, 13–16 Sep 2011

    Google Scholar 

  9. Hasegawa N, Shinohara N, Kawasaki S (2016) A 7.1 GHz 170 W solid-state power amplifier with 20-way combiner for space applications. IEICE Trans Electron 99-C(10):1140–1146

    Google Scholar 

  10. Kobayashi Y, Yoshida Y, Yamamoto Z, Kawasaki S (2013) S-band GaN on Si based 1 kW-class SSPA system for space wireless applications. IEICE Trans Elec E96-C(10): 1245–1253

    Google Scholar 

  11. Takenaka I, Ishikawa K, Asano K, Takahashi S, Murase Y, Ando Y, Takahashi H, Sasaoka C (2014) High-Efficiency and high-power microwave amplifier using GaN-on-Si FET with improved high-temperature operation characteristics. IEEE Trans Microw Theory Thech 62(3):502–512

    Article  Google Scholar 

  12. Shigematsu H, Inoue Y, Akasegawa A, Yamada M, Masuda S, Kamada Y, Yamada A, Kanamura M, Ohki T (2009) C-band 340-W and X-band 100-W GaN power amplifiers with over 50-% PAE. In: Proceedings of IEEE international microwave symposium digest, Boston, USA, 7–12, June 2009, pp 1265–1268

    Google Scholar 

  13. Yamasaki T, Kittaka Y, Minamide H, Yamauch K, Miwa S, Goto S, Nakayama M, Kono M, Yoshida N (2010) A 68% efficiency, C-band 100 W GaN power amplifier for space applications. In: Proceedings of IEEE MTT-S international microwave symposium, Anaheim, USA, 23–28 May 2010, pp 1384–1387

    Google Scholar 

  14. Casto M, Lampenfeld M, Jia P, Courtney P, Behan S, Daughenbaugh P, Worley R (2011) 100 W X-band GaN SSPA for medium power TWTA replacement. In: Proceedings of IEEE wireless microwave technology conference, Clearwater Beach, USA, 18–19 Apr 2011, pp 1–4

    Google Scholar 

  15. Campbell CF, Poulton M (2011) Compact highly integrated Xband power amplifier using commercially available discrete GaN FETs. In: Proceedings of Asia-Pacific microwave conference, Melbourne, Australia, 5–18 Dec 2011, pp 243–246

    Google Scholar 

  16. Kanto K, Satomi A, Asahi Y, Kashiwabara Y, Matsushita K, Takagi K (2008) An X-band 250 W solid-state power amplifier using GaN power HEMTs. In: Proceedings of IEEE Radio Wireless Symposium, Orlando, USA, 22–24 Jan 2008, pp 77–80

    Google Scholar 

  17. Wang Y, Dong S, Yang L, Li Z, Dong Y, Fu W (2014) Design of high efficiency GaN HEMT class-F power amplifier at S-band. In: Proceedings of Asia-Pacific conference antennas and propagation, Harbin, China, 26-29 July 2014

    Google Scholar 

  18. Motoi K, Matsunaga K, Yamanouchi S, Kunihiro K, Fukaishi M (2012) A 72% PAE, 95-W, single-chip GaN FET S-band inverse class-F power amplifier with a harmonic resonant circuit. In: Proceedings of IEEE international microwave symposium, Montreal, Canada, 17–22 June 2012, pp 1–3

    Google Scholar 

  19. Saad P, Nemati HM, Thorsell M, Andersson K, Fager C (2009) An inverse class-F GaN HEMT power amplifier with 78% PAE at 3.5 GHz. In: Proceedings of European microwave conference, Rome, Italy, 30 Sep–2 Oct 2009, pp 496–499

    Google Scholar 

  20. Schmelzer D, Long SI (2007) A GaN HEMT class F amplifier at 2 GHz with >80% PAE. IEEE J Solid-State Circuits 42(10):2130–2136

    Article  Google Scholar 

  21. Ui N, Sano S (2006) A 100 W Class-E GaN HEMT with 75% drain efficiency at 2 GHz. In: Proceedings of European microwave integrated circuits conference, Manchester, UK, pp 10–13

    Google Scholar 

  22. Kim J, Moon J, Kim J, Boumaiza S, Kim B (2009) A novel design method of highly efficient saturated power amplifier based on self-generated harmonic currents. In: Proceedings European microwave conference, Rome, Italy, 30 Sep–2 Oct 2009, pp 1082–1085

    Google Scholar 

  23. High power, high efficiency, AlGaN/GaN HEMT technology for wireless base station applications. In: Proceedings of IEEE international microwave symposium, Long Beach, USA, 12–17 June 2005

    Google Scholar 

  24. Kikkawa T, Nagahara M, Adachi N, Yokokawa S, Kato S, Yokoyama M, Kanamura M, Yamaguchi Y, Hara N, Joshin K (2003) High-power and high-efficiency AlGaN/GaN HEMT operated at 50 V drain bias voltage. In: Proceedings of IEEE radio frequency integrated circuits (RFIC) symposium, Philadelphia, USA, 8–13 June 2003, pp 167–170

    Google Scholar 

  25. Iqbal M, Piacibello A (2016) A 5W class-AB power amplifier based on a GaN HEMT for LTE communication band. In: Proceedings of 16th mediterranean microwave symposium, Abu Dhabi City, UAE, 14–16 Nov 2016, pp 1–4

    Google Scholar 

  26. Mitani E, Aojima M, Sano S (2007) A kW-class AlGaN/GaN HEMT pallet amplifier for S-band high power application. In: Procedings of European microwave integrated circuit conference, Munich, Germany, 8–12 Oct 2007, pp 176–179

    Google Scholar 

  27. Giordani R, Amici RM, Barigelli A, Conti F, Del Marro M, Feudale M, Imparato M, Suriani A (2009) Highly integrated and solderless LTCC based-band T/R module. In: Proceedings of European microwave conference, Rome, Italy, 28 Sep–2 Oct 2009, pp 1760–1763

    Google Scholar 

  28. de Hek AP, de Boer A, Svensson T (2001) C-band 10-watt HBT high-power amplifier with 50% PAE. In: Proceedings of gallium arsenide application symposium, London, UK, 24–28 Sep 2001, pp 1–3

    Google Scholar 

  29. Lhortolary J, Ouarch Z, Chang C, Camiade M (2009) A 17W C-band high efficiency high power pHEMT amplifier for space applications. In: Proceedings of European microwave integrated circuits conference, Rome, Italy, 28 Sep–2 Oct 2009, p 21

    Google Scholar 

  30. Florian C, Cignani R, Niessen D, Santarelli A (2012) A C-band AlGaN-GaN MMIC HPA for SAR. IEEE Microw Wirel Compon Lett 22(9):471–473

    Article  Google Scholar 

  31. Kido M, Kawasaki S, Shibuya A, Yamada K, Ogasawara T, Suzuki T, Tamura S, Seino K, Ichikawa A, Tsuchiko A (2016) 100 W C-band GaN solid state power amplifier with 50% PAE for satellite use. In: Proceedings of Asia-Pacific microwave conference (APMC), New Delhi, India, 5–9, Dec 2016

    Google Scholar 

  32. Tang H, Wang Z, Xu T, Wang X (2016) High efficiency GaN power amplifier on C band. In: Proceedings of 17th international conference electronic packaging technology, Wuhan, China, 16–19 Aug. 2016, pp 1413–1417

    Google Scholar 

  33. Hirano T, Shibuya, A, Kawabata T, Kido M, Yamada K, Seino K, Ichikawa A, Kamikokura A (2014) 70 W C-band GaN solid state power amplifier for satellite use. In: Proceedings of Asia-Pacific microwave conference (APMC), Sendai, Japan, 4–7 Nov 2014, pp 783–785

    Google Scholar 

  34. Lu Y, Cao M, Wei J, Zhao B, Ma X, Hao Y (2014) 71% PAE C-band GaN power amplifier using harmonic tuning technology. Electron Lett 50(17):1207–1209

    Article  Google Scholar 

  35. Miwa S, Kamo Y, Kittaka Y, Yamasaki T, Tsukahara Y, Tanii T, Kohno M, Goto S, Shima A (2011) A 67% PAE, 100 W GaN power amplifier with on-chip harmonic tuning circuits for C-band space applications. In: Proceedings of IEEE MTT-S international microwave symposium, Baltimore, USA, 5–11 June 2011, pp 1–4

    Google Scholar 

  36. Kuroda K, Ishikawa R, Honjo K (2010) Parasitic compensation design technique for a C-Band GaN HEMT class-F amplifier. IEEE Trans Microw Theory Tech 58(11):2741–2750

    Article  Google Scholar 

  37. Shigematsu H, Inoue Y, Masuda S, Yamada M, Kanamura M, Ohki T, Makiyama K, Okamoto N, Imanishi K, Kikkawa T, Joshin K, Hara N (2008) C-band GaN-HEMT power amplifier with over 300-W output power and over 50-% Efficiency. In: Proceedings of IEEE compound semiconductor integrated circuits symposium, Monterey, USA, 12–15 Oct 2008, pp 1–4

    Google Scholar 

  38. Yamanaka K, Mori K, Iyomasa K, Ohtsuka H, Noto H, Nakayama M, Kamo Y, Isota Y (2007) C-band GaN HEMT power amplifier with 220 W output power. In: Proceedings of IEEE International microwave symposium, Honolulu, USA, 3–9 June 2007, pp 1251–1254

    Google Scholar 

  39. Stameroff AN, Ta HH, Pham A, Leoni RE III (2013) Wide-bandwidth power-combining and inverse class-F GaN power amplifier at X-Band. IEEE Trans Microw Theory Tech 61(3):1291–1300

    Article  Google Scholar 

  40. Uchida H, Noto H, Yamanaka K, Nakayama M, Hirano Y (2012) An X-band internally-matched GaN HEMT amplifier with compact quasilumped-element harmonic-terminating network. In: Proceedings of IEEE MTT-S international microwave symposium, Montreal, Canada, 17–22 June 2012, pp 1–3

    Google Scholar 

  41. Moon JS, Moyer H, Macdonald P, Wong D, Antcliffe M, Hu M, Willadsen P, Hashimoto P, McGuire C, Micovic M, Wetzel M, Chow D (2012) High efficiency X-band class-E GaN MMIC high-power amplifiers. In: Proceedings of IEEE RF power amplifiers for wireless and radio applications topical conference, Santa Clara, USA, 15–18 Jan 2012, pp 9–12

    Google Scholar 

  42. Kang J, Moon JS (2017) Highly efficient wideband X-band MMIC class-F power amplifier with cascode FP GaN HEMT. Electronics Lett. 53(17):1207–1209

    Article  Google Scholar 

  43. Camarchia V, Fang J, Ghione G, Rubio JM, Pirola M, Quaglia R (2012) X-band wideband 5 W GaN MMIC power amplifier with large-signal gain equalization. In: Proceedings of integrated nonlinear microwave and millimetre wave circuits workshop, Dublin, Ireland, 3–4 Sep 2012, pp 1–3

    Google Scholar 

  44. Ersoy E, Meliani C, Chevtchenko S, Kurpas P, Matalla M, Heinrich W (2012) A high-gain -band GaN-MMIC power amplifier. In: Proceedings of 7th German microwave conference, Ilmenau, Germany, 12–14 Mar 2012, pp 1–4

    Google Scholar 

  45. Masuda S, Yamada M, Kamada Y, Ohki T, Makiyama K, Okamoto N, Imanishi K, Kikkawa T, Shigematsu H (2012) GaN single-chip transceiver frontend MMIC for -band applications. In: Proceedings of IEEE MTT-S international microwave symposium, Montreal, Canada, 17–22 Jun 2012, pp 1–3

    Google Scholar 

  46. Paidi V, Shouxuan X, Coffie R, Moran B, Heikman S, Keller S (2003) High linearity and high efficiency of class-B power amplifiers in GaN HEMT technology. IEEE Trans Microw Theory Tech 51:643–652

    Article  Google Scholar 

  47. Shouxuan X, Paidi V, Coffie R, Keller S, Heikman S, Moran B (2003) High-linearity class B power amplifiers in GaN HEMT technology. IEEE Microw Wireless Components Lett 13:284–286

    Article  Google Scholar 

  48. Waltereit P, Kuhn J, Quay R, van Raay F, Dammann M, Casar M (2012) High efficiency X-band AlGaN/GaN MMICs for space applications with lifetimes above 105 hours. In: Proceedings of 7th european microwave integrated circuit conference (EuMIC), Amsterdam, Netherlands, 29–30 Oct 2012, pp 123–126

    Google Scholar 

  49. Shin D, Yom I, Kim D (2017) X-band GaN MMIC power amplifier for the SSPA of a SAR system. In: Proceedings of IEEE international symposium radio-frequency integration technology (RFIT), Seoul, Korea, 30 Aug–1 Sep 2017, pp 93–95

    Google Scholar 

  50. Masuda S, Yamada M, Kamada Y, Ohki T, Makiyama K, Okamoto N, Imanishi K, Kikkawa T, Shigematsu H (2011) GaN singlechip transceiver frontend MMIC for X-band applications. In: Proceedings of IEEE international microwave symposium, Baltimore. USA, 5–11 June 2011, pp 1–3

    Google Scholar 

  51. Nishihara M, Yamamoto T, Mizuno S, Sano S, Hasegawa Y (2011) X-band 200 W AlGaN/GaN HEMT for high power application. In: Proceedings of 6th European microwave integrated circuit conference, Manchester, UK, 10–11 Oct 2011, pp 65–68

    Google Scholar 

  52. Williams R, Lindseth B (2016) Compact 1 kW 2.45 GHz solid-state source for in industrial applications. In: Proceedings of the 50th annual microwave power symposium, Orlando, USA, 21–23 June 2016, pp 39–41

    Google Scholar 

  53. Bartola B, Kaplan K, Williams R (2016) 64 kW microwave generator using LDMOS power amplifiers for industrial heating applications. In: Proceedings of the 50th annual microwave power symposium, Orlando, USA, 21–23 June 2016, pp 37–38

    Google Scholar 

  54. https://www.ampleon.com/products/rf-energy/915-mhz-transistors/BLF0910H9LS750P.html. Accessed May 2019

  55. https://www.ampleon.com/products/rf-energy/2.45-ghz-transistors/BLC2425M10LS500P.html. Accessed May 2019

  56. http://www.innogration.net/product/?keys=471. Accessed May 2019

  57. http://www.innogration.net/product/?keys=469. Accessed May 2019

  58. https://www.nxp.com/docs/en/data-sheet/MRF24300N.pdf. Accessed May 2019

  59. https://www.sedi.co.jp/data.jsp?version=&database=wireless&id=6390&class=01010500. Accessed May 2019

  60. https://www.sedi.co.jp/data.jsp?version=&database=wireless&id=6582&class=01010202. Accessed May 2019

  61. https://www.sedi.co.jp/data.jsp?version=&database=wireless&id=6684&class=01010100. Accessed May 2019

  62. https://www.sedi.co.jp/data.jsp?version=&database=wireless&id=6683&class=01010100. Accessed May 2019

  63. https://www.macom.com/products/product-detail/MAGe-102425–300. Accessed May 2019

  64. http://www.mitsubishielectric.co.jp/semiconductors/content/product/highfrequency/gan/internally/mgfk50g3745.pdf. Accessed May 2019

  65. https://www.sairem.com/wp-content/uploads/2017/10/GLS-600-W-EN.pdf. Accessed May 2019

  66. https://www.sairem.com/wp-content/uploads/2017/10/GMS-450W_EN.pdf. Accessed May 2019

  67. https://www.ampleon.com/products/rf-energy/pallets-and-modules/BPC2425M9X2S250-1.html. Accessed May 2019

  68. https://www.rfmw.com/datasheets/ampleon/M2A.pdf. Accessed May 2019

  69. https://www.nxp.com/jp/products/rf/rf-power/rf-cooking/2450-mhz-subsystem-for-rf-cooking/2.45-ghz-rf-energy-module:RFEM24-250. Accessed May 2019

  70. http://www.wattsine.com/rf-power-amplifier/Solid_state_microwave_source/33.html. Accessed May 2019

  71. http://www.wattsine.com/power-source/Medical_equipment_application_solutions/38.html. Accessed May 2019

  72. https://www.microwaveheating.net/files/Microwaveheating/Dokumente/Datasheet%20SSMWG%20500W%202450%20Hz_2019-0021_190415.pdf. Accessed May 2019

  73. https://www.tokyokeiki.jp/products/detail.html?pdid=214. in Japanese, Accessed May 2019

  74. https://www.tokyokeiki.jp/e/products/detail.html?pdid=188. Accessed May 2019

  75. https://www.titech.ac.jp/english/news/2016/033205.html. Accessed May 2019

  76. http://www.rk-microwave.com/products/pdf/A080M102-6262R.pdf. Accessed May 2019

  77. http://www.rk-microwave.com/jp/products/PA.php#prd02. Accessed May 2019

  78. http://www.rk-microwave.com/products/pdf/GA252M602-5454R.pdf. Accessed May 2019

  79. Mitani T, Nakajima R, Shinohara N, Nozaki Y, Chikata T, Watanabe T (2019) Development of a microwave irradiation probe for a cylindrical applicator. Proceses 7(143)

    Google Scholar 

  80. Schwartz E (2016) Historical notes on solid-state microwave heating. APMERE Newsletter 89:4–7

    Google Scholar 

  81. McAvoy BR (1971) Solid state microwave oven. US Patent 4097708, 21 Jan 1971

    Google Scholar 

  82. MacKay AB (1980) Controlled heating microwave ovens. US Patent 4196332, 1 Apr 1980

    Google Scholar 

  83. MacKay AB (1980) Controlled heating microwave ovens using different operating frequencies. CA Patent 1081796, 15 Jul 1980

    Google Scholar 

  84. Nobue T, Kusunoki S (1983) Microwave oven having controllable frequency microwave power source. US Patent 4415789, 15 Nov 1983

    Google Scholar 

  85. Yakovlev VV (2016) Computer modeling in the development of mechanisms of control over microwave heating in solid-state energy systems. APMERE Newsletter 89:18–21

    Google Scholar 

  86. Cuomo JJ, Guarnieri CR, Whitehair SJ (1995) Solid state microwave generating array material, each element of which is phase controllable, and plasma processing systems. EU Patent EP0459177B1, 20 Dec 1995

    Google Scholar 

  87. http://rscdb.cc.sophia.ac.jp/seeds/1720_E.html. Accessed May 2019

  88. Horikoshi S (2015) Selective heating of food using a semiconductor phase control microwave cooking oven. In: Proceedings of IMPI’s 49th microwave power symposium, San Diego, USA, 16–18 June 2015

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Naoki Shinohara .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Shinohara, N. (2020). RF Energy System with Solid State Device. In: Horikoshi, S., Serpone, N. (eds) RF Power Semiconductor Generator Application in Heating and Energy Utilization. Springer, Singapore. https://doi.org/10.1007/978-981-15-3548-2_1

Download citation

  • DOI: https://doi.org/10.1007/978-981-15-3548-2_1

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-15-3547-5

  • Online ISBN: 978-981-15-3548-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics