Advertisement

# Fuzzy Multiple Linear Regression

Chapter
• 138 Downloads
Part of the SpringerBriefs in Water Science and Technology book series (BRIEFSWATER)

## Abstract

This chapter discusses the construction of the fuzzy multiple linear regression by embedding the spreading value and the crisp in the formulation. We begin by discussing the standard multiple linear regression. Then a method to calculate the spreading value is discussed in details. We propose a new method to calculate the spreading value. We establish the fuzzy multiple linear regression formulation by using fuzzy triangular number with symmetric property. This to ensure that, the calculation be made faster compared with asymmetric fuzzy triangular number.

## Keywords

Symmetric Spreading value Triangular fuzzy number Least square Fuzzy coefficient

## References

1. 1.
Abdullah L, Zakaria N (2012) Matrix driven multivariate fuzzy linear regression model in car sales. J Appl Sci (Faisalabad) 12(1):56–63
2. 2.
Anand MCJ, Bharatraj J (2017) Theory of triangular fuzzy number. Proc NCATM 2017:80Google Scholar
3. 13.
Asai HTSUK, Tanaka S, Uegima K (1982) Linear regression analysis with fuzzy model. IEEE Trans. Systems Man Cybern 12:903–907
4. 4.
Bhavyashree S, Mishra M, Girisha GC (2017) Fuzzy regression and multiple linear regression models for predicting mulberry leaf yield: a comparative study. Int J Agric Stat Sci 13(1):149–152Google Scholar
5. 3.
Buckley JJ, Eslami E (2002) An introduction to fuzzy logic and fuzzy sets, vol 13. Springer Science & Business Media, New YorkGoogle Scholar
6. 5.
Chang PT, Lee ES (1996) A generalized fuzzy weighted least-squares regression. Fuzzy Sets Syst 82(3):289–298
7. 6.
Chang YHO, Ayyub BM (1997) Hybrid fuzzy regression analysis and its applications. In: Uncertainty modeling and analysis in civil engineering, pp 33–41Google Scholar
8. 7.
D’Urso P, Gastaldi T (2001) Linear fuzzy regression analysis with asymmetric spreads. In: Advances in classification and data analysis. Springer, Berlin, Heidelberg, pp 257–264Google Scholar
9. 10.
Hidayah Mohamed Isa N, Othman M, Karim SAA (2018) Multivariate matrix for fuzzy linear regression model to analyse the taxation in Malaysia. Int J Eng Technol 7(4.33):78–82Google Scholar
10. 9.
Lowen R (1976) Fuzzy topological spaces and fuzzy compactness. J Math Anal Appl 56(3):621–633
11. 8.
Lowen R (1996) Fuzzy real numbers. In: Fuzzy set theory. Springer, Dordrecht, pp 143–168Google Scholar
12. 11.
Pan NF, Lin TC, Pan NH (2009) Estimating bridge performance based on a matrix-driven fuzzy linear regression model. Autom Constr 18(5):578–586
13. 12.
Rommelfanger H, Słowiński R (1998) Fuzzy linear programming with single or multiple objective functions. In: Fuzzy sets in decision analysis, operations research and statistics. Springer, Boston, MA, pp 179–213 Google Scholar
14. 14.
Sakawa M, Yano H (1992) Multiobjective fuzzy linear regression analysis for fuzzy input-output data. Fuzzy Sets Syst 47(2):173–181
15. 15.
Tranmer M, Elliot M (2008) Multiple linear regression. Cathie Marsh Cent Census Surv Res (CCSR) 5:30–35Google Scholar
16. 16.
Ubale A, Sananse S (2016) A comparative study of fuzzy multiple regression model and least square method. Int J Appl Res 2(7):11–15Google Scholar
17. 18.
Voskoglou M (2015) Use of the triangular fuzzy numbers for student assessment. arXiv preprint arXiv:1507.03257
18. 17.
Zadeh LA (1965) Fuzzy sets. Inf Control 8(3):338–353

## Copyright information

© The Author(s), under exclusive licence to Springer Nature Singapore Pte Ltd. 2020

## Authors and Affiliations

1. 1.Fundamental and Applied Sciences Department and Centre for Smart Grid Energy Research (CSMER), Institute of Autonomous SystemUniversiti Teknologi PETRONASSeri IskandarMalaysia
2. 2.Fundamental and Applied Sciences DepartmentUniversiti Teknologi PETRONASSeri IskandarMalaysia