Skip to main content

Cellular and Molecular Response for Sensitising Cancer Cells and Protecting the Normal Cells from Radiation-Induced Damages

  • Chapter
  • First Online:
Biotechnological Applications in Human Health

Abstract

Research on cellular and molecular response of radiation in normal and cancer cells has been the focus with high priority during the past two decades. However, the simultaneous sensitisation of tumour cells and protection of normal cells is impeded due to high dose resistance to cancer cells and damage of normal cells during radiotherapy. This review discusses the recent advances on radiation-induced DNA damage and repair, cell cycle arrest as well as apoptosis, cellular sensitivity, bystander effect and genomic instability with cellular and molecular responses for sensitising cancer cells and protecting the normal cells against radiation-induced damages.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

APAF1:

Apoptotic protease activating factor 1

CAFs:

Cancer-associated fibroblasts

DD:

Death domain

DISC:

Death-inducing signalling complex

DSB:

double-strand breaks

ECM:

Extracellular matrix

FADD:

Fas-associated death domain

HR:

Homologous recombination

MOMP:

Mitochondrial outer membrane potential

NHEJ:

Non-homologous end-joining

ROS:

Reactive oxygen species

SSB:

Single-strand breaks

References

  1. Barnett GC, West CM, Dunning AM, Elliott RM, Coles CE, Pharoah PD et al (2009) Normal tissue reactions to radiotherapy: towards tailoring treatment dose by genotype. Nat Rev Cancer 9(2):134–142

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Maier P, Wenz F, Herskind C (2014) Radioprotection of normal tissue cells. Strahlentherapie und Onkologie: Organ der Deutschen Rontgengesellschaft [et al] 190(8):745–752

    Google Scholar 

  3. Herskind C, Westergaard O (1988) Variable protection by OH scavengers against radiation-induced inactivation of isolated transcriptionally active chromatin: the influence of secondary radicals. Radiat Res 114(1):28–41

    Article  CAS  PubMed  Google Scholar 

  4. Marechal A, Zou L (2013) DNA damage sensing by the ATM and ATR kinases. Cold Spring Harb Perspect Biol 5(9):a012716

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  5. Bakkenist CJ, Kastan MB (2003) DNA damage activates ATM through intermolecular autophosphorylation and dimer dissociation. Nature 421(6922):499–506

    Article  CAS  PubMed  Google Scholar 

  6. Stokes MP, Rush J, Macneill J, Ren JM, Sprott K, Nardone J et al (2007) Profiling of UV-induced ATM/ATR signaling pathways. Proc Natl Acad Sci U S A 104(50):19855–19860

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Donzelli M, Draetta GF (2003 Jul) Regulating mammalian checkpoints through Cdc25 inactivation. EMBO Rep 4(7):671–677

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Abbas T, Dutta A (2009) p21 in cancer: intricate networks and multiple activities. Nat Rev Cancer 9(6):400–414

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Zhang XP, Liu F, Wang W (2011) Two-phase dynamics of p53 in the DNA damage response. Proc Natl Acad Sci U S A 108(22):8990–8995

    Google Scholar 

  10. Lane DP (1992) Cancer. p53, guardian of the genome. Nature 358(6381):15–16

    Google Scholar 

  11. Chapman JR, Taylor MR, Boulton SJ (2012) Playing the end game: DNA double-strand break repair pathway choice. Mol Cell 47(4):497–510

    Article  CAS  PubMed  Google Scholar 

  12. Lieber MR (2010) The mechanism of double-strand DNA break repair by the nonhomologous DNA end-joining pathway. Annu Rev Biochem 79:181–211

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Davis AJ, Chen DJ (2013) DNA double strand break repair via non-homologous end-joining. Transl Cancer Res 2(3):130–143

    CAS  PubMed  Google Scholar 

  14. Ma Y, Pannicke U, Schwarz K, Lieber MR (2002) Hairpin opening and overhang processing by an Artemis/DNA-dependent protein kinase complex in nonhomologous end joining and V(D)J recombination. Cell 108(6):781–794

    Article  CAS  PubMed  Google Scholar 

  15. Gudmundsdottir K, Ashworth A (2006) The roles of BRCA1 and BRCA2 and associated proteins in the maintenance of genomic stability. Oncogene 25(43):5864–5874

    Article  CAS  PubMed  Google Scholar 

  16. Takasawa R, Nakamura H, Mori T, Tanuma S (2005) Differential apoptotic pathways in human keratinocyte HaCaT cells exposed to UVB and UVC. Apoptosis 10(5):1121–1130

    Article  CAS  PubMed  Google Scholar 

  17. Tait SW, Green DR (2010) Mitochondria and cell death: outer membrane permeabilization and beyond. Nat Rev Mol Cell Biol 11(9):621–632

    Article  CAS  PubMed  Google Scholar 

  18. Dogu Y, Diaz J (2009) Mathematical model of a network of interaction between p53 and Bcl-2 during genotoxic-induced apoptosis. Biophys Chem 143(1–2):44–54

    Google Scholar 

  19. Lomonosova E, Chinnadurai G (2008) BH3-only proteins in apoptosis and beyond: an overview. Oncogene 27(Suppl 1):S2–S19

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Wolff S, Erster S, Palacios G, Moll UM (2008) p53’s mitochondrial translocation and MOMP action is independent of Puma and Bax and severely disrupts mitochondrial membrane integrity. Cell Res 18(7):733–744

    Google Scholar 

  21. Harms K, Nozell S, Chen X (2004) The common and distinct target genes of the p53 family transcription factors. Cell Mol Life Sci 61(7–8):822–842

    Google Scholar 

  22. Muller M, Strand S, Hug H, Heinemann EM, Walczak H, Hofmann WJ et al (1997) Drug-induced apoptosis in hepatoma cells is mediated by the CD95 (APO-1/Fas) receptor/ligand system and involves activation of wild-type p53. J Clin Investig 99(3):403–413

    Google Scholar 

  23. Muller M, Wilder S, Bannasch D, Israeli D, Lehlbach K, Li-Weber M et al (1998) p53 activates the CD95 (APO-1/Fas) gene in response to DNA damage by anticancer drugs. J Exp Med 188(11):2033–2045

    Google Scholar 

  24. Scaffidi C, Fulda S, Srinivasan A, Friesen C, Li F, Tomaselli KJ et al (1998) Two CD95 (APO-1/Fas) signaling pathways. EMBO J 17(6):1675–1687

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Yang F, Stenoien DL, Strittmatter EF, Wang J, Ding L, Lipton MS et al (2006) Phosphoproteome profiling of human skin fibroblast cells in response to low- and high-dose irradiation. J Proteome Res 5(5):1252–1260

    Article  CAS  PubMed  Google Scholar 

  26. Burnet NG, Wurm R, Tait DM, Peacock JH (1994) Cellular sensitivity and low dose-rate recovery in Fanconi anaemia fibroblasts. Br J Radiol 67(798):579–583

    Article  CAS  PubMed  Google Scholar 

  27. Fitzek MM, Dahlberg WK, Nagasawa H, Mukai S, Munzenrider JE, Little JB (2002) Unexpected sensitivity to radiation of fibroblasts from unaffected parents of children with hereditary retinoblastoma. Int J Cancer 99(5):764–768

    Article  CAS  PubMed  Google Scholar 

  28. Hauptmann M, Haghdoost S, Gomolka M, Sarioglu H, Ueffing M, Dietz A et al (2016) Differential response and priming dose effect on the proteome of human fibroblast and stem cells induced by exposure to low doses of ionizing radiation. Radiat Res 185(3):299–312

    Article  CAS  PubMed  Google Scholar 

  29. Chan GL, Little JB (1983) Cultured diploid fibroblasts from patients with the nevoid basal cell carcinoma syndrome are hypersensitive to killing by ionizing radiation. Am J Pathol 111(1):50–55

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Tyrrell RM, Pidoux M (1989) Singlet oxygen involvement in the inactivation of cultured human fibroblasts by UVA (334 nm, 365 nm) and near-visible (405 nm) radiations. Photochem Photobiol 49(4):407–412

    Article  CAS  PubMed  Google Scholar 

  31. Weichselbaum R, Albert D, Cassady J, Little J (1983) An in vitro investigation of x-ray sensitivity in fibroblasts from patients with retinoblastoma. Invest Ophthalmol Vis Sci 24(7):958–961

    CAS  PubMed  Google Scholar 

  32. Arlett CF, Green MH, Rogers PB, Lehmann AR, Plowman PN (2008) Minimal ionizing radiation sensitivity in a large cohort of xeroderma pigmentosum fibroblasts. Br J Radiol 81(961):51–58

    Article  CAS  PubMed  Google Scholar 

  33. Zhou PK, Sproston AR, Marples B, West CM, Margison GP, Hendry JH (1998) The radiosensitivity of human fibroblast cell lines correlates with residual levels of DNA double-strand breaks. Radiother Oncol 47(3):271–276

    Article  CAS  PubMed  Google Scholar 

  34. Waghray M, Sigut D, Einspenner M, Kunhi M, al-Sedairy ST, Hannan MA (1992) Chronic gamma-irradiation results in increased cell killing and chromosomal aberration with specific breakpoints in fibroblast cell strains derived from non-Hodgkin’s lymphoma patients. Mutat Res 284(2):223–231

    Article  CAS  PubMed  Google Scholar 

  35. Morgan WF, Day JP, Kaplan MI, McGhee EM, Limoli CL (1996) Genomic instability induced by ionizing radiation. Radiat Res 146(3):247–258

    Article  CAS  PubMed  Google Scholar 

  36. Ward JF (1988) DNA damage produced by ionizing radiation in mammalian cells: identities, mechanisms of formation, and reparability. Prog Nucleic Acid Res Mol Biol 35:95–125

    Article  CAS  PubMed  Google Scholar 

  37. Tomita M, Maeda M (2015) Mechanisms and biological importance of photon-induced bystander responses: do they have an impact on low-dose radiation responses. J Radiat Res 56(2):205–219

    Article  CAS  PubMed  Google Scholar 

  38. Lu T, Zhang Y, Wong M, Feiveson A, Gaza R, Stoffle N et al (2017) Detection of DNA damage by space radiation in human fibroblasts flown on the International Space Station. Life Sci Space Res 12:24–31

    Article  Google Scholar 

  39. Crompton NE, Sigg M, Jaussi R (1994) Genome lability in radiation-induced transformants of C3H 10T1/2 mouse fibroblasts. Radiat Res 138(1 Suppl):S105–S108

    Article  CAS  PubMed  Google Scholar 

  40. Rimoldi D, Miller AC, Freeman SE (1991) Samid D. DNA damage in cultured human skin fibroblasts exposed to excimer laser radiation. J Invest Dermatol 96(6):898–902

    Article  CAS  PubMed  Google Scholar 

  41. Magnander K, Hultborn R, Claesson K, Elmroth K (2010) Clustered DNA damage in irradiated human diploid fibroblasts: influence of chromatin organization. Radiat Res 173(3):272–282

    Article  CAS  PubMed  Google Scholar 

  42. Al-Khodairy FM, Kunhi M, Siddiqui YM, Arif JM, Al-Ahdal MN, Hannan MA (2004) Defective repair of UV-induced DNA damage in cultured primary skin fibroblasts from Saudi thyroid cancer patients. Asian Pac J Cancer Prev APJCP 5(2):139–143

    PubMed  Google Scholar 

  43. Hannan MA, Siddiqui Y, Rostom A, Al-Ahdal MN, Chaudhary MA, Kunhi M (2001) Evidence of DNA repair/processing defects in cultured skin fibroblasts from breast cancer patients. Cancer Res 61(9):3627–3631

    CAS  PubMed  Google Scholar 

  44. Borgmann K, Dede M, Wrona A, Brammer I, Overgaard J, Dikomey E (2004) For X-irradiated normal human fibroblasts, only half of cell inactivation results from chromosomal damage. Int J Radiat Oncol Biol Phys 58(2):445–452

    Article  CAS  PubMed  Google Scholar 

  45. Papadopoulou A, Kletsas D (2011) Human lung fibroblasts prematurely senescent after exposure to ionizing radiation enhance the growth of malignant lung epithelial cells in vitro and in vivo. Int J Oncol 39(4):989–999

    CAS  PubMed  Google Scholar 

  46. Deshpande A, Goodwin EH, Bailey SM, Marrone BL, Lehnert BE (1996) Alpha-particle-induced sister chromatid exchange in normal human lung fibroblasts: evidence for an extranuclear target. Radiat Res 145(3):260–267

    Article  CAS  PubMed  Google Scholar 

  47. Mahrhofer H, Burger S, Oppitz U, Flentje M, Djuzenova CS (2006) Radiation induced DNA damage and damage repair in human tumor and fibroblast cell lines assessed by histone H2AX phosphorylation. Int J Radiat Oncol Biol Phys 64(2):573–580

    Article  CAS  PubMed  Google Scholar 

  48. Hei TK, Zhou H, Ivanov VN, Hong M, Lieberman HB, Brenner DJ et al (2008) Mechanism of radiation-induced bystander effects: a unifying model. J Pharm Pharmacol 60(8):943–950

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Mancuso M, Pasquali E, Leonardi S, Tanori M, Rebessi S, Di Majo V et al (2008) Oncogenic bystander radiation effects in Patched heterozygous mouse cerebellum. Proc Natl Acad Sci U S A 105(34):12445–12450

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Babini G, Bellinzona VE, Morini J, Baiocco G, Mariotti L, Unger K et al (2015) Mechanisms of the induction of apoptosis mediated by radiation-induced cytokine release. Radiat Prot Dosim 166(1–4):165–169

    Article  CAS  Google Scholar 

  51. Pereira S, Malard V, Ravanat JL, Davin AH, Armengaud J, Foray N et al (2014) Low doses of gamma-irradiation induce an early bystander effect in zebrafish cells which is sufficient to radioprotect cells. PLoS One 9(3):e92974

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  52. Widel M, Krzywon A, Gajda K, Skonieczna M, Rzeszowska-Wolny J (2014) Induction of bystander effects by UVA, UVB, and UVC radiation in human fibroblasts and the implication of reactive oxygen species. Free Radic Biol Med 68:278–287

    Article  CAS  PubMed  Google Scholar 

  53. Widel M, Przybyszewski WM, Cieslar-Pobuda A, Saenko YV, Rzeszowska-Wolny J (2012) Bystander normal human fibroblasts reduce damage response in radiation targeted cancer cells through intercellular ROS level modulation. Mutat Res 731(1–2):117–124

    Article  CAS  PubMed  Google Scholar 

  54. Tsai KK, Stuart J, Chuang YY, Little JB, Yuan ZM (2009) Low-dose radiation-induced senescent stromal fibroblasts render nearby breast cancer cells radioresistant. Radiat Res 172(3):306–313

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Kamochi N, Nakashima M, Aoki S, Uchihashi K, Sugihara H, Toda S et al (2008) Irradiated fibroblast-induced bystander effects on invasive growth of squamous cell carcinoma under cancer-stromal cell interaction. Cancer Sci 99(12):2417–2427

    Article  CAS  PubMed  Google Scholar 

  56. Ghandhi SA, Yaghoubian B, Amundson SA (2008) Global gene expression analyses of bystander and alpha particle irradiated normal human lung fibroblasts: synchronous and differential responses. BMC Med Genet 1:63

    Google Scholar 

  57. Ohuchida K, Mizumoto K, Murakami M, Qian LW, Sato N, Nagai E et al (2004) Radiation to stromal fibroblasts increases invasiveness of pancreatic cancer cells through tumor-stromal interactions. Cancer Res 64(9):3215–3222

    Article  CAS  PubMed  Google Scholar 

  58. Belyakov OV, Malcolmson AM, Folkard M, Prise KM, Michael BD (2001) Direct evidence for a bystander effect of ionizing radiation in primary human fibroblasts. Br J Cancer 84(5):674–679

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Iyer R, Lehnert BE, Svensson R (2000) Factors underlying the cell growth-related bystander responses to alpha particles. Cancer Res 60(5):1290–1298

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This review was supported by GITAM (Deemed to be University) and Defence Research & Development Organization – Life Sciences Research Board (File No: CC R&D (TM)/81/48222/LSRB-282/SH&DD2014 Dated 08-12-2014), India.

Conflict of Interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rama Rao Malla .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Gugalavath, S., Malla, R.R. (2020). Cellular and Molecular Response for Sensitising Cancer Cells and Protecting the Normal Cells from Radiation-Induced Damages. In: Sadhukhan, P., Premi, S. (eds) Biotechnological Applications in Human Health. Springer, Singapore. https://doi.org/10.1007/978-981-15-3453-9_2

Download citation

Publish with us

Policies and ethics