Abstract
Atopic Dermatitis (AD) is a common inflammatory disease with a genetic background. The prevalence of AD has been increasing in many countries. AD patients often have manifestations of pruritus, generalized skin dryness, and eczematous lesions. The pathogenesis of AD is complicated. The impaired skin barrier and immune imbalance play significant roles in the development of AD. Environmental factors such as allergens and pollutants are associated with the increasing prevalence. Many genetic and environmental factors induce a skin barrier deficiency, and this can lead to immune imbalance, which exacerbates the impaired skin barrier to form a vicious cycle (outside–inside–outside view). Genetic studies find many gene mutations and genetic variants, such as filaggrin mutations, which may directly induce the deficiency of the skin barrier and immune system. Epigenetic studies provide a connection between the relationship of an impaired skin barrier and immune and environmental factors, such as tobacco exposure, pollutants, microbes, and diet and nutrients. AD is a multigene disease, and thus there are many targets for regulation of expression of these genes which may contribute to the pathogenesis of AD. However, the epigenetic regulation of environmental factors in AD pathogenesis still needs to be further researched.
Keywords
- Atopic Dermatitis
- Epigenetics
- Genetics
- Skin barrier
- Filaggrin
This is a preview of subscription content, access via your institution.
Buying options
Tax calculation will be finalised at checkout
Purchases are for personal use only
Learn about institutional subscriptionsReferences
Ahn K (2014) The role of air pollutants in atopic dermatitis. J Allergy Clin Immunol 134(5):993–999; discussion 1000. https://doi.org/10.1016/j.jaci.2014.09.023
Barbarot S, Auziere S, Gadkari A, Girolomoni G, Puig L, Simpson EL et al (2018) Epidemiology of atopic dermatitis in adults: results from an international survey. Allergy. https://doi.org/10.1111/all.13401
Behne M, Uchida Y, Seki T, de Montellano PO, Elias PM, Holleran WM (2000) Omega-hydroxyceramides are required for corneocyte lipid envelope (CLE) formation and normal epidermal permeability barrier function. J Invest Dermatol 114(1):185–192. https://doi.org/10.1046/j.1523-1747.2000.00846.x
Bergallo M, Accorinti M, Galliano I, Coppo P, Montanari P, Quaglino P et al (2017) Expression of miRNA 155, FOXP3 and ROR gamma, in children with moderate and severe atopic dermatitis. G Ital Dermatol Venereol. https://doi.org/10.23736/S0392-0488.17.05707-8
Bergboer JG, Zeeuwen PL, Irvine AD, Weidinger S, Giardina E, Novelli G et al (2010) Deletion of late cornified envelope 3B and 3C genes is not associated with atopic dermatitis. J Invest Dermatol 130(8):2057–2061. https://doi.org/10.1038/jid.2010.88
Bin L, Leung DY (2016) Genetic and epigenetic studies of atopic dermatitis. Allergy Asthma Clin Immunol 12:52. https://doi.org/10.1186/s13223-016-0158-5
Bin BH, Bhin J, Takaishi M, Toyoshima KE, Kawamata S, Ito K et al (2017) Requirement of zinc transporter ZIP10 for epidermal development: implication of the ZIP10-p63 axis in epithelial homeostasis. Proc Natl Acad Sci USA 114(46):12243–12248. https://doi.org/10.1073/pnas.1710726114
Bin BH, Lee SH, Bhin J, Irie T, Kim S, Seo J et al (2019) The epithelial zinc transporter ZIP10 epigenetically regulates human epidermal homeostasis by modulating histone acetyltransferase activity. Br J Dermatol 180(4):869–880. https://doi.org/10.1111/bjd.17339
Briot A, Deraison C, Lacroix M, Bonnart C, Robin A, Besson C et al (2009) Kallikrein 5 induces atopic dermatitis-like lesions through PAR2-mediated thymic stromal lymphopoietin expression in Netherton syndrome. J Exp Med 206(5):1135–1147. https://doi.org/10.1084/jem.20082242
Brown SJ, McLean WH (2009) Eczema genetics: current state of knowledge and future goals. J Invest Dermatol 129(3):543–552. https://doi.org/10.1038/jid.2008.413
Cai XY, Zheng XD, Fang L, Zhou FS, Sheng YJ, Wu YY et al (2017) A variant on chromosome 2p13.3 is associated with atopic dermatitis in Chinese Han population. Gene 628:281–285. https://doi.org/10.1016/j.gene.2017.07.059
Can C, Yazicioglu M, Gurkan H, Tozkir H, Gorgulu A, Sut NH (2017) Lack of association between toll-like receptor 2 polymorphisms (R753Q and A-16934T) and atopic dermatitis in children from thrace region of Turkey. Balkan Med J. 34(3):232–238. https://doi.org/10.4274/balkanmedj.2015.1253
Chen XF, Zhang LJ, Zhang J, Dou X, Shao Y, Jia XJ et al (2018) MiR-151a is involved in the pathogenesis of atopic dermatitis by regulating interleukin-12 receptor beta2. Exp Dermatol 27(4):427–432. https://doi.org/10.1111/exd.13276
Chiesa Fuxench ZC (2017) Atopic dermatitis: disease background and risk factors. Adv Exp Med Biol 1027:11–19. https://doi.org/10.1007/978-3-319-64804-0_2
Chowdhury PH, Kitamura G, Honda A, Sawahara T, Hayashi T, Fukushima W et al (2017) Synergistic effect of carbon nuclei and polyaromatic hydrocarbons on respiratory and immune responses. Environ Toxicol 32(9):2172–2181. https://doi.org/10.1002/tox.22430
Cork MJ, Danby SG, Vasilopoulos Y, Hadgraft J, Lane ME, Moustafa M et al (2009) Epidermal barrier dysfunction in atopic dermatitis. J Invest Dermatol 129(8):1892–1908. https://doi.org/10.1038/jid.2009.133
Cristi F, Perez-Mateluna G, Vera-Kellet C, Silva-Valenzuela S, Iturriaga C, Hoyos-Bachiloglu R et al (2019) Vitamin D modulates the allergic phenotype of dendritic cells in children with atopic dermatitis. Exp Dermatol 28(3):308–311. https://doi.org/10.1111/exd.13873
Da Silva Melo AR, Barroso H, Uchoa De Araujo D, Ruidomar Pereira F, De Oliveira NF (2015) The influence of sun exposure on the DNA methylation status of MMP9, miR-137, KRT14 and KRT19 genes in human skin. Eur J Dermatol EJD 25(5):436–443. https://doi.org/10.1684/ejd.2015.2598
Danby SG, Brown K, Wigley AM, Chittock J, Pyae PK, Flohr C et al (2018) The effect of water hardness on surfactant deposition after washing and subsequent skin irritation in atopic dermatitis patients and healthy control subjects. J Invest Dermatol 138(1):68–77. https://doi.org/10.1016/j.jid.2017.08.037
De Benedetto A, Slifka MK, Rafaels NM, Kuo IH, Georas SN, Boguniewicz M et al (2011) Reductions in claudin-1 may enhance susceptibility to herpes simplex virus 1 infections in atopic dermatitis. J Allergy Clin Immunol 128(1):242–246.e5. https://doi.org/10.1016/j.jaci.2011.02.014
Deshmukh HS, Hamburger JB, Ahn SH, McCafferty DG, Yang SR, Fowler VG Jr (2009) Critical role of NOD2 in regulating the immune response to Staphylococcus aureus. Infect Immun 77(4):1376–1382. https://doi.org/10.1128/IAI.00940-08
Egawa G, Kabashima K (2016) Multifactorial skin barrier deficiency and atopic dermatitis: essential topics to prevent the atopic march. J Allergy Clin Immunol 138(2):350–358.e1. https://doi.org/10.1016/j.jaci.2016.06.002
Elias PM, Hatano Y, Williams ML (2008) Basis for the barrier abnormality in atopic dermatitis: outside-inside-outside pathogenic mechanisms. J Allergy Clin Immunol 121(6):1337–1343. https://doi.org/10.1016/j.jaci.2008.01.022
Ellinghaus D, Baurecht H, Esparza-Gordillo J, Rodriguez E, Matanovic A, Marenholz I et al (2013) High-density genotyping study identifies four new susceptibility loci for atopic dermatitis. Nat Genet 45(7):808–812. https://doi.org/10.1038/ng.2642
Esparza-Gordillo J, Weidinger S, Folster-Holst R, Bauerfeind A, Ruschendorf F, Patone G et al (2009) A common variant on chromosome 11q13 is associated with atopic dermatitis. Nat Genet 41(5):596–601. https://doi.org/10.1038/ng.347
Fortugno P, Furio L, Teson M, Berretti M, El Hachem M, Zambruno G et al (2012) The 420K LEKTI variant alters LEKTI proteolytic activation and results in protease deregulation: implications for atopic dermatitis. Hum Mol Genet 21(19):4187–4200. https://doi.org/10.1093/hmg/dds243
Frezzolini A, Paradisi M, Zaffiro A, Provini A, Cadoni S, Ruffelli M et al (2002) Circulating interleukin 16 (IL-16) in children with atopic/eczema dermatitis syndrome (AEDS): a novel serological marker of disease activity. Allergy 57(9):815–820
Gough H, Grabenhenrich L, Reich A, Eckers N, Nitsche O, Schramm D et al (2015) Allergic multimorbidity of asthma, rhinitis and eczema over 20 years in the German birth cohort MAS. Pediatr Allergy Immunol 26(5):431–437. https://doi.org/10.1111/pai.12410
Han H, Roan F, Ziegler SF (2017) The atopic march: current insights into skin barrier dysfunction and epithelial cell-derived cytokines. Immunol Rev 278(1):116–130. https://doi.org/10.1111/imr.12546
Hanifin JMRG (1980) Diagnostic features of atopic dermatitis. Acta Derm Venereol Suppl (Stockh) 92:4
Harder J, Dressel S, Wittersheim M, Cordes J, Meyer-Hoffert U, Mrowietz U et al (2010) Enhanced expression and secretion of antimicrobial peptides in atopic dermatitis and after superficial skin injury. J Invest Dermatol 130(5):1355–1364. https://doi.org/10.1038/jid.2009.432
Henderson J, Northstone K, Lee SP, Liao H, Zhao Y, Pembrey M et al (2008) The burden of disease associated with filaggrin mutations: a population-based, longitudinal birth cohort study. J Allergy Clin Immunol 121(4):872–877.e9. https://doi.org/10.1016/j.jaci.2008.01.026
Herberth G, Bauer M, Gasch M, Hinz D, Roder S, Olek S et al (2014) Maternal and cord blood miR-223 expression associates with prenatal tobacco smoke exposure and low regulatory T-cell numbers. J Allergy Clin Immunol 133(2):543–550. https://doi.org/10.1016/j.jaci.2013.06.036
Hinz D, Bauer M, Roder S, Olek S, Huehn J, Sack U et al (2012) Cord blood Tregs with stable FOXP3 expression are influenced by prenatal environment and associated with atopic dermatitis at the age of one year. Allergy 67(3):380–389. https://doi.org/10.1111/j.1398-9995.2011.02767.x
Hirota T, Takahashi A, Kubo M, Tsunoda T, Tomita K, Sakashita M et al (2012) Genome-wide association study identifies eight new susceptibility loci for atopic dermatitis in the Japanese population. Nat Genet 44(11):1222–1226. https://doi.org/10.1038/ng.2438
Hollingsworth JW, Maruoka S, Boon K, Garantziotis S, Li Z, Tomfohr J et al (2008) In utero supplementation with methyl donors enhances allergic airway disease in mice. J Clin Invest 118(10):3462–3469. https://doi.org/10.1172/JCI34378
Huang CM, Lara-Corrales I, Pope E (2018) Effects of vitamin D levels and supplementation on atopic dermatitis: a systematic review. Pediatr Dermatol 35(6):754–760. https://doi.org/10.1111/pde.13639
Jia HZ, Liu SL, Zou YF, Chen XF, Yu L, Wan J et al (2018) MicroRNA-223 is involved in the pathogenesis of atopic dermatitis by affecting histamine-N-methyltransferase. Cell Mol Biol (Noisy-le-grand) 64(3):103–107. https://doi.org/10.14715/cmb/2018.64.3.17
Karner J, Wawrzyniak M, Tankov S, Runnel T, Aints A, Kisand K et al (2017) Increased microRNA-323-3p in IL-22/IL-17-producing T cells and asthma: a role in the regulation of the TGF-beta pathway and IL-22 production. Allergy 72(1):55–65. https://doi.org/10.1111/all.12907
Kelsell DP, Byrne C (2011) SNPing at the epidermal barrier. J Invest Dermatol 131(8):1593–1595. https://doi.org/10.1038/jid.2011.92
Kim KW, Myers RA, Lee JH, Igartua C, Lee KE, Kim YH et al (2015) Genome-wide association study of recalcitrant atopic dermatitis in Korean children. J Allergy Clin Immunol 136(3):678–684.e4. https://doi.org/10.1016/j.jaci.2015.03.030
Larsen FS, Holm NV, Henningsen K (1986) Atopic dermatitis: a genetic-epidemiologic study in a population-based twin sample. J Am Acad Dermatol 15(3):487–494
Leclerc EA, Huchenq A, Mattiuzzo NR, Metzger D, Chambon P, Ghyselinck NB et al (2009) Corneodesmosin gene ablation induces lethal skin-barrier disruption and hair-follicle degeneration related to desmosome dysfunction. J Cell Sci 122(Pt 15):2699–2709. https://doi.org/10.1242/jcs.050302
Liang Y, Chang C, Lu Q (2016) The genetics and epigenetics of atopic dermatitis-filaggrin and other polymorphisms. Clin Rev Allergy Immunol 51(3):315–328. https://doi.org/10.1007/s12016-015-8508-5
Liang Y, Wang P, Zhao M, Liang G, Yin H, Zhang G et al (2012) Demethylation of the FCER1G promoter leads to FcepsilonRI overexpression on monocytes of patients with atopic dermatitis. Allergy 67(3):424–430. https://doi.org/10.1111/j.1398-9995.2011.02760.x
Liu J, Ballaney M, Al-alem U, Quan C, Jin X, Perera F et al (2008) Combined inhaled diesel exhaust particles and allergen exposure alter methylation of T helper genes and IgE production in vivo. Toxicol Sci 102(1):76–81. https://doi.org/10.1093/toxsci/kfm290
Liu P, Zhao Y, Mu ZL, Lu QJ, Zhang L, Yao X et al (2016) Clinical features of adult/adolescent atopic dermatitis and chinese criteria for atopic dermatitis. Chin Med J (Engl) 129(7):757–762. https://doi.org/10.4103/0366-6999.178960
Lowe AJ, Su JC, Allen KJ, Abramson MJ, Cranswick N, Robertson CF et al (2018) A randomized trial of a barrier lipid replacement strategy for the prevention of atopic dermatitis and allergic sensitization: the PEBBLES pilot study. Br J Dermatol 178(1):e19–e21. https://doi.org/10.1111/bjd.15747
Luo Y, Zhou B, Zhao M, Tang J, Lu Q (2014) Promoter demethylation contributes to TSLP overexpression in skin lesions of patients with atopic dermatitis. Clin Exp Dermatol 39(1):48–53. https://doi.org/10.1111/ced.12206
Lv Y, Qi R, Xu J, Di Z, Zheng H, Huo W et al (2014) Profiling of serum and urinary microRNAs in children with atopic dermatitis. PLoS One 9(12):e115448. https://doi.org/10.1371/journal.pone.0115448
Margolis DJ, Gupta J, Apter AJ, Ganguly T, Hoffstad O, Papadopoulos M et al (2014) Filaggrin-2 variation is associated with more persistent atopic dermatitis in African American subjects. J Allergy Clin Immunol 133(3):784–789. https://doi.org/10.1016/j.jaci.2013.09.015
Mizutani N, Sae-Wong C, Kangsanant S, Nabe T, Yoshino S (2015) Thymic stromal lymphopoietin-induced interleukin-17A is involved in the development of IgE-mediated atopic dermatitis-like skin lesions in mice. Immunology 146(4):568–581. https://doi.org/10.1111/imm.12528
Mu Z, Zhao Y, Liu X, Chang C, Zhang J (2014) Molecular biology of atopic dermatitis. Clin Rev Allergy Immunol 47(2):193–218. https://doi.org/10.1007/s12016-014-8415-1
Nakajima S, Igyarto BZ, Honda T, Egawa G, Otsuka A, Hara-Chikuma M et al (2012) Langerhans cells are critical in epicutaneous sensitization with protein antigen via thymic stromal lymphopoietin receptor signaling. J Allergy Clin Immunol 129(4):1048–1055.e6. https://doi.org/10.1016/j.jaci.2012.01.063
Nakamura T, Sekigawa I, Ogasawara H, Mitsuishi K, Hira K, Ikeda S et al (2006) Expression of DNMT-1 in patients with atopic dermatitis. Arch Dermatol Res 298(5):253–256. https://doi.org/10.1007/s00403-006-0682-0
Nograles KE, Zaba LC, Shemer A, Fuentes-Duculan J, Cardinale I, Kikuchi T et al (2009) IL-22-producing “T22” T cells account for upregulated IL-22 in atopic dermatitis despite reduced IL-17-producing TH17 T cells. J Allergy Clin Immunol 123(6):1244–1252.e2. https://doi.org/10.1016/j.jaci.2009.03.041
Noh YH, Lee J, Seo SJ, Myung SC (2018) Promoter DNA methylation contributes to human beta-defensin-1 deficiency in atopic dermatitis. Animal Cells Syst 22(3):172–177. https://doi.org/10.1080/19768354.2018.1458652
Nomura T, Sandilands A, Akiyama M, Liao H, Evans AT, Sakai K et al (2007) Unique mutations in the filaggrin gene in Japanese patients with ichthyosis vulgaris and atopic dermatitis. J Allergy Clin Immunol 119(2):434–440. https://doi.org/10.1016/j.jaci.2006.12.646
Odhiambo JA, Williams HC, Clayton TO, Robertson CF, Asher MI, Group IPTS (2009) Global variations in prevalence of eczema symptoms in children from ISAAC phase three. J Allergy Clin Immunol 124(6):1251–1258.e23. https://doi.org/10.1016/j.jaci.2009.10.009
Oldhoff JM, Darsow U, Werfel T, Katzer K, Wulf A, Laifaoui J et al (2005) Anti-IL-5 recombinant humanized monoclonal antibody (mepolizumab) for the treatment of atopic dermatitis. Allergy 60(5):693–696. https://doi.org/10.1111/j.1398-9995.2005.00791.x
Palmer CN, Irvine AD, Terron-Kwiatkowski A, Zhao Y, Liao H, Lee SP et al (2006) Common loss-of-function variants of the epidermal barrier protein filaggrin are a major predisposing factor for atopic dermatitis. Nat Genet 38(4):441–446. https://doi.org/10.1038/ng1767
Parazzini F, Cipriani S, Zinetti C, Chatenoud L, Frigerio L, Amuso G et al (2014) Perinatal factors and the risk of atopic dermatitis: a cohort study. Pediatr Allergy Immunol 25(1):43–50. https://doi.org/10.1111/pai.12165
Paternoster L, Standl M, Chen CM, Ramasamy A, Bonnelykke K, Duijts L et al (2011) Meta-analysis of genome-wide association studies identifies three new risk loci for atopic dermatitis. Nat Genet 44(2):187–192. https://doi.org/10.1038/ng.1017
Perera F, Tang WY, Herbstman J, Tang D, Levin L, Miller R et al (2009) Relation of DNA methylation of 5′-CpG island of ACSL3 to transplacental exposure to airborne polycyclic aromatic hydrocarbons and childhood asthma. PLoS One 4(2):e4488. https://doi.org/10.1371/journal.pone.0004488
Perkin MR, Craven J, Logan K, Strachan D, Marrs T, Radulovic S et al (2016) Association between domestic water hardness, chlorine, and atopic dermatitis risk in early life: a population-based cross-sectional study. J Allergy Clin Immunol 138(2):509–516. https://doi.org/10.1016/j.jaci.2016.03.031
Quinn SR, Mangan NE, Caffrey BE, Gantier MP, Williams BR, Hertzog PJ et al (2014) The role of Ets2 transcription factor in the induction of microRNA-155 (miR-155) by lipopolysaccharide and its targeting by interleukin-10. J Biol Chem 289(7):4316–4325. https://doi.org/10.1074/jbc.M113.522730
Rodriguez E, Baurecht H, Herberich E, Wagenpfeil S, Brown SJ, Cordell HJ et al (2009) Meta-analysis of filaggrin polymorphisms in eczema and asthma: robust risk factors in atopic disease. J Allergy Clin Immunol 123(6):1361–1370.e7. https://doi.org/10.1016/j.jaci.2009.03.036
Rodriguez E, Baurecht H, Wahn AF, Kretschmer A, Hotze M, Zeilinger S et al (2014) An integrated epigenetic and transcriptomic analysis reveals distinct tissue-specific patterns of DNA methylation associated with atopic dermatitis. J Invest Dermatol 134(7):1873–1883. https://doi.org/10.1038/jid.2014.87
Salpietro C, Rigoli L, Miraglia Del Giudice M, Cuppari C, Di Bella C, Salpietro A et al (2011) TLR2 and TLR4 gene polymorphisms and atopic dermatitis in Italian children: a multicenter study. Int J Immunopathol Pharmacol 24(4 Suppl):33–40. https://doi.org/10.1177/03946320110240S408
Sandilands A, Terron-Kwiatkowski A, Hull PR, O’Regan GM, Clayton TH, Watson RM et al (2007) Comprehensive analysis of the gene encoding filaggrin uncovers prevalent and rare mutations in ichthyosis vulgaris and atopic eczema. Nat Genet 39(5):650–654. https://doi.org/10.1038/ng2020
Sasaki T, Shiohama A, Kubo A, Kawasaki H, Ishida-Yamamoto A, Yamada T et al (2013) A homozygous nonsense mutation in the gene for Tmem79, a component for the lamellar granule secretory system, produces spontaneous eczema in an experimental model of atopic dermatitis. J Allergy Clin Immunol 132(5):1111–1120.e4. https://doi.org/10.1016/j.jaci.2013.08.027
Scharschmidt TC, Man MQ, Hatano Y, Crumrine D, Gunathilake R, Sundberg JP et al (2009) Filaggrin deficiency confers a paracellular barrier abnormality that reduces inflammatory thresholds to irritants and haptens. J Allergy Clin Immunol 124(3):496–506.e1–6. https://doi.org/10.1016/j.jaci.2009.06.046
Schittek B (2011) The antimicrobial skin barrier in patients with atopic dermatitis. Curr Probl Dermatol 41:54–67. https://doi.org/10.1159/000323296
Schultz Larsen F (1993) Atopic dermatitis: a genetic-epidemiologic study in a population-based twin sample. J Am Acad Dermatol 28(5 Pt 1):719–723
Silva MBD, Melo A, Costa LA, Barroso H, Oliveira NFP (2017) Global and gene-specific DNA methylation and hydroxymethylation in human skin exposed and not exposed to sun radiation. Anais Brasileiros de Dermatologia 92(6):793–800. https://doi.org/10.1590/abd1806-4841.20175875
Sonkoly E, Wei T, Janson PC, Saaf A, Lundeberg L, Tengvall-Linder M et al (2007) MicroRNAs: novel regulators involved in the pathogenesis of psoriasis? PLoS One 2(7):e610. https://doi.org/10.1371/journal.pone.0000610
Sonkoly E, Janson P, Majuri ML, Savinko T, Fyhrquist N, Eidsmo L et al (2010) MiR-155 is overexpressed in patients with atopic dermatitis and modulates T-cell proliferative responses by targeting cytotoxic T lymphocyte-associated antigen 4. J Allergy Clin Immunol 126(3):581–589.e1–20. https://doi.org/10.1016/j.jaci.2010.05.045
Souwer Y, Szegedi K, Kapsenberg ML, de Jong EC (2010) IL-17 and IL-22 in atopic allergic disease. Curr Opin Immunol 22(6):821–826. https://doi.org/10.1016/j.coi.2010.10.013
Stemmler S, Nothnagel M, Parwez Q, Petrasch-Parwez E, Epplen JT, Hoffjan S (2009) Variation in genes of the epidermal differentiation complex in German atopic dermatitis patients. Int J Immunogenet 36(4):217–222. https://doi.org/10.1111/j.1744-313X.2009.00858.x
Sun L, Gong Z, Oberst EJ, Betancourt A, Adams AA, Horohov DW (2013) The promoter region of interferon-gamma is hypermethylated in neonatal foals and its demethylation is associated with increased gene expression. Dev Comp Immunol 39(3):273–278. https://doi.org/10.1016/j.dci.2012.09.006
Sun LD, Xiao FL, Li Y, Zhou WM, Tang HY, Tang XF et al (2011) Genome-wide association study identifies two new susceptibility loci for atopic dermatitis in the Chinese Han population. Nat Genet 43(7):690–694. https://doi.org/10.1038/ng.851
Tan HT, Ellis JA, Koplin JJ, Matheson MC, Gurrin LC, Lowe AJ et al (2012) Filaggrin loss-of-function mutations do not predict food allergy over and above the risk of food sensitization among infants. J Allergy Clin Immunol 130(5):1211–1213.e3. https://doi.org/10.1016/j.jaci.2012.07.022
Teplitsky V, Mumcuoglu KY, Babai I, Dalal I, Cohen R, Tanay A (2008) House dust mites on skin, clothes, and bedding of atopic dermatitis patients. Int J Dermatol 47(8):790–795. https://doi.org/10.1111/j.1365-4632.2008.03657.x
Thomsen SF, Ulrik CS, Kyvik KO, Hjelmborg J, Skadhauge LR, Steffensen I et al (2007) Importance of genetic factors in the etiology of atopic dermatitis: a twin study. Allergy Asthma Proc 28(5):535–539. https://doi.org/10.2500/aap2007.28.3041
van den Oord RA, Sheikh A (2009) Filaggrin gene defects and risk of developing allergic sensitisation and allergic disorders: systematic review and meta-analysis. BMJ 339:b2433. https://doi.org/10.1136/bmj.b2433
van der Meer IM, Boeke AJ, Lips P, Grootjans-Geerts I, Wuister JD, Deville WL et al (2008) Fatty fish and supplements are the greatest modifiable contributors to the serum 25-hydroxyvitamin D concentration in a multiethnic population. Clin Endocrinol 68(3):466–472. https://doi.org/10.1111/j.1365-2265.2007.03066.x
Wadonda-Kabondo N, Sterne JA, Golding J, Kennedy CT, Archer CB, Dunnill MG et al (2004) Association of parental eczema, hayfever, and asthma with atopic dermatitis in infancy: birth cohort study. Arch Dis Child 89(10):917–921. https://doi.org/10.1136/adc.2003.034033
Wang IJ, Chen SL, Lu TP, Chuang EY, Chen PC (2013) Prenatal smoke exposure, DNA methylation, and childhood atopic dermatitis. Clin Exp Allergy: J Br Soc Allergy Clin Immunol 43(5):535–543. https://doi.org/10.1111/cea.12108
Weidinger S, Novak N (2016) Atopic dermatitis. Lancet 387(10023):1109–1122. https://doi.org/10.1016/S0140-6736(15)00149-X
Weidinger S, O’Sullivan M, Illig T, Baurecht H, Depner M, Rodriguez E et al (2008) Filaggrin mutations, atopic eczema, hay fever, and asthma in children. J Allergy Clin Immunol 121(5):1203–1209.e1. https://doi.org/10.1016/j.jaci.2008.02.014
Weidinger S, Willis-Owen SA, Kamatani Y, Baurecht H, Morar N, Liang L et al (2013) A genome-wide association study of atopic dermatitis identifies loci with overlapping effects on asthma and psoriasis. Hum Mol Genet 22(23):4841–4856. https://doi.org/10.1093/hmg/ddt317
Werfel T, Heratizadeh A, Niebuhr M, Kapp A, Roesner LM, Karch A et al (2015) Exacerbation of atopic dermatitis on grass pollen exposure in an environmental challenge chamber. J Allergy Clin Immunol 136(1):96–103.e9. https://doi.org/10.1016/j.jaci.2015.04.015
Williams HC, Burney PG, Hay RJ, Archer CB, Shipley MJ, Hunter JJ et al (1994) The U.K. working party’s diagnostic criteria for atopic dermatitis. I. Derivation of a minimum set of discriminators for atopic dermatitis. Br J Dermatol 131(3):383–396
Wilms C, Krikki I, Hainzl A, Kilo S, Alupei M, Makrantonaki E et al (2018) 2A-DUB/Mysm1 regulates epidermal development in part by suppressing p53-mediated programs. Int J Mol Sci 19(3). https://doi.org/10.3390/ijms19030687
Zeng YP, Nguyen GH, Jin HZ (2016) MicroRNA-143 inhibits IL-13-induced dysregulation of the epidermal barrier-related proteins in skin keratinocytes via targeting to IL-13Ralpha1. Mol Cell Biochem 416(1–2):63–70. https://doi.org/10.1007/s11010-016-2696-z
Zhao L, Jin H, She R, Hu Y, Xiao C, Yu Y et al (2006) A rodent model for allergic dermatitis induced by flea antigens. Vet Immunol Immunopathol 114(3–4):285–296. https://doi.org/10.1016/j.vetimm.2006.08.016
Zhou Y, Zhao LJ, Xu X, Ye A, Travers-Gustafson D, Zhou B et al (2014) DNA methylation levels of CYP2R1 and CYP24A1 predict vitamin D response variation. J Steroid Biochem Mol Biol 144(Pt A):207–214. https://doi.org/10.1016/j.jsbmb.2013.10.004
Zhu H, Wang X, Shi H, Su S, Harshfield GA, Gutin B et al (2013) A genome-wide methylation study of severe vitamin D deficiency in African American adolescents. J Pediatrics 162(5):1004–1009.e1. https://doi.org/10.1016/j.jpeds.2012.10.059
Ziyab AH, Karmaus W, Holloway JW, Zhang H, Ewart S, Arshad SH (2013) DNA methylation of the filaggrin gene adds to the risk of eczema associated with loss-of-function variants. J Eur Acad Dermatol Venereol 27(3):e420–e423. https://doi.org/10.1111/jdv.12000
Ziyab AH, Raza A, Karmaus W, Tongue N, Zhang H, Matthews S et al (2010) Trends in eczema in the first 18 years of life: results from the Isle of Wight 1989 birth cohort study. Clin Exp Allergy: J Br Soc Allergy Clin Immunol 40(12):1776–1784. https://doi.org/10.1111/j.1365-2222.2010.03633.x
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2020 Springer Nature Singapore Pte Ltd.
About this chapter
Cite this chapter
Mu, Z., Zhang, J. (2020). The Role of Genetics, the Environment, and Epigenetics in Atopic Dermatitis. In: Chang, C., Lu, Q. (eds) Epigenetics in Allergy and Autoimmunity. Advances in Experimental Medicine and Biology, vol 1253. Springer, Singapore. https://doi.org/10.1007/978-981-15-3449-2_4
Download citation
DOI: https://doi.org/10.1007/978-981-15-3449-2_4
Published:
Publisher Name: Springer, Singapore
Print ISBN: 978-981-15-3448-5
Online ISBN: 978-981-15-3449-2
eBook Packages: Biomedical and Life SciencesBiomedical and Life Sciences (R0)