Skip to main content

Computational Techniques for Nonlinear Optimal Control

  • Chapter
  • First Online:
Symplectic Pseudospectral Methods for Optimal Control

Abstract

According to the implementation of numerical techniques, computational methods for optimal control problems can generally fall into two groups, i.e., direct methods and indirect methods. Besides, hybrid methods and artificial intelligence-based methods are also popular. In this chapter, the pros and cons of these methods are presented and researches that consider the property of symplectic conservation are reviewed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Polak E (1973) An historical survey of computational methods in optimal control. SIAM Rev 15(2):553–584

    Article  MathSciNet  MATH  Google Scholar 

  2. Stryk OV, Bulirsch R (1992) Direct and Indirect Methods for Trajectory Optimization. Ann Oper Res 37(1):357–373

    Article  MathSciNet  MATH  Google Scholar 

  3. Betts JT (1998) Survey of numerical methods for trajectory optimization. J Guid Control Dyn 21(2):193–207

    Article  MATH  Google Scholar 

  4. Rao AV (2009) A survey of numerical methods for optimal control. In: AAS/AIAA astrodynamics specialist conference

    Google Scholar 

  5. Conway BA (2012) A survey of methods available for the numerical optimization of continuous dynamic systems. J Optim Theory Appl 152(2):271–306

    Article  MathSciNet  MATH  Google Scholar 

  6. Bryson AE, Ho YC (1975) Applied optimal control. Hemisphere/Wiley, New York

    Google Scholar 

  7. Kharatishvili GL (1961) The maximum principle in the theory of optimal process with time-lags. Dokl Akad Nauk SSSR 136:39–42

    Google Scholar 

  8. Agrawal OP (2004) A general formulation and solution scheme for fractional optimal control problems. Nonlinear Dyn 38(1–4):323–337

    Article  MathSciNet  MATH  Google Scholar 

  9. Jelicic ZD, Petrovacki N (2009) Optimality conditions and a solution scheme for fractional optimal control problems. Struct Multi Optim 38(6):571–581

    Article  MathSciNet  MATH  Google Scholar 

  10. Lastman GJ (1978) A shooting method for solving two-point boundary-value problems arising from non-singular bang-bang optimal control problems. Int J Control 27(4):513–524

    Article  MathSciNet  MATH  Google Scholar 

  11. Holsapple R, Venkataraman R, Doman DB (2003) A modified simple shooting method for solving two-point boundary-value problems. In: IEEE aerospace conference

    Google Scholar 

  12. Fotouhic R, Szyszkowski W (2002) A numerical approach for time-optimal control of double arms robot. In: IEEE conference on control applications

    Google Scholar 

  13. Fabien BC (1996) Numerical solution of constrained optimal control problems with parameters. Appl Math Comput 80(1):43–62

    MathSciNet  MATH  Google Scholar 

  14. Park C, Scheeres DJ (2005) Extended applications of generating functions to optimal feedback control problems. In: American control conference

    Google Scholar 

  15. Park C, Scheeres DJ (2006) Determination of optimal feedback terminal controllers for general boundary conditions using generating functions. Automatica 42(5):869–875

    Article  MathSciNet  MATH  Google Scholar 

  16. Park C, Scheeres D, Guibout V (2013) Solving optimal continuous thrust rendezvous problems with generating functions. J Guid Control Dyn 37(29):396–401

    Google Scholar 

  17. Lee K, Park C, Park SY (2013) Performance analysis of generating function approach for optimal reconfiguration of formation flying. J Astron Space Sci 30(1):17–24

    Article  Google Scholar 

  18. Marzban HR, Hoseini SM (2013) A composite Chebyshev finite difference method for nonlinear optimal control problems. Commun Nonlinear Sci Numer Simul 18(6):1347–1361

    Article  MathSciNet  MATH  Google Scholar 

  19. Nikoobin A, Moradi M (2015) Indirect solution of optimal control problems with state variable inequality constraints: finite difference approximation. Robotica 35(1):50–72

    Article  Google Scholar 

  20. Jajarmi A, Hajipour M (2017) An efficient finite difference method for the time-delay optimal control problems with time-varying delay. Asian J Control 19(2):554–563

    Article  MathSciNet  MATH  Google Scholar 

  21. Zhuk S, Frank J (2014) Symplectic Möbius integrators for LQ optimal control problems. In: IEEE decision and control conference

    Google Scholar 

  22. Peng H, Gao Q, Wu Z et al (2013) Efficient sparse approach for solving receding-horizon control problems. J Guid Control Dyn 36(6):1864–1872

    Article  Google Scholar 

  23. Peng H, Gao Q, Zhang H et al (2014) Parametric variational solution of linear-quadratic optimal control problems with control inequality constraints. Appl Math Mech (Engl Ed) 35(9):1079–1098

    Article  MathSciNet  MATH  Google Scholar 

  24. Peng H, Gao Q, Wu Z et al (2015) Symplectic algorithms with mesh refinement for a hypersensitive optimal control problem. Int J Comput Math 92(11):2273–2289

    Article  MathSciNet  MATH  Google Scholar 

  25. Peng H, Tan S, Gao Q et al (2017) Symplectic method based on generating function for receding horizon control of linear time-varying systems. Eur J Control 33:24–34

    Article  MathSciNet  MATH  Google Scholar 

  26. Li M, Peng H, Wu Z (2015) Symplectic irregular interpolation algorithms for optimal control problems. Int J Comput Methods 12(06):1550040

    Article  MathSciNet  MATH  Google Scholar 

  27. Li M, Peng H, Zhong W (2015) A symplectic sequence iteration approach for nonlinear optimal control problems with state-control constraints. J Franklin Inst 352(6):2381–2406

    Article  MathSciNet  MATH  Google Scholar 

  28. Li M, Peng H (2016) Solutions of nonlinear constrained optimal control problems using quasilinearization and variational pseudospectral methods. ISA Trans 62:177–192

    Article  Google Scholar 

  29. Betts JT (2001) Practical methods for optimal control using nonlinear programming. SIAM, Philadelphia

    MATH  Google Scholar 

  30. Vlassenbroeck J (1988) A chebyshev polynomial method for optimal-control with state constraints. Automatica 24(4):499–506

    Article  MathSciNet  MATH  Google Scholar 

  31. Marzban HR, Razzaghi M (2010) Rationalized Haar approach for nonlinear constrained optimal control problems. Appl Math Model 34(1):174–183

    Article  MathSciNet  MATH  Google Scholar 

  32. Bonnans JF, Laurent-Varin J (2006) Computation of order conditions for symplectic partitioned Runge-Kutta schemes with application to optimal control. Numer Math 103(1):1–10

    Article  MathSciNet  MATH  Google Scholar 

  33. Junge O, Marsden JE, Ober-Blöbaum S (2005) Discrete mechanics and optimal control. IFAC Proc Volumes 38(1):538–543

    Article  MATH  Google Scholar 

  34. Leyendecker S, Ober-Blöbaum S, Marsden JE et al (2010) Discrete mechanics and optimal control for constrained systems. Opt Control Appl Methods 31(6):505–528

    Article  MathSciNet  MATH  Google Scholar 

  35. Shen J, Tang T, Wang L (2011) Spectral methods: algorithms, analysis and applications. Springer, Berlin

    Google Scholar 

  36. Fahroo F, Ross IM (2000) Direct trajectory optimization by a Chebyshev pseudospectral method. In: American control conference

    Google Scholar 

  37. Thorvaldsen TP, Huntington GT, Benson DA (2006) Direct Trajectory Optimization and Costate Estimation via an Orthogonal Collocation Method. J Guid Control Dyn 29(6):1435–1439

    Article  Google Scholar 

  38. Darby CL, Hager WW, Rao AV (2011) An hp-adaptive pseudospectral method for solving optimal control problems. Opt Control Appl Methods 32(4):476–502

    Article  MathSciNet  MATH  Google Scholar 

  39. Garg D, Patterson M, Francolin C et al (2011) Direct trajectory optimization and costate estimation of finite-horizon and infinite-horizon optimal control problems via a Radau pseudospectral method. Comput Optim Appl 49(2):335–358

    Article  MathSciNet  MATH  Google Scholar 

  40. Darby CL (2011) Hp-pseudospectral method for solving continuous-time nonlinear optimal control problems [thesis]. Department of Mechanical and Aerospace Engineering, University of Florida

    Google Scholar 

  41. Patterson MA, Hager WW, Rao AV (2015) A ph mesh refinement method for optimal control. Opt Control Appl Methods 36:398–421

    Article  MathSciNet  MATH  Google Scholar 

  42. Elnagar GN, Kazemi MA, Razzaghi M (1995) The pseudospectral Legendre method for discretizing optimal control problems. IEEE Trans Autom Control 40(10):1793–1796

    Article  MathSciNet  MATH  Google Scholar 

  43. Elnagar GN, Kazemi MA (1998) Pseudospectral Legendre-based optimal computation of nonlinear constrained variational problems. J Comput Appl Math 88(2):363–375

    Article  MathSciNet  MATH  Google Scholar 

  44. Ross IM, Fahroo F (2004) Pseudospectral methods for optimal motion planning of differentially flat systems. IEEE Trans Autom Control 49(8):1410–1413

    Article  MathSciNet  MATH  Google Scholar 

  45. Garg D, Patterson MA, Hager WW et al (2010) A unified framework for the numerical solution of optimal control problems using pseudospectral methods. Automatica 46(11):1843–1851

    Article  MathSciNet  MATH  Google Scholar 

  46. Qi G, Ross IM, Fahroo F (2010) Costate Computation by a Chebyshev pseudospectral method. J Guid Control Dyn 33(2):623–628

    Article  Google Scholar 

  47. Darby CL, Garg D, Rao AV (2015) Costate estimation using multiple-interval pseudospectral methods. J Spacecraft Rockets 48(5):856–866

    Article  Google Scholar 

  48. Wei J, Tang X, Jie Y (2016) Costate estimation for a multiple-interval pseudospectral method using collocation at the flipped legendre-Gauss-Radau points. IEEE/CAA J Automatica Sinica 99:1–15

    Google Scholar 

  49. Patterson MA, Rao AV (2010) GPOPS-II: a MATLAB software for solving multiple-phase optimal control problems using hp-adaptive Gaussian quadrature collocation methods and sparse nonlinear programming. ACM Trans Math Softw 41(1):1–37

    Article  MathSciNet  Google Scholar 

  50. Guo T, Jiang F, Li J (2012) Homotopic approach and pseudospectral method applied jointly to low thrust trajectory optimization. Acta Astronaut

    Google Scholar 

  51. Tang G, Jiang F, Li J (2018) Fuel-optimal low-thrust trajectory optimization using indirect method and successive convex programming. IEEE Trans Aerosp Electron Syst 54(4):2053–2066

    Article  Google Scholar 

  52. Enright PJ, Conway BA (1991) Optimal finite-thrust spacecraft trajectories using collocation and nonlinear programming. J Guidance Control Dyn 14(5):981–985

    Article  Google Scholar 

  53. Radice G, Olmo G (2006) Ant colony algorithms for two impluse interplanetary trajectory optimization. J Guidance Control Dyn 29(6):1440–1444

    Article  Google Scholar 

  54. Sentinella MR, Casalino L (2009) Hybrid evolutionary algorithm for the optimization of interplanetary trajectories. J Spacecraft Rockets 46(2):365–372

    Article  MATH  Google Scholar 

  55. Englander JA, Conway BA, Williams T (2012) Automated mission planning via evolutionary algorithms. J Guidance Control Dyn 35(6):1878–1887

    Article  Google Scholar 

  56. Pontani M, Conway BA (2013) Optimal finite-thrust rendezvous trajectories found via particle swarm algorithm. J Spacecraft Rockets 50(6):1222–1234

    Article  Google Scholar 

  57. Deb K, Padhye N, Neema G (2007) Interplanetary trajectory optimization with swing-bys using evolutionary multi-objective optimization. In: ACM conference companion on genetic & evolutionary computation

    Google Scholar 

  58. Schütze O, Vasile M, Junge O et al (2009) Designing optimal low-thrust gravity-assist trajectories using space pruning and a multi-objective approach. Eng Opt 41(2):155–181

    Article  MathSciNet  Google Scholar 

  59. Izzo D, Hennes D, Riccardi A (2014) Constraint handling and multi-objective methods for the evolution of interplanetary trajectories. J Guidance Control Dyn

    Google Scholar 

  60. Girimonte D, Izzo D (2007) Artificial intelligence for space applications. In: Intelligent computing everywhere. Springer, Berlin, pp 235–253

    Google Scholar 

  61. Izzo D, Märtens M, Pan B (2018) A survey on artificial intelligence trends in spacecraft guidance dynamics and control. arXiv:1812.02948

  62. Izzo D, Sprague C, Tailor D (2018) Machine learning and evolutionary techniques in interplanetary trajectory design. arXiv:1802.00180

  63. Vinkó T, Izzo D (2008) Global optimisation heuristics and test problems for preliminary spacecraft trajectory design. European Space Agency, Advanced Concepts Team, ACT Technical Report, id: GOHTPPSTD

    Google Scholar 

  64. Sánchezsánchez C, Izzo D (2016) Real-time optimal control via deep neural networks: study on landing problems. J Guidance Control Dyn 41(3):1–14

    Google Scholar 

  65. Furfaro R, Bloise I, Orlandelli M, et al (2018) Deep learning for autonomous lunar landing. In: AAS/AIAA astrodynamics specialist conference

    Google Scholar 

  66. Shang H, Wu X, Qiao D et al (2018) Parameter estimation for optimal asteroid transfer trajectories using supervised machine learning. Aerosp Sci Technol 79:570–579

    Article  Google Scholar 

  67. Chu X, Alfriend KT, Zhang J, et al (2018) Q-learning algorithm for pathplanning to maneuver through a satellite cluster. In: 2018 AAS/AIAA astrodynamics specialist conference, 2018, AAS 18–268

    Google Scholar 

  68. Izzo D, Tailor D, Vasileiou (2018) On the stability analysis of optimal state feedbacks as represented by deep neural models. arXiv: 1812.02532

    Google Scholar 

  69. Wei Q, Song R, Li B (2017) Self-learning optimal control of nonlinear systems, adaptive dynamic programming approach. Science Press & Springer, Beijing

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xinwei Wang .

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Wang, X., Liu, J., Peng, H. (2021). Computational Techniques for Nonlinear Optimal Control. In: Symplectic Pseudospectral Methods for Optimal Control. Intelligent Systems, Control and Automation: Science and Engineering, vol 97. Springer, Singapore. https://doi.org/10.1007/978-981-15-3438-6_2

Download citation

Publish with us

Policies and ethics