Skip to main content

A Knee Point Based NSGA-II Multi-objective Evolutionary Algorithm

  • Conference paper
  • First Online:
Book cover Bio-inspired Computing: Theories and Applications (BIC-TA 2019)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 1159))

  • 1009 Accesses

Abstract

Many evolutionary algorithms (EAs) can’t select the solution which can accelerate the convergence to the Pareto front and maintain the diversity from a group of non-dominant solutions in the late stage of searching. In this article, the method of finding knee point is embedded in the process of searching, which not only increases selection pressure solutions in later searches but also accelerates diversity and convergence. Besides, niche strategy and special crowding distances are used to solve multimodal features in test problems, so as to provide decision-makers with multiple alternative solutions as much as possible. Finally, the performance indicators of knee point are compared with the existing algorithms on 14 test functions. The results show that the final solution set of the proposed algorithm has advantages in coverage area of the reference knee regions and convergence speed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Deb, K., Member, A., Pratap, A., et al.: A fast and elitist multi-objective genetic algorithm NSGAII. IEEE Trans. Evol. Comput. 6(2), 182–197 (2002)

    Article  Google Scholar 

  2. Zitzler, E., Laumanns, M., Thiele, L.: SPEA2\_ improving the strength Pareto evolutionary algorithm for multiobjective optimization. In: Evolutionary Methods for Design, Optimization and Control with Applications to Industrial Problems, pp. 95–100 (2001)

    Google Scholar 

  3. Horn, J., Nafpliotis, N., Goldberg, D.E.: A niched Pareto genetic algorithm for multi-objective optimization. In: IEEE Conference on Evolutionary Computation IEEE World Congress on Computational Intelligence (1994)

    Google Scholar 

  4. Corne, D.W., Knowles, J.D., Oates, M.J.: The Pareto envelope-based selection algorithm for multiobjective optimization. In: Schoenauer, M., et al. (eds.) PPSN 2000. LNCS, vol. 1917, pp. 839–848. Springer, Heidelberg (2000). https://doi.org/10.1007/3-540-45356-3_82

    Chapter  Google Scholar 

  5. Zhang, X., Tian, Y., Jin, Y.: A knee point driven evolutionary algorithm for many-objective optimization. IEEE Trans. Evol. Comput. 19(6), 761–776 (2015)

    Article  Google Scholar 

  6. Rachmawati, L., Srinivasan, D.: Multiobjective evolutionary algorithm with controllable focus on the knees of the Pareto front. IEEE Trans. Evol. Comput. 13(4), 810–824 (2009)

    Article  Google Scholar 

  7. Schütze, O., Laumanns, M., Coello, C.A.C.: Approximating the knee of an MOP with stochastic search algorithms. In: Rudolph, G., Jansen, T., Beume, N., Lucas, S., Poloni, C. (eds.) PPSN 2008. LNCS, vol. 5199, pp. 795–804. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-87700-4_79

    Chapter  Google Scholar 

  8. Deb, K., Gupta, S.: Understanding knee points in bicriteria problems and their implications as preferred solution principles. Eng. Optim. 43(11), 1175–1204 (2011)

    Article  MathSciNet  Google Scholar 

  9. Sudeng, S., Wattanapongsakorn, N.: Adaptive geometric angle-based algorithm with independent objective biasing for pruning Pareto-optimal solutions. In: Science & Information Conference (2013)

    Google Scholar 

  10. Branke, J., Deb, K., Dierolf, H., Osswald, M.: Finding knees in multi-objective optimization. In: Yao, X., et al. (eds.) PPSN 2004. LNCS, vol. 3242, pp. 722–731. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-30217-9_73

    Chapter  Google Scholar 

  11. Bhattacharjee, K., Singh, H., Ryan, M., et al.: Bridging the gap: many-objective optimization and informed decision-making. IEEE Trans. Evol. Comput. 21(5), 813–820 (2017)

    Article  Google Scholar 

  12. Das, I.: On characterizing the “knee” of the Pareto curve based on normal-boundary intersection. Struct. Optim. 18(2–3), 107–115 (1999)

    Article  Google Scholar 

  13. Yu, G., Jin, Y., Olhofer, M.: A Method for a posteriori identification of knee points based on solution density. In: Presented at the Congress on Evolutionary Computation (2018)

    Google Scholar 

  14. Qu, B.Y., Suganthan, P.N.: Novel multimodal problems and differential evolution with ensemble of restricted tournament selection. In: Evolutionary Computation, pp. 3480–3486 (2010)

    Google Scholar 

  15. Preuss, M.: Niching methods and multimodal optimization performance. Multimodal Optimization by Means of Evolutionary Algorithms. NCS, pp. 115–137. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-07407-8_5

    Chapter  MATH  Google Scholar 

  16. While, L., Hingston, P., Barone, L., et al.: A faster algorithm for calculating hypervolume. IEEE Trans. Evol. Comput. 10(1), 29–38 (2006)

    Article  Google Scholar 

  17. Jong, D., Alan, K.: Analysis of the behavior of a class of genetic adaptive systems. Ph.D. thesis University of Michigan (1975)

    Google Scholar 

  18. Holland, J.H.: Adaptation in Natural and Artificial Systems, vol. 6, 2nd edn, pp. 126–137. MIT Press, Cambridge (1992)

    Book  Google Scholar 

  19. Petrowski, A.: A clearing procedure as a niching method for genetic algorithms. In: Proceedings of the IEEE International Conference on Evolutionary Computation (1996)

    Google Scholar 

  20. Li, J.P., Balazs, M.E., Parks, G.T., et al.: A species conserving genetic algorithm for multimodal function optimization. Evol. Comput. 10(3), 207–234 (2014)

    Article  Google Scholar 

  21. Liang, J.J., Yue, C.T., Qu, B.Y.: Multimodal multi-objective optimization: a preliminary study. In: Evolutionary Computation (2016)

    Google Scholar 

  22. Yue, C.T., Qu, B., Jing, L.: A Multi-objective particle swarm optimizer using ring topology for solving multimodal multi-objective problems. IEEE Trans. Evol. Comput. 22(5), 805–817 (2017)

    Article  Google Scholar 

  23. Yu, G., Jin, Y., Olhofer, M.: Benchmark problems and performance indicators for search of knee points in multi-objective optimization. In: 2019 IEEE Congress on Evolutionary Computation (CEC), pp. 2410–2417 (2019)

    Google Scholar 

Download references

Acknowledgment

This work is supported by the National Natural Science Foundation of China (61922072, 61876169, 61673404, 61976237).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhimeng Li .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Liang, J., Li, Z., Qu, B., Yu, K., Qiao, K., Ge, S. (2020). A Knee Point Based NSGA-II Multi-objective Evolutionary Algorithm. In: Pan, L., Liang, J., Qu, B. (eds) Bio-inspired Computing: Theories and Applications. BIC-TA 2019. Communications in Computer and Information Science, vol 1159. Springer, Singapore. https://doi.org/10.1007/978-981-15-3425-6_35

Download citation

  • DOI: https://doi.org/10.1007/978-981-15-3425-6_35

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-15-3424-9

  • Online ISBN: 978-981-15-3425-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics