Advertisement

A Knee Point Based NSGA-II Multi-objective Evolutionary Algorithm

Conference paper
  • 393 Downloads
Part of the Communications in Computer and Information Science book series (CCIS, volume 1159)

Abstract

Many evolutionary algorithms (EAs) can’t select the solution which can accelerate the convergence to the Pareto front and maintain the diversity from a group of non-dominant solutions in the late stage of searching. In this article, the method of finding knee point is embedded in the process of searching, which not only increases selection pressure solutions in later searches but also accelerates diversity and convergence. Besides, niche strategy and special crowding distances are used to solve multimodal features in test problems, so as to provide decision-makers with multiple alternative solutions as much as possible. Finally, the performance indicators of knee point are compared with the existing algorithms on 14 test functions. The results show that the final solution set of the proposed algorithm has advantages in coverage area of the reference knee regions and convergence speed.

Keywords

Knee point Niche Special crowding distances Performance indicators of knee point 

Notes

Acknowledgment

This work is supported by the National Natural Science Foundation of China (61922072, 61876169, 61673404, 61976237).

References

  1. 1.
    Deb, K., Member, A., Pratap, A., et al.: A fast and elitist multi-objective genetic algorithm NSGAII. IEEE Trans. Evol. Comput. 6(2), 182–197 (2002)CrossRefGoogle Scholar
  2. 2.
    Zitzler, E., Laumanns, M., Thiele, L.: SPEA2\_ improving the strength Pareto evolutionary algorithm for multiobjective optimization. In: Evolutionary Methods for Design, Optimization and Control with Applications to Industrial Problems, pp. 95–100 (2001)Google Scholar
  3. 3.
    Horn, J., Nafpliotis, N., Goldberg, D.E.: A niched Pareto genetic algorithm for multi-objective optimization. In: IEEE Conference on Evolutionary Computation IEEE World Congress on Computational Intelligence (1994)Google Scholar
  4. 4.
    Corne, D.W., Knowles, J.D., Oates, M.J.: The Pareto envelope-based selection algorithm for multiobjective optimization. In: Schoenauer, M., et al. (eds.) PPSN 2000. LNCS, vol. 1917, pp. 839–848. Springer, Heidelberg (2000).  https://doi.org/10.1007/3-540-45356-3_82CrossRefGoogle Scholar
  5. 5.
    Zhang, X., Tian, Y., Jin, Y.: A knee point driven evolutionary algorithm for many-objective optimization. IEEE Trans. Evol. Comput. 19(6), 761–776 (2015)CrossRefGoogle Scholar
  6. 6.
    Rachmawati, L., Srinivasan, D.: Multiobjective evolutionary algorithm with controllable focus on the knees of the Pareto front. IEEE Trans. Evol. Comput. 13(4), 810–824 (2009)CrossRefGoogle Scholar
  7. 7.
    Schütze, O., Laumanns, M., Coello, C.A.C.: Approximating the knee of an MOP with stochastic search algorithms. In: Rudolph, G., Jansen, T., Beume, N., Lucas, S., Poloni, C. (eds.) PPSN 2008. LNCS, vol. 5199, pp. 795–804. Springer, Heidelberg (2008).  https://doi.org/10.1007/978-3-540-87700-4_79CrossRefGoogle Scholar
  8. 8.
    Deb, K., Gupta, S.: Understanding knee points in bicriteria problems and their implications as preferred solution principles. Eng. Optim. 43(11), 1175–1204 (2011)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Sudeng, S., Wattanapongsakorn, N.: Adaptive geometric angle-based algorithm with independent objective biasing for pruning Pareto-optimal solutions. In: Science & Information Conference (2013)Google Scholar
  10. 10.
    Branke, J., Deb, K., Dierolf, H., Osswald, M.: Finding knees in multi-objective optimization. In: Yao, X., et al. (eds.) PPSN 2004. LNCS, vol. 3242, pp. 722–731. Springer, Heidelberg (2004).  https://doi.org/10.1007/978-3-540-30217-9_73CrossRefGoogle Scholar
  11. 11.
    Bhattacharjee, K., Singh, H., Ryan, M., et al.: Bridging the gap: many-objective optimization and informed decision-making. IEEE Trans. Evol. Comput. 21(5), 813–820 (2017)CrossRefGoogle Scholar
  12. 12.
    Das, I.: On characterizing the “knee” of the Pareto curve based on normal-boundary intersection. Struct. Optim. 18(2–3), 107–115 (1999)CrossRefGoogle Scholar
  13. 13.
    Yu, G., Jin, Y., Olhofer, M.: A Method for a posteriori identification of knee points based on solution density. In: Presented at the Congress on Evolutionary Computation (2018)Google Scholar
  14. 14.
    Qu, B.Y., Suganthan, P.N.: Novel multimodal problems and differential evolution with ensemble of restricted tournament selection. In: Evolutionary Computation, pp. 3480–3486 (2010)Google Scholar
  15. 15.
    Preuss, M.: Niching methods and multimodal optimization performance. Multimodal Optimization by Means of Evolutionary Algorithms. NCS, pp. 115–137. Springer, Cham (2015).  https://doi.org/10.1007/978-3-319-07407-8_5CrossRefzbMATHGoogle Scholar
  16. 16.
    While, L., Hingston, P., Barone, L., et al.: A faster algorithm for calculating hypervolume. IEEE Trans. Evol. Comput. 10(1), 29–38 (2006)CrossRefGoogle Scholar
  17. 17.
    Jong, D., Alan, K.: Analysis of the behavior of a class of genetic adaptive systems. Ph.D. thesis University of Michigan (1975)Google Scholar
  18. 18.
    Holland, J.H.: Adaptation in Natural and Artificial Systems, vol. 6, 2nd edn, pp. 126–137. MIT Press, Cambridge (1992) CrossRefGoogle Scholar
  19. 19.
    Petrowski, A.: A clearing procedure as a niching method for genetic algorithms. In: Proceedings of the IEEE International Conference on Evolutionary Computation (1996)Google Scholar
  20. 20.
    Li, J.P., Balazs, M.E., Parks, G.T., et al.: A species conserving genetic algorithm for multimodal function optimization. Evol. Comput. 10(3), 207–234 (2014)CrossRefGoogle Scholar
  21. 21.
    Liang, J.J., Yue, C.T., Qu, B.Y.: Multimodal multi-objective optimization: a preliminary study. In: Evolutionary Computation (2016)Google Scholar
  22. 22.
    Yue, C.T., Qu, B., Jing, L.: A Multi-objective particle swarm optimizer using ring topology for solving multimodal multi-objective problems. IEEE Trans. Evol. Comput. 22(5), 805–817 (2017)CrossRefGoogle Scholar
  23. 23.
    Yu, G., Jin, Y., Olhofer, M.: Benchmark problems and performance indicators for search of knee points in multi-objective optimization. In: 2019 IEEE Congress on Evolutionary Computation (CEC), pp. 2410–2417 (2019) Google Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2020

Authors and Affiliations

  1. 1.School of Electrical EngineeringZhengzhou UniversityZhengzhouChina
  2. 2.School of Electronic and Information EngineeringZhongyuan University of TechnologyZhengzhouChina

Personalised recommendations