Advertisement

Mutation Strategy Selection Based on Fitness Landscape Analysis: A Preliminary Study

Conference paper
  • 378 Downloads
Part of the Communications in Computer and Information Science book series (CCIS, volume 1159)

Abstract

Different algorithms and strategies behave disparately for different types of problems. In practical problems, we cannot grasp the nature of the problem in advance, so it is difficult for the engineers to choose a proper method to solve the problem effectively. In this case, the strategy selection task based on fitness landscape analysis comes into being. This paper gives a preliminary study on mutation strategy selection on the basis of fitness landscape analysis for continuous real-parameter optimization based on differential evolution. Some fundamental features of the fitness landscape and the components of standard differential evolution algorithm are described in detail. A mutation strategy selection framework based on fitness landscape analysis is designed. Some different types of classifiers which are applied to the proposed framework are tested and compared.

Keywords

Mutation strategy selection Fitness landscape analysis Classifier Differential evolution algorithm 

Notes

Acknowledgement

This work is supported by the National Natural Science Foundation of China (61922072, 61876169, 61673404, 61976237).

References

  1. 1.
    Stadler, P.F.: Fitness landscapes. In: Lässig, M., Valleriani, A. (eds.) Biological Evolution and Statistical Physics, pp. 183–204. Springer, Heidelberg (2002).  https://doi.org/10.1007/3-540-45692-9_10CrossRefGoogle Scholar
  2. 2.
    Pitzer, E., Affenzeller, M.: A comprehensive survey on fitness landscape analysis. In: Fodor, J., Klempous, R., Suárez Araujo, C.P. (eds.) Recent Advances in Intelligent Engineering Systems, pp. 161–191. Springer, Heidelberg (2012).  https://doi.org/10.1007/978-3-642-23229-9_8 CrossRefGoogle Scholar
  3. 3.
    Wang, M., Li, B., Zhang, G., et al.: Population evolvability: dynamic fitness landscape analysis for population-based metaheuristic algorithms. IEEE Trans. Evol. Comput. 22, 550–563 (2018)CrossRefGoogle Scholar
  4. 4.
    Borenstein, Y., Poli, R.: Information landscapes. In: GECCO 2005: Proceedings of the 2005 Conference on Genetic and Evolutionary Computation, pp. 1515–1522. ACM Press, New York (2005)Google Scholar
  5. 5.
    Borenstein, Y., Poli, R.: Information landscapes and problem hardness. In: GECCO 2005: Proceedings of the 2005 Conference on Genetic and Evolutionary Computation, pp. 1425–1431. ACM Press, New York (2005)Google Scholar
  6. 6.
    Borenstein, Y., Poli, R.: Decomposition of fitness functions in random heuristic search. In: Stephens, C.R., Toussaint, M., Whitley, D., Stadler, P.F. (eds.) Foundations of Genetic Algorithms, pp. 123–137. Springer, Heidelberg (2007).  https://doi.org/10.1007/978-3-540-73482-6_8CrossRefzbMATHGoogle Scholar
  7. 7.
    Verel, S., Collard, P., Clergue, M.: Where are bottlenecks in NK fitness landscapes? In: The 2003 Congress on Evolutionary Computation, pp. 273–280 (2003).  https://doi.org/10.1109/CEC.2003.1299585
  8. 8.
    Vanneschi, L.: Theory and practice for efficient genetic programming. Ph.D. thesis, Faculty of Sciences, University of Lausanne, Switzerland (2004)Google Scholar
  9. 9.
    Vanneschi, L., Tomassini, M., Collard, P., Vérel, S.: Negative slope coefficient: a measure to characterize genetic programming fitness landscapes. In: Collet, P., Tomassini, M., Ebner, M., Gustafson, S., Ekárt, A. (eds.) EuroGP 2006. LNCS, vol. 3905, pp. 178–189. Springer, Heidelberg (2006).  https://doi.org/10.1007/11729976_16CrossRefGoogle Scholar
  10. 10.
    Lu, H., Shi, J., Fei, Z., et al.: Measures in the time and frequency domain for fitness landscape analysis of dynamic optimization problems. Soft Comput. 51, 192–208 (2017)CrossRefGoogle Scholar
  11. 11.
    Morgan, R., Gallagher, M.: Sampling techniques and distance metrics in high dimensional continuous landscape analysis: limitations and improvements. IEEE Trans. Evol. Comput. 18(3), 456–461 (2013)CrossRefGoogle Scholar
  12. 12.
    Li, W., Li, S., Chen, Z., et al.: Self-feedback differential evolution adapting to fitness landscape characteristics. Soft Comput. 23(4), 1151–1163 (2019)CrossRefGoogle Scholar
  13. 13.
    Morris, M.D., Mitchell, T.J.: Exploratory designs for computational experiments. J. Stat. Plann. Infer. 43(3), 381–402 (1992)CrossRefGoogle Scholar
  14. 14.
    Shen, L., He, J.: A mixed strategy for evolutionary programming based on local fitness landscape. In: 2010 IEEE Congress on Evolutionary Computation, Barcelona, Spain, pp. 1–8. IEEE (2010)Google Scholar
  15. 15.
    Munoz, M.A., Kirley, M., Halgamuge, S.K.: Landscape characterization of numerical optimization problems using biased scattered data. In: 2012 IEEE Congress on Evolutionary Computation, Brisbane, QLD, Australia, pp. 1–8. IEEE (2012)Google Scholar
  16. 16.
    Lu, H., Shi, J., Fei, Z., et al.: Analysis of the similarities and differences of job-based scheduling problems. Eur. J. Oper. Res. 270(3), 809–825 (2018)MathSciNetCrossRefGoogle Scholar
  17. 17.
    Munoz, M.A., Kirley, M., Smith-Miles, K.: Reliability of exploratory landscape analysis (2018).  https://doi.org/10.13140/RG.2.2.23838.64327
  18. 18.
    Storn, R., Price, K.: Differential evolution - a simple and efficient adaptive scheme for global optimization over continuous spaces. Technical report, International Computer Sciences Institute, Berkeley, California, USA (1995)Google Scholar
  19. 19.
    Storn, R., Price, K.: Differential evolution: a simple and efficient heuristic for global optimization over continuous spaces. J. Global Optim. 11(4), 341–359 (1997)MathSciNetCrossRefGoogle Scholar
  20. 20.
    Otieno, F.A.O., Adeyemo, J.A., Abbass, H.A., et al.: Differential evolution: a simple and efficient adaptive scheme for global optimization over continuous spaces. Trends Appl. Sci. Res. 5(1), 531–552 (2002)Google Scholar
  21. 21.
    Das, S., Suganthan, P.N.: Differential evolution: a survey of the state-of-the-art. IEEE Trans. Evol. Comput. 15(1), 4–31 (2010)CrossRefGoogle Scholar
  22. 22.
    Das, S., Mullick, S.S., Suganthan, P.N.: Recent advances in differential evolution - an updated survey. IEEE Trans. Evol. Comput. 27, 1–30 (2016)Google Scholar
  23. 23.
    Suganthan, P.N., Hansen, N., Liang, J.J., et al.: Problem definitions and evaluation criteria for the CEC 2005 special session on real-parameter optimization. Technical report, Nanyang Technological University, Singapore, KanGAL Report, IIT Kanpur, India (2005)Google Scholar
  24. 24.
    Liang, J.J., Qu, B.Y., Suganthan, P.N., et al.: Problem definitions and evaluation criteria for the CEC 2013 special session and competition on real-parameter optimization. Technical report, Zhengzhou University, Zhengzhou, China and Nanyang Technological University, Singapore (2013)Google Scholar
  25. 25.
    Liang, J.J., Qu, B.Y., Suganthan, P.N.: Problem definitions and evaluation criteria for the CEC 2014 special session and competition on single objective real-parameter numerical optimization. Technical report, Zhengzhou University, Zhengzhou, China and Nanyang Technological University, Singapore (2013)Google Scholar
  26. 26.
    Liang, J.J., Qu, B.Y., Suganthan, P.N., et al.: Problem definitions and evaluation criteria for the CEC 2015 competition on learning-based real-parameter single objective optimization. Technical report, Zhengzhou University, Zhengzhou, China and Nanyang Technological University, Singapore (2014)Google Scholar
  27. 27.
    Wu, G., Mallipeddi, R., Suganthan, P.N.: Problem definitions and evaluation criteria for the CEC 2017 competition on constrained real-parameter optimization. Technical report, National University of Defense Technology, Changsha, China and Kyungpook National University, Daegu, South Korea and Nanyang Technological University, Singapore (2017)Google Scholar
  28. 28.
    Friedman, M.: The use of ranks to avoid the assumption of normality implicit in the analysis of variance. J. Am. Stat. Assoc. 32(200), 675–701 (1937)CrossRefGoogle Scholar
  29. 29.
    Altman, N.: An introduction to Kernel and nearest-neighbor nonparametric regression. Am. Stat. 46(3), 175–185 (1992)MathSciNetGoogle Scholar
  30. 30.
    Breiman, L.: Random forests. Mach. Learn. 45(1), 5–23 (2001)CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2020

Authors and Affiliations

  1. 1.School of Electrical EngineeringZhengzhou UniversityZhengzhouChina
  2. 2.School of Electronic and Information EngineeringZhongyuan University of TechnologyZhengzhouChina

Personalised recommendations