Skip to main content

Dual-Graph Regularized Sparse Low-Rank Matrix Recovery for Tag Refinement

  • Conference paper
  • First Online:
Bio-inspired Computing: Theories and Applications (BIC-TA 2019)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 1160))

  • 890 Accesses

Abstract

In recent years, extremely large amounts of images with manual tags are easily available in many social websites such as Twitter, Flickr, and Instagram. However, these user-provided tags are often imprecise and incomplete, which inevitably limits the performances of image retrieval and other related applications. To this end, tag refitment technology aims at improving the quality of images tags automatically, and has been a fundamental challenge in Internet era. In this paper, we propose a novel dual-graph regularized sparse low-rank matrix recovery method, referred to as DGSLR briefly, to infer and improve the manual tags. Specifically, our DGSLR model first suppress the sparse noisy tags by \(\ell _1\) norm, and decompose simultaneously the residual low-rank matrix to learning the low-dimensional vector representations of images and tags. Moreover, the visual similarities and the tag pairwise correlation are fully exploited to smooth the decomposition results by using the dual lapalcian graph regularization terms. For optimization, an improved alternative iteration strategy is designed to solve the resulting objective function. Extensive experiments on the tasks of tag refinement demonstrate the superior performance of the proposed algorithms over several representative methods, especially when the manual tag data is highly noisy and sparse.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Ames, M., et al.: Why we tag: motivations for annotation in mobile and online media. In: CHI 2007: Proceeding of the SIGHI Conference on Human Factors in Computing Systems, pp. 971–980. ACM Press (2007)

    Google Scholar 

  2. Arulmozhi, K., Perumal, S.A., Priyadarsini, C.S.T., Nallaperumal, K.: Image refinement using skew angle detection and correction for Indian license plates. In: 2012 IEEE International Conference on Computational Intelligence and Computing Research, pp. 1–4, December 2012. https://doi.org/10.1109/ICCIC.2012.6510316

  3. Chen, J., Yang, J.: Robust subspace segmentation via low-rank representation. IEEE Trans. Cybern. 44(8), 1432–1445 (2014). https://doi.org/10.1109/TCYB.2013.2286106

    Article  Google Scholar 

  4. Cheng, Z., Shen, J., Miao, H.: The effects of multiple query evidences on social image retrieval. Multimed. Syst. 22(4), 509–523 (2014). https://doi.org/10.1007/s00530-014-0432-7

    Article  Google Scholar 

  5. Chua, T.S., Tang, J., Hong, R., Li, H., Luo, Z., Zheng, Y.: NUS-WIDE: a real-world web image database from National University of Singapore. In: CIVR (2009)

    Google Scholar 

  6. Fu, J., Wang, J., Rui, Y., Wang, X., Mei, T., Lu, H.: Image tag refinement with view-dependent concept representations. IEEE Trans. Circuits Syst. Video Technol. 25(8), 1409–1422 (2015). https://doi.org/10.1109/TCSVT.2014.2380211

    Article  Google Scholar 

  7. Garcia, D.H., Mitchell, J.: Feature-extraction-based image scoring (2015)

    Google Scholar 

  8. Wang, H., Ding, C., Huang, H.: Multi-label linear discriminant analysis. In: Daniilidis, K., Maragos, P., Paragios, N. (eds.) ECCV 2010. LNCS, vol. 6316, pp. 126–139. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-15567-3_10

    Chapter  Google Scholar 

  9. Wang, H., Huang, H., Ding, C.: Multi-label feature transform for image classifications. In: Daniilidis, K., Maragos, P., Paragios, N. (eds.) ECCV 2010. LNCS, vol. 6314, pp. 793–806. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-15561-1_57

    Chapter  Google Scholar 

  10. Huiskes, M.J., Lew, M.S.: The MIR Flickr retrieval evaluation. In: Proceedings of the 1st ACM International Conference on Multimedia Information Retrieval, pp. 39–43. ACM (2008)

    Google Scholar 

  11. Jin, Y., Khan, L., Prabhakaran, B.: Knowledge based image annotation refinement. J. Sig. Process. Syst. 58(3), 387–406 (2010)

    Article  Google Scholar 

  12. Jin, Y., Khan, L., Wang, L., Awad, M.: Image annotations by combining multiple evidence and word-net. In: Proceedings of the ACM MM, pp. 706–715 (2005)

    Google Scholar 

  13. Wang, L., Zhou, T.H., Lee, Y.K., Cheoi, K.J., Ryu, K.H.: An efficient refinement algorithm for multi-label image annotation with correlation model. Telecommun. Syst. 60(2), 285–301 (2015). https://doi.org/10.1007/s11235-015-0030-9

    Article  Google Scholar 

  14. Liu, D., Yan, S., Hua, X., Zhang, H.: Image retagging using collaborative tag propagation. IEEE Trans. Multimed. 13(4), 702–712 (2011). https://doi.org/10.1109/TMM.2011.2134078

    Article  Google Scholar 

  15. Liu, D., Hua, X.S., Zhang, H.J.: Content-based tag processing for Internet social images. Multimed. Tools Appl. 51(2), 723–738 (2011). https://doi.org/10.1007/s11042-010-0647-3

    Article  Google Scholar 

  16. Mazumder, R., Hastie, T., Tibshirani, R.: Spectral regularization algorithms for learning large incomplete matrices. J. Mach. Learn. Res. 11, 2287–2322 (2010)

    MathSciNet  MATH  Google Scholar 

  17. Mislove, A., Druschel, P., Bhattacharjee, B., Gummadi, K.P.: Growth of the Flickr social network. In: WOSN (2008)

    Google Scholar 

  18. Nov, O., Chen, Y.: Why do people tag? Motivations for photo tagging. Commun. ACM 53(7), 128–131 (2010). https://doi.org/10.1145/1785414.1785450

    Article  Google Scholar 

  19. Pan, X., He, S., Zhu, X., Fu, Q.: How users employ various popular tags to annotate resources in social tagging: an empirical study. J. Assoc. Inf. Sci. Technol. 67(5), 1121–1137 (2016)

    Article  Google Scholar 

  20. Qian, Z., Zhong, P., Wang, R.: Tag refinement for user-contributed images via graph learning and nonnegative tensor factorization. IEEE Sig. Process. Lett. 22(9), 1302–1305 (2015). https://doi.org/10.1109/LSP.2015.2399915

    Article  Google Scholar 

  21. Ran, X., Chen, J.: Feature extraction for rescue target detection based on multi-spectral image analysis. In: 2015 International Conference on Transportation Information and Safety (ICTIS), pp. 579–582, June 2015. https://doi.org/10.1109/ICTIS.2015.7232204

  22. Sang, J., Xu, C., Liu, J.: User-aware image tag refinement via ternary semantic analysis. IEEE Trans. Multimed. 14(3), 883–895 (2012). https://doi.org/10.1109/TMM.2012.2188782

    Article  Google Scholar 

  23. Tsai, D., Jing, Y., Liu, Y., Rowley, H.A., Ioffe, S., Rehg, J.M.: Large-scale image annotation using visual Synset. In: 2011 International Conference on Computer Vision, pp. 611–618, November 2011. https://doi.org/10.1109/ICCV.2011.6126295

  24. Wang, C., Jing, F., Zhang, L., Zhang, H.: Content-based image annotation refinement. In: 2007 IEEE Conference on Computer Vision and Pattern Recognition, pp. 1–8, June 2007. https://doi.org/10.1109/CVPR.2007.383221

  25. Cheng, W., Wang, X.: Image tag refinement using tag semantic and visual similarity. In: Proceedings of 2011 International Conference on Computer Science and Network Technology, vol. 4, pp. 2146–2149, December 2011. https://doi.org/10.1109/ICCSNT.2011.6182401

  26. Wright, J., Ganesh, A., Rao, S., Peng, Y., Ma, Y.: Robust principal component analysis: exact recovery of corrupted low-rank matrices via convex optimization. In: Bengio, Y., Schuurmans, D., Lafferty, J.D., Williams, C.K.I., Culotta, A. (eds.) Advances in Neural Information Processing Systems 22, pp. 2080–2088. Curran Associates, Inc. (2009). http://papers.nips.cc/paper/3704-robust-principal-component-analysis-exact-recovery-of-corrupted-low-rank-matrices-via-convex-optimization.pdf

  27. Zhu, G., Yan, S., Ma, Y.: Image tag refinement towards low-rank, content-tag prior and error sparsity. In: Proceedings of the 18th ACM international conference on Multimedia, pp. 461–470 (2010)

    Google Scholar 

Download references

Acknowledgements

This work was supported by the Key Natural Science Project of Anhui Provincial Education Department (KJ2018A0023), the Guangdong Province Science and Technology Plan Projects (2017B010110011), the Anhui Key Research and Development Plan (1804a09020101), the National Basic Research Program (973 Program) of China (2015CB351705) and the National Natural Science Foundation of China (61906002, 61402002, 61876002 and 61860206004).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhuanlian Ding .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Sun, D., Bao, Y., Ge, M., Ding, Z., Luo, B. (2020). Dual-Graph Regularized Sparse Low-Rank Matrix Recovery for Tag Refinement. In: Pan, L., Liang, J., Qu, B. (eds) Bio-inspired Computing: Theories and Applications. BIC-TA 2019. Communications in Computer and Information Science, vol 1160. Springer, Singapore. https://doi.org/10.1007/978-981-15-3415-7_20

Download citation

  • DOI: https://doi.org/10.1007/978-981-15-3415-7_20

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-15-3414-0

  • Online ISBN: 978-981-15-3415-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics