Abstract
In recent years, extremely large amounts of images with manual tags are easily available in many social websites such as Twitter, Flickr, and Instagram. However, these user-provided tags are often imprecise and incomplete, which inevitably limits the performances of image retrieval and other related applications. To this end, tag refitment technology aims at improving the quality of images tags automatically, and has been a fundamental challenge in Internet era. In this paper, we propose a novel dual-graph regularized sparse low-rank matrix recovery method, referred to as DGSLR briefly, to infer and improve the manual tags. Specifically, our DGSLR model first suppress the sparse noisy tags by \(\ell _1\) norm, and decompose simultaneously the residual low-rank matrix to learning the low-dimensional vector representations of images and tags. Moreover, the visual similarities and the tag pairwise correlation are fully exploited to smooth the decomposition results by using the dual lapalcian graph regularization terms. For optimization, an improved alternative iteration strategy is designed to solve the resulting objective function. Extensive experiments on the tasks of tag refinement demonstrate the superior performance of the proposed algorithms over several representative methods, especially when the manual tag data is highly noisy and sparse.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Ames, M., et al.: Why we tag: motivations for annotation in mobile and online media. In: CHI 2007: Proceeding of the SIGHI Conference on Human Factors in Computing Systems, pp. 971–980. ACM Press (2007)
Arulmozhi, K., Perumal, S.A., Priyadarsini, C.S.T., Nallaperumal, K.: Image refinement using skew angle detection and correction for Indian license plates. In: 2012 IEEE International Conference on Computational Intelligence and Computing Research, pp. 1–4, December 2012. https://doi.org/10.1109/ICCIC.2012.6510316
Chen, J., Yang, J.: Robust subspace segmentation via low-rank representation. IEEE Trans. Cybern. 44(8), 1432–1445 (2014). https://doi.org/10.1109/TCYB.2013.2286106
Cheng, Z., Shen, J., Miao, H.: The effects of multiple query evidences on social image retrieval. Multimed. Syst. 22(4), 509–523 (2014). https://doi.org/10.1007/s00530-014-0432-7
Chua, T.S., Tang, J., Hong, R., Li, H., Luo, Z., Zheng, Y.: NUS-WIDE: a real-world web image database from National University of Singapore. In: CIVR (2009)
Fu, J., Wang, J., Rui, Y., Wang, X., Mei, T., Lu, H.: Image tag refinement with view-dependent concept representations. IEEE Trans. Circuits Syst. Video Technol. 25(8), 1409–1422 (2015). https://doi.org/10.1109/TCSVT.2014.2380211
Garcia, D.H., Mitchell, J.: Feature-extraction-based image scoring (2015)
Wang, H., Ding, C., Huang, H.: Multi-label linear discriminant analysis. In: Daniilidis, K., Maragos, P., Paragios, N. (eds.) ECCV 2010. LNCS, vol. 6316, pp. 126–139. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-15567-3_10
Wang, H., Huang, H., Ding, C.: Multi-label feature transform for image classifications. In: Daniilidis, K., Maragos, P., Paragios, N. (eds.) ECCV 2010. LNCS, vol. 6314, pp. 793–806. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-15561-1_57
Huiskes, M.J., Lew, M.S.: The MIR Flickr retrieval evaluation. In: Proceedings of the 1st ACM International Conference on Multimedia Information Retrieval, pp. 39–43. ACM (2008)
Jin, Y., Khan, L., Prabhakaran, B.: Knowledge based image annotation refinement. J. Sig. Process. Syst. 58(3), 387–406 (2010)
Jin, Y., Khan, L., Wang, L., Awad, M.: Image annotations by combining multiple evidence and word-net. In: Proceedings of the ACM MM, pp. 706–715 (2005)
Wang, L., Zhou, T.H., Lee, Y.K., Cheoi, K.J., Ryu, K.H.: An efficient refinement algorithm for multi-label image annotation with correlation model. Telecommun. Syst. 60(2), 285–301 (2015). https://doi.org/10.1007/s11235-015-0030-9
Liu, D., Yan, S., Hua, X., Zhang, H.: Image retagging using collaborative tag propagation. IEEE Trans. Multimed. 13(4), 702–712 (2011). https://doi.org/10.1109/TMM.2011.2134078
Liu, D., Hua, X.S., Zhang, H.J.: Content-based tag processing for Internet social images. Multimed. Tools Appl. 51(2), 723–738 (2011). https://doi.org/10.1007/s11042-010-0647-3
Mazumder, R., Hastie, T., Tibshirani, R.: Spectral regularization algorithms for learning large incomplete matrices. J. Mach. Learn. Res. 11, 2287–2322 (2010)
Mislove, A., Druschel, P., Bhattacharjee, B., Gummadi, K.P.: Growth of the Flickr social network. In: WOSN (2008)
Nov, O., Chen, Y.: Why do people tag? Motivations for photo tagging. Commun. ACM 53(7), 128–131 (2010). https://doi.org/10.1145/1785414.1785450
Pan, X., He, S., Zhu, X., Fu, Q.: How users employ various popular tags to annotate resources in social tagging: an empirical study. J. Assoc. Inf. Sci. Technol. 67(5), 1121–1137 (2016)
Qian, Z., Zhong, P., Wang, R.: Tag refinement for user-contributed images via graph learning and nonnegative tensor factorization. IEEE Sig. Process. Lett. 22(9), 1302–1305 (2015). https://doi.org/10.1109/LSP.2015.2399915
Ran, X., Chen, J.: Feature extraction for rescue target detection based on multi-spectral image analysis. In: 2015 International Conference on Transportation Information and Safety (ICTIS), pp. 579–582, June 2015. https://doi.org/10.1109/ICTIS.2015.7232204
Sang, J., Xu, C., Liu, J.: User-aware image tag refinement via ternary semantic analysis. IEEE Trans. Multimed. 14(3), 883–895 (2012). https://doi.org/10.1109/TMM.2012.2188782
Tsai, D., Jing, Y., Liu, Y., Rowley, H.A., Ioffe, S., Rehg, J.M.: Large-scale image annotation using visual Synset. In: 2011 International Conference on Computer Vision, pp. 611–618, November 2011. https://doi.org/10.1109/ICCV.2011.6126295
Wang, C., Jing, F., Zhang, L., Zhang, H.: Content-based image annotation refinement. In: 2007 IEEE Conference on Computer Vision and Pattern Recognition, pp. 1–8, June 2007. https://doi.org/10.1109/CVPR.2007.383221
Cheng, W., Wang, X.: Image tag refinement using tag semantic and visual similarity. In: Proceedings of 2011 International Conference on Computer Science and Network Technology, vol. 4, pp. 2146–2149, December 2011. https://doi.org/10.1109/ICCSNT.2011.6182401
Wright, J., Ganesh, A., Rao, S., Peng, Y., Ma, Y.: Robust principal component analysis: exact recovery of corrupted low-rank matrices via convex optimization. In: Bengio, Y., Schuurmans, D., Lafferty, J.D., Williams, C.K.I., Culotta, A. (eds.) Advances in Neural Information Processing Systems 22, pp. 2080–2088. Curran Associates, Inc. (2009). http://papers.nips.cc/paper/3704-robust-principal-component-analysis-exact-recovery-of-corrupted-low-rank-matrices-via-convex-optimization.pdf
Zhu, G., Yan, S., Ma, Y.: Image tag refinement towards low-rank, content-tag prior and error sparsity. In: Proceedings of the 18th ACM international conference on Multimedia, pp. 461–470 (2010)
Acknowledgements
This work was supported by the Key Natural Science Project of Anhui Provincial Education Department (KJ2018A0023), the Guangdong Province Science and Technology Plan Projects (2017B010110011), the Anhui Key Research and Development Plan (1804a09020101), the National Basic Research Program (973 Program) of China (2015CB351705) and the National Natural Science Foundation of China (61906002, 61402002, 61876002 and 61860206004).
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2020 Springer Nature Singapore Pte Ltd.
About this paper
Cite this paper
Sun, D., Bao, Y., Ge, M., Ding, Z., Luo, B. (2020). Dual-Graph Regularized Sparse Low-Rank Matrix Recovery for Tag Refinement. In: Pan, L., Liang, J., Qu, B. (eds) Bio-inspired Computing: Theories and Applications. BIC-TA 2019. Communications in Computer and Information Science, vol 1160. Springer, Singapore. https://doi.org/10.1007/978-981-15-3415-7_20
Download citation
DOI: https://doi.org/10.1007/978-981-15-3415-7_20
Published:
Publisher Name: Springer, Singapore
Print ISBN: 978-981-15-3414-0
Online ISBN: 978-981-15-3415-7
eBook Packages: Computer ScienceComputer Science (R0)