Skip to main content

Role of Bacterial Communities to Prevent the Microbial Growth on Cultural Heritage

  • Chapter
  • First Online:
Microbial Biotechnology Approaches to Monuments of Cultural Heritage

Abstract

Different microorganisms have a considerable and important role in maintenance and prevention of cultural heritage buildings or different materials from deterioration. They have key role in deterioration processes. So, there is an urgent need to upgrade and apply new technologies and methods to identify the responsible microorganisms and manage them by using eco-friendly methods. However, there is a common consent that microorganisms play a significant role in the deterioration of cultural heritage, along with the same few microbes also play a significant role as a biocleaning agents, for the conservation of such type of materials. Recent research is carried out in this field where few microbial especially bacterial strains have been utilized as bio cleaning agents, which are frequently used in the preservation and restoration of cultural heritage. In this book chapter, we are highlighting the concerned common deteriorating agents and its control by using different strategies, with reference to the role of various kinds of bacterial communities for the management of such kind of problems in historical-cultural materials.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Achal V, Mukherjee A, Goyal S, Reddy M (2012) Corrosion prevention of reinforced concrete with microbial calcite precipitation. ACI Mater J 109:157–164

    Google Scholar 

  • Anderson S, Appanna VD, Huang J, Viswanatha T (1992) A novel role for calcite in calcium homeostasis. FEBS Lett 308:94–96

    Article  CAS  Google Scholar 

  • Basaran Z (2013) Biomineralization in cement based materials: inoculation of vegetative cells. Ph.D. Thesis, The University of Texas at Austin

    Google Scholar 

  • Cacchio P, Ercole C, Cappuccio G, Lepidi A (2003) Calcium carbonate precipitation by bacterial strains isolated from a limestone cave and from a loamy soil. Geomicrobiol J 20:85–98

    Article  CAS  Google Scholar 

  • Castanier S, Le Métayer-Levrel G, Perthuisot J-P (1999) Ca-carbonates precipitation and limestone genesis—the microbiogeologist point of view. Sedimentary Geol 126:9–23

    Article  CAS  Google Scholar 

  • De Belie N, Wang J (2016) Bacteria based repair and self-healing of concrete. J Sustain Cement-Based Mater 5:35–56

    Article  Google Scholar 

  • De Muynck W, De Belie N, Verstraete W (2010) Microbial carbonate precipitation in construction materials: a review. Ecol Eng 36:118–136

    Article  Google Scholar 

  • Gauri KL, Parks L, Jaynes J, Atlas R (1992) Removal of sulphated-crust from marble using sulphate-reducing bacteria. In: Proceedings of the international conference held in Edinburgh, UK, pp 160–165

    Google Scholar 

  • Ghosh PS, Mandal BD, Chattopadhyay S, Pal (2005) Use of microorganism to improve the strength of cement mortar. Cem Concr Res 35:1980–1983

    Article  CAS  Google Scholar 

  • Ghosh P, Mandal S, Pal S, Bandyopadhyaya G, Chattopadhyay BD (2006) Development of bioconcrete material using an enrichment culture of novel thermophilic anaerobic bacteria. J Exp Biol 44:336

    CAS  Google Scholar 

  • González-Ruibal A (2005) The need for a decaying past: an archaeology of oblivion in contemporary Galicia (NW Spain). Home Cult 2:129–152

    Article  Google Scholar 

  • Hideo Arai (2013) Microbiological problems in biodeterioration of cultural property: forty years of study. In: Dhawan S, Abduraheem K, Virendra N (eds) Biodeterioration of cultural Property-7. ICBCP, Sukriti Nikunj, pp 1–10

    Google Scholar 

  • Horie CV (1987) Materials for conservation: organic consolidants, adhesives and coatings. Butterworths, London

    Google Scholar 

  • Jroundi F, Fernández-Vivas A, Rodriguez-Navarro C, Bedmar EJ, González-Muñoz MT (2010) Bioconservation of deteriorated monumental calcarenite stone and identification of bacteria with carbonatogenic activity. Microb Ecol 60:39–54

    Article  CAS  Google Scholar 

  • Koestler RJ (2000) When bad things happen to good art. Int Biodet Biodeg 46:259–269

    Article  Google Scholar 

  • Kumar R, Kumar AV (1999) Biodeterioration of stone in tropical environments: an overview. Getty Publications, Los Angeles

    Google Scholar 

  • Law JH, Slepecky RA (1961) Assay of poly-β-hydroxybutyric acid. J Bacteriol Res 82:33–36

    Article  CAS  Google Scholar 

  • Le Metayer-Levrel G, Castanier S, Orial G, Loubiere JF, Perthuisot JP (1999) Applications of bacterial carbonatogenesis to the protection and regeneration of limestones in buildings and historic patrimony. Sediment Geol 126:25–34

    Article  Google Scholar 

  • Lewin SZ, Baer NS (1974) Rationale of the barium hydroxide-urea treatment of decayed stone. Stud Conserv 19:24–35

    CAS  Google Scholar 

  • McNamara CJ, Perry TD, Bearce KA, Hernandez-Duque G, Mitchell R (2006) Epilithic and endolithic bacterial communities in limestone from a Maya archaeological site. Microb Ecol 51:51–64

    Article  Google Scholar 

  • Orial G, Castanier S, Le Metayer G, Loubière JF (1992) The biomineralization: a new process to protect calcareous stone; applied to historic monuments. In: Biodeterioration of cultural property 2: proceedings of the 2nd international conference on biodeterioration of cultural property, Valladolid, Spain

    Google Scholar 

  • Park S-J, Park Y-M, Chun W-Y, Kim W-J, Ghim S-Y (2010) Calcite-forming bacteria for compressive strength improvement in mortar. J Microbiol Biotechnol 20:782–788

    CAS  PubMed  Google Scholar 

  • Price C, Ross K, White G (1988) A further appraisal of the ‘lime technique’ for limestone consolidation, using a radioactive tracer. Stud Conserv 33:178–186

    CAS  Google Scholar 

  • Ranalli G, Matteini M, Tosini I, Zanardini E, Sorlini C (2000) Bioremediation of cultural heritage: removal of sulphates, nitrates and organic substances. In: Of microbes and art. Springer, Boston, pp 231–245

    Chapter  Google Scholar 

  • Ranalli G et al (2005) Biotechnology applied to cultural heritage: biorestoration of frescoes using viable bacterial cells and enzymes. J Appl Microbiol 98:73–83

    Article  CAS  Google Scholar 

  • Rivadeneyra MA, Párraga J, Delgado R, Ramos-Cormenzana A, Delgado G (2004) Biomineralization of carbonates by Halobacillus trueperi in solid and liquid media with different salinities. FEMS Microbiol Ecol 48:39–46

    Article  CAS  Google Scholar 

  • Rivadeneyra MA, Martín-Algarra A, Sánchez-Navas A, Martín-Ramos D (2006) Carbonate and phosphate precipitation by Chromohalobacter marismortui. Geomicrobiol J 23:1–13

    Article  CAS  Google Scholar 

  • Rodriguez-Navarro C, Rodriguez-Gallego M, Chekroun KB, Gonzalez-Munoz MT (2003) Conservation of ornamental stone by Myxococcus xanthus-induced carbonate biomineralization. Appl Environ Microbiol 69:2182–2193

    Article  CAS  Google Scholar 

  • Sáiz-Jiménez C (1997) Biodeterioration vs biodegradation: the role of microorganisms in the removal of pollutants deposited on historic buildings. Int Biodeterior Biodegradation 40:225–232

    Article  Google Scholar 

  • Sand W (2001) Microbial corrosion and its inhibition. In: Rehm HJ (ed) Biotechnology, vol 10. Wiley-VCH Verlag GmbH, Weinheim, pp 183–190

    Google Scholar 

  • Sarda D, Choonia HS, Sarode DD, Lele SS (2009) Biocalcification by Bacillus pasteurii urease: a novel application. J Ind Microbiol Biotechnol 36:1111–1115

    Article  CAS  Google Scholar 

  • Setlow P (1994) Mechanisms which contribute to the long–term survival of spores of Bacillus species. J Appl Microbiol 76:49–60

    Google Scholar 

  • Tiano P, Biagiotti L, Mastromei G (1999) Bacterial bio-mediated calcite precipitation for monumental stones conservation: methods of evaluation. J Microbiol Methods 36:139–145

    Article  CAS  Google Scholar 

  • Tiano P, Cantisani E, Sutherland I, Paget J (2006) Biomediated reinforcement of weathered calcareous stones. J Cult Herit 7:49–55

    Article  Google Scholar 

  • Tilak ST, Pande BN (1997) Biodeteriogens inside a library. In: Agashe SN (ed) Aerobiology. Pub. Oxford & IBH, New Delhi, pp 177–189

    Google Scholar 

  • Verma RK, Chaurasia L, Bisht V, Thakur M (2015) Bio-mineralization and bacterial carbonate precipitation in mortar and concrete. J Biosci Bioeng India 1:5–11

    CAS  Google Scholar 

  • Wang J (2013) Self-healing concrete by means of immobilized carbonate precipitating bacteria. PhD thesis, Ghent University, Belgium

    Google Scholar 

  • Wang J, Soens H, Verstraete W, De Belie N (2014) Self-healing concrete by use of microencapsulated bacterial spores. Cem Concr Res 56:139–152

    Article  CAS  Google Scholar 

  • Warscheid T, Braams J (2000) Biodeterioration of stone: a review. Int Biodeterior Biodegradation 46:343–368

    Article  CAS  Google Scholar 

  • Webster A, May E (2006) Bioremediation of weathered-building stone surfaces. Trends Biotechnol 24:255–260

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jatinder Singh .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Upadhyay, H., Chhabra, V., Singh, J. (2020). Role of Bacterial Communities to Prevent the Microbial Growth on Cultural Heritage. In: Yadav, A., Rastegari, A., Gupta, V., Yadav, N. (eds) Microbial Biotechnology Approaches to Monuments of Cultural Heritage. Springer, Singapore. https://doi.org/10.1007/978-981-15-3401-0_3

Download citation

Publish with us

Policies and ethics