Skip to main content

Impacts of Synthetic Pesticides on Soil Health and Non-targeted Flora and Fauna

  • Chapter
  • First Online:
Ecological and Practical Applications for Sustainable Agriculture

Abstract

The complications associated with excessive use of synthetic pesticides are well known. Synthetic pesticides are lethal to a host of living organisms, be it insect, weed, rodent, etc. At the same time, they are also accountable for degrading soil quality. The adverse impact of pesticides on non-target organisms is quite noticeable because it disrupts the entire natural ecosystems, particularly soil and aquatic ecosystems. Because of this, the application of several pesticides has been banned. Most of the pesticides like organochlorine are significantly resistant to biodegradation, and therefore, they have high risk of entering into the food chain, thus causing adverse impact on non-target species like pollinator insects, birds, fishes, beneficial microorganisms, etc. In this chapter, the emphasis has been laid upon the impacts of synthetic pesticides on the health of soil as well as non-targeted flora and fauna.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abd-Alla MH, Omar SA, Karanxha S (2000) The impact of pesticides on arbuscular mycorrhizal and nitrogen-fixing symbioses in legumes. Appl Soil Ecol 14(3):191–200

    Google Scholar 

  • Ahemad M, Khan MS (2012) Effects of pesticides on plant growth promoting traits of Mesorhizobium strain MRC4. J Saudi Soci Agri Sci 11(1):63–71

    CAS  Google Scholar 

  • Aislabie J, Lloyd-Jones G (1995) Bacterial degradation of pesticides. Aust J Soil Res 33:925–942

    CAS  Google Scholar 

  • Alewu B, Nosiri C (2011) Pesticides and human health. In: Stoytcheva M (ed) Pesticides in the modern world—effects of pesticides exposure. In Tech, Rijeka, pp 231–250

    Google Scholar 

  • Alharbi OM, Khattab RA, Ali I (2018) Health and environmental effects of persistent organic pollutants. J Mol Liq 263:442–453

    CAS  Google Scholar 

  • Al-Zaidi AA, Elhag EA, Al-Otaibi SH, Baig MB (2011) Negative effects of pesticides on the environment and the farmers awareness in Saudi Arabia: a case study. J Anim Plant Sci 21(3):605–611

    Google Scholar 

  • Arora S, Arora S, Sahni D (2019) Pesticides use and its effect on soil bacteria and fungal populations, microbial biomass carbon and enzymatic activity. Curr Sci 116(4):643–649

    CAS  Google Scholar 

  • Bendahou N, Bounias M, Fleche C (1999) Toxicity of cypermethrin and fenitrothion on the hemolymph carbohydrates, head acetylcholinesterase, and thoracic muscle Na+, K+-ATPase of emerging honeybees (Apis mellifera mellifera. L). Ecotox Environ Safe 44(2):139–146

    CAS  Google Scholar 

  • Bending GD, Lincoln SD, Edmondson RN (2006) Spatial variation in the degradation rate of the pesticides isoproturon, azoxystrobin and diflufenican in soil and its relationship with chemical and microbial properties. Environ Pollut 139:279–287

    CAS  PubMed  Google Scholar 

  • Bonner MR, Alavanja MC (2017) Pesticides, human health, and food security. Food Energy Secur 6(3):89–93

    Google Scholar 

  • Bowles TM, Acosta-Martínez V, Calderón F, Jackson LE (2014) Soil enzyme activities, microbial communities, and carbon and nitrogen availability in organic agroecosystems across an intensively-managed agricultural landscape. Soil Biol Biochem 68:252–262

    CAS  Google Scholar 

  • Bünemann EK, Schwenke GD, Van Zwieten L (2006) Impact of agricultural inputs on soil organisms—a review. Soil Res 44(4):379–406

    Google Scholar 

  • Cáceres TP, He W, Megharaj M, Naidu R (2008) Effect of insecticide fenamiphos on soil microbial activities in Australian and Ecuadorean soils. J Environ Sci Heal B 44(1):13–17

    Google Scholar 

  • Chowdhury A, Pradhan S, Saha M, Sanyal N (2008) Impact of pesticides on soil microbiological parameters and possible bioremediation strategies. Indian J Microbiol 48(1):114–127

    CAS  PubMed  PubMed Central  Google Scholar 

  • Cooke AS (1973) Shell thinning in avian eggs by environmental pollutants. Environ Pollut 4(2):85–152

    CAS  Google Scholar 

  • Pimentel D, Burgess M (2011) Small amounts of pesticides reaching target insects. Environ Dev Sustain 14:1–2

    Google Scholar 

  • Damalas C, Koutroubas S (2016) Farmers’ exposure to pesticides: toxicity types and ways of prevention. Toxics 4(1), 1

    Google Scholar 

  • Debost-Legrand A, Warembourg C, Massart C (2016) Prenatal exposure to persistent organic pollutants and organophosphate pesticides, and markers of glucose metabolism at birth. Environ Res 146:207–217

    CAS  PubMed  Google Scholar 

  • Desneux N, Decourtye A, Delpuech JM (2007) The sublethal effects of pesticides on beneficial arthropods. Annu Rev Entomol 52:81–106

    CAS  Google Scholar 

  • Devi NL (2020) Persistent organic pollutants (POPs): environmental risks, toxicological effects, and bioremediation for environmental safety and challenges for future research. In: Saxena G, Bharagava R (eds) Bioremediation of industrial waste for environmental safety. Springer, Singapore, pp 53–76

    Google Scholar 

  • Dhakal R, Singh DN (2019) Biopesticides: a key to sustainable agriculture. Int J Pure App Biosci 7(3):391–396

    Google Scholar 

  • Druille M, Cabello MN, Omacini M, Golluscio RA (2013) Glyphosate reduces spore viability and root colonization of arbuscular mycorrhizal fungi. Appl Soil Ecol 64:99–103

    Google Scholar 

  • Duran RE, Kilic S, Coskun Y (2015) Response of maize (Zea mays L. saccharata Sturt) to different concentration treatments of deltamethrin. Pest Biochem Physiol 124:15–20

    CAS  Google Scholar 

  • Du P, Wu X, Xu J, Dong F, Liu X, Zheng Y (2018) Effects of trifluralin on the soil microbial community and functional groups involved in nitrogen cycling. J Hazard Mater 353:204–213

    CAS  PubMed  Google Scholar 

  • Eskenazi B, Marks AR, Bradman A, Fenster L, Johnson C, Barr DB (2006) In utero exposure to dichlorodiphenyltrichloroethane (DDT) and dichlorodiphenyldichloroethylene (DDE) and neurodevelopment among young Mexican American children. Pediatrics 118:233–241

    PubMed  Google Scholar 

  • FAO (2009) Feeding the world in 2050. World agricultural summit on food security 16–18 November 2009. Food and Agriculture Organization of the United Nations, Rome

    Google Scholar 

  • FAO (2017). Available at http://www.fao.org/faostat/en/#home

  • Feltham H, Park K, Goulson D (2014) Field realistic doses of pesticide imidacloprid reduce bumblebee pollen foraging efficiency. Ecotoxicology 23(3):317–323

    CAS  PubMed  Google Scholar 

  • Ferronato G, Viera MS, Prestes OD, Adaime MB, Zanella R (2018) Determination of organochlorine pesticides (OCPs) in breast milk from Rio Grande do Sul, Brazil, using a modified QuEChERS method and gas chromatography-negative chemical ionisation-mass spectrometry. Int J Environ Anch 98(11):1005–1016

    CAS  Google Scholar 

  • Fulton CA, Hartz KEH, Fell RD et al (2019) An assessment of pesticide exposures and land use of honey bees in Virginia. Chemosphere 222:489–493

    CAS  PubMed  Google Scholar 

  • Garcia PC, Rivero RM, Ruiz JM (2003) The role of fungicides in the physiology of higher plants: implications for defense responses. Bot Rev 69(2):162–172

    Google Scholar 

  • Garcia FP, Ascencio SYC, Oyarzun JCG (2012) Pesticides: classification, uses and toxicity. Measures of exposure and genotoxic risks. J Res Environ Sci Toxicol 1(11):279–293

    Google Scholar 

  • Gasnier C, Dumont C, Benachour N (2009) Glyphosate-based herbicides are toxic and endocrine disruptors in human cell lines. Toxicology 262:184–191

    CAS  PubMed  Google Scholar 

  • Gill RJ, Ramos RO, Raine NE (2012) Combined pesticide exposure severely affects individual-and colony-level traits in bees. Nature 491:105–108

    CAS  PubMed  PubMed Central  Google Scholar 

  • Girvan MS, Campbell CD, Killham K, Prosser JI, Glover LA (2005) Bacterial diversity promotes community stability and functional resilience after perturbation. Environ Microbiol 7(3):301–313

    CAS  PubMed  Google Scholar 

  • Goad ER, Goad JT, Atieh BH, Gupta RC (2004) Carbofuran-induced endocrine disruption in adult male rats. Toxicol Mech Methods 14:233–239

    CAS  PubMed  Google Scholar 

  • Goel A, Aggarwal P (2007) Pesticide poisoning. Natl Med J India 20:182–191

    PubMed  Google Scholar 

  • Gopal M, Gupta A, Arunachalam V, Magu SP (2007) Impact of azadirachtin, an insecticidal allelochemical from neem on soil microflora, enzyme and respiratory activities. Bioresour Technol 98(16):3154–3158

    CAS  PubMed  Google Scholar 

  • Grube A, Donaldson D, Kiely T, Wu L (2011) Pesticides industry sales and usage. US EPA, Washington, DC

    Google Scholar 

  • Gundi VA, Narasimha G, Reddy BR (2005) Interaction effects of insecticides on microbial populations and dehydrogenase activity in a black clay soil. J Environ Sci Heal 40(2):69–283

    Google Scholar 

  • Gunnell D, Eddleston M, Phillips MR, Konradsen F (2007) The global distribution of fatal pesticide self-poisoning: systematic review. BMC Public Health 7:357–371

    PubMed  PubMed Central  Google Scholar 

  • Guo H, Jin Y, Cheng Y (2014) Prenatal exposure to organochlorine pesticides and infant birth weight in China. Chemosphere 110:1–7

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hage-Ahmed K, Rosner K, Steinkellner S (2019) Arbuscular mycorrhizal fungi and their response to pesticides. Pest Manag Sci 75(3):583–590

    CAS  PubMed  Google Scholar 

  • Henry RS, Johnson WG, Wise KA (2011) The impact of a fungicide and an insecticide on soybean growth, yield, and profitability. Crop Prot 30(12):1629–1634

    CAS  Google Scholar 

  • Hou B, Wu L (2010) Safety impact and farmer awareness of pesticide residues. Food Agr Immunol 21(3):191–200

    Google Scholar 

  • Howe CM, Berrill M, Pauli BD (2004) Toxicity of glyphosate-based pesticides to four North American frog species. Environ Toxicol Chem 23(8):1928–1938

    CAS  PubMed  Google Scholar 

  • Hussein M, Singh V (2016) Effect on chick embryos development after exposure to neonicotinoid insecticide imidacloprid. J Anat Soc India 65(2):83–89

    Google Scholar 

  • Jaga K, Dharmani C (2003) Sources of exposure to and public health implications of organophosphate pesticides. Rev Panam Salud Publica 14:171–185

    PubMed  Google Scholar 

  • Jayaraj R, Megha P, Sreedev P (2016) Organochlorine pesticides, their toxic effects on living organisms and their fate in the environment. Interdiscip Toxicol 9(3–4):90–100

    CAS  PubMed  Google Scholar 

  • Jiang J, Zhang Z, Yu X, Ma D, Yu C, Liu F, Wei M (2018) Influence of lethal and sublethal exposure to clothianidin on the seven-spotted lady beetle, Coccinella septempunctata L. (Coleoptera: Coccinellidae). Ecotoxicol Environ Saf 161:208–213

    CAS  PubMed  Google Scholar 

  • Ju C, Xu J, Wu X, Dong F, Liu X, Tian C, Zheng Y (2017) Effects of hexaconazole application on soil microbes community and nitrogen transformations in paddy soils. Sci Total Environ 609:655–663

    CAS  PubMed  Google Scholar 

  • Kah M, Brown CD (2006) Adsorption of ionisable pesticides in soils. In: Whitacre DM (ed) Reviews of environmental contamination and toxicology. Springer, New York, pp 149–217

    Google Scholar 

  • Kalia A, Gosal SK (2011) Effect of pesticide application on soil microorganisms. Arch Agron Soil Sci 57(6):569–596

    CAS  Google Scholar 

  • Khudhur M, Askar KA (2013) Effect of some pesticides on growth, nitrogen fixation and nif genes in Azotobacter chroococcum and Azotobacter vinelandii isolated from soil. J Toxicol Environ Health Sci 5(9):166–171

    Google Scholar 

  • Klaassen CD, Amdur MO (eds) (2013) Casarett and Doull’s toxicology: the basic science of poisons, vol 1236. McGraw-Hill, New York

    Google Scholar 

  • Klinčić D, Romanić SH, Sarić MM (2014) Polychlorinated biphenyls and organochlorine pesticides in human milk samples from two regions in Croatia. Environ Toxicol Pharmacol 37(2):543–552

    PubMed  Google Scholar 

  • Korenko S, Niedobová J, Kolářová M (2016) The effect of eight common herbicides on the predatory activity of the agrobiont spider Pardosa agrestis. BioControl 61(5):507–517

    CAS  Google Scholar 

  • Kumar S (2011) Fluctuation of soil bacterial dehydrogenase activity in response to the application of endosulfan and chlorpyrifos. Cell Tissue Res 11(2):2847–2851

    CAS  Google Scholar 

  • Kumar U, Berliner J, Adak T, Rath PC, Dey A, Pokhare SS, Jambhulkar NN, Panneerselvam P, Kumar A, Mohapatra SD (2017) Non-target effect of continuous application of chlorpyrifos on soil microbes, nematodes and its persistence under sub-humid tropical rice-rice cropping system. Ecotoxicol Environ Saf 135:225–235

    CAS  PubMed  Google Scholar 

  • Kumar S, Singh R, Behera M, Kumar V, Sweta RA, Kumar N, Bauddh K (2018a) Restoration of pesticide contaminated sites through plants. In: Pandey VC, Bauddh K (eds) Phytomanagement of polluted sites. Elsevier, Amsterdam, pp 313–327

    Google Scholar 

  • Kumar S, Joshi PC, Nath P (2018b) Impacts of insecticides on pollinators of different food plants. Entomol Ornithol Herpetol 7(2):1–6

    Google Scholar 

  • Leadprathom N, Parkpian P, Satayavivad J (2009) Transport and deposition of organochlorine pesticides from farmland to estuary under tropical regime and their potential risk to aquatic biota. J Environ Sci Heal B 44(3):249–261

    CAS  Google Scholar 

  • Lebuhn G, Droege S, Connor EF (2013) Detecting insect pollinator declines on regional and global scales. Conserv Biol 27(1):113–120

    PubMed  Google Scholar 

  • Lee DH, Jacobs DR, Porta M (2007) Association of serum concentrations of persistent organic pollutants with the prevalence of learning disability and attention deficit disorder. J Epidemiol Community Health 61(7):591–596

    PubMed  PubMed Central  Google Scholar 

  • Lee S, Kim S, Lee HK (2013) Contamination of polychlorinated biphenyls and organochlorine pesticides in breast milk in Korea: time-course variation, influencing factors, and exposure assessment. Chemosphere 93(8):1578–1585

    CAS  PubMed  Google Scholar 

  • Littlefield-Wyer JG, Brooks P, Katouli M (2008) Application of biochemical fingerprinting and fatty acid methyl ester profiling to assess the effect of the pesticide atradex on aquatic microbial communities. Environ Pollut 153:393–400

    CAS  PubMed  Google Scholar 

  • Macneale KH, Kiffney PM, Scholz NL (2010) Pesticides, aquatic food webs, and the conservation of Pacific salmon. Front Ecol Environ 8:475–482

    Google Scholar 

  • Maddela NR, Venkateswarlu K (2018) Impact of acephate and buprofezin on soil amylases. In: Maddela NR, Venkateswarlu K (eds) Insecticides soil microbiota interactions. Springer, Cham, pp 41–48

    Google Scholar 

  • Madhaiyan M, Poonguzhali S, Hari K (2006) Influence of pesticides on the growth rate and plant-growth promoting traits of Gluconacetobacter diazotrophicus. Pest Biochem Physiol 84:143–154

    CAS  Google Scholar 

  • Madhavi A, Anuradha B, Rangaswamy V (2019) Influence of pesticides on Azospirillum sp. population and its nitrogen fixation in groundnut (Arachis hypogaea L.) soils. J Adv Microbiol 15(4):1–12

    Google Scholar 

  • Makris G, Chrousos GP, Anesiadou S (2019) Serum concentrations and detection rates of selected organochlorine pesticides in a sample of Greek school-aged children with neurodevelopmental disorders. Environ Sci Pollut Res 26(23):23739–23753

    Google Scholar 

  • Martinez-Toledo MV, Salmeron V, Gonzalez-Lopez J (1992) Effect of the insecticides methylpyrimifos and chlorpyrifos on soil microflora in an agricultural loam. Plant Soil 147(1):25–30

    CAS  Google Scholar 

  • McKinlay R, Plant JA, Bell JNB, Voulvoulis N (2008) Endocrine disrupting pesticides: implications for risk assessment. Environ Int 34:168–183

    CAS  PubMed  Google Scholar 

  • Menon P, Gopal M, Prasad R (2004) Influence of two insecticides, chlorpyrifos and quinalphos, on arginine ammonification and mineralizable nitrogen in two tropical soil types. J Agr Food Chem 52(24):7370–7376

    CAS  Google Scholar 

  • Michalko R, Košulič O (2016) Temperature-dependent effect of two neurotoxic insecticides on predatory potential of Philodromus spiders. J Pest Sci 89(2):517–527

    Google Scholar 

  • Mitra A, Chatterjee C, Mandal FB (2011) Synthetic chemical pesticides and their effects on birds. Res J Environ Toxicol 5(2):81–96

    CAS  Google Scholar 

  • Mnif W, Hassine AIH, Bouaziz A (2011) Effect of endocrine disruptor pesticides: a review. Int J Environ Res Public Health 8:2265–2203

    CAS  PubMed  PubMed Central  Google Scholar 

  • Moghaddam NS, Zakaria MP, Omar D (2011) Effects of imidacloprid on the biodiversity of soil microbes in selected soils of Malaysia. In: Proceedings 2nd international conference on environmental science and development IPCBEE, vol 4

    Google Scholar 

  • Mulla SI et al (2020) Organophosphate pesticides: impact on environment, toxicity, and their degradation. In: Saxena G, Bharagava R (eds) Bioremediation of industrial waste for environmental safety. Springer, Singapore, pp 265–290

    Google Scholar 

  • Mustapha MU, Halimoon N, Johar WLW, Shukor MYA (2019) An overview on biodegradation of carbamate pesticides by soil bacteria. Pertanika J Sci Technol 27(2):547–563

    Google Scholar 

  • Nason MA, Farrar J, Bartlett D (2007) Strobilurin fungicides induce changes in photosynthetic gas exchange that do not improve water use efficiency of plants grown under conditions of water stress. Pest Manag Sci 63(12):1191–1200

    CAS  PubMed  Google Scholar 

  • National Research Council (2000) The future role of pesticides in US agriculture. National Academy Press, Washington, DC

    Google Scholar 

  • Ndakidemi B, Mtei K, Ndakidemi PA (2016) Impacts of synthetic and botanical pesticides on beneficial insects. Agri Sci 7(06):364

    CAS  Google Scholar 

  • Nicholson PS, Hirsch PR (1998) The effects of pesticides on the diversity of culturable soil bacteria. J Appl Microbiol 84(4):551–558

    CAS  Google Scholar 

  • Nicolopoulou-Stamati P, Maipas S, Kotampasi C, Stamatis P, Hens L (2016) Chemical pesticides and human health: the urgent need for a new concept in agriculture. Front Pub Health 4:148

    Google Scholar 

  • Oerke EC (2005) Crop losses to pests. J Agr Sci 144:31–43

    Google Scholar 

  • Oerke EC, Dehne HW (2004) Safeguarding production—losses in major crops and the role of crop protection. Crop Prot 23:275–285

    Google Scholar 

  • Oerke EC, Dehne HW, Schonbeck F, Weber A (1994) Crop production and crop protection—estimated losses in major food and cash crops. Elsevier, Amsterdam, 808 pp

    Google Scholar 

  • Ogut S (2019) Genotoxic effects of pesticides. J Environ Ecol 20(1):224–229

    Google Scholar 

  • Orłowski G, Hałupka L, Klimczuk E (2016) Shell thinning due to embryo development in eggs of a small passerine bird. J Ornithol 157(2):565–572

    Google Scholar 

  • Pecenka JR, Lundgren JG (2015) Non-target effects of clothianidin on monarch butterflies. Sci Nat 102(3–4)19:1–4

    Google Scholar 

  • Pelosi C, Barot S, Capowiez Y, Hedde M, Vandenbulcke F (2014) Pesticides and earthworms. A review. Agron Sustain Dev 34(1):199–228

    CAS  Google Scholar 

  • Petit AN, Fontaine F, Clément C (2008) Photosynthesis limitations of grapevine after treatment with the fungicide fludioxonil. J Agric Food Chem 56(15):6761–6767

    CAS  PubMed  Google Scholar 

  • Popp J, Pető K, Nagy J (2013) Pesticide productivity and food security. A review. Agron Sustain Dev 33(1):243–255

    Google Scholar 

  • Prashar P, Shah S (2016) Impact of fertilizers and pesticides on soil microflora in agriculture. In: Lichtfouse E (ed) Sustainable agriculture reviews, vol 19. Springer, Cham, pp 331–361

    Google Scholar 

  • Rodríguez-Alcalá LM, Sá C, Pimentel LL et al (2015) Endocrine disruptor DDE associated with a high-fat diet enhances the impairment of liver fatty acid composition in rats. J Agri Food Chem 63(42):9341–9348

    Google Scholar 

  • Sabarwal A, Kumar K, Singh RP (2018) Hazardous effects of chemical pesticides on human health-cancer and other associated disorders. Environ Toxicol Phar 63:103–114

    CAS  Google Scholar 

  • Sagiv SK, Thurston SW, Bellinger DC (2010) Prenatal organochlorine exposure and behaviors associated with attention deficit hyperactivity disorder in school-aged children. Am J Epidemiol 171(5):593–601

    PubMed  PubMed Central  Google Scholar 

  • Saladin G, Magné C, Clément C (2003) Effects of fludioxonil and pyrimethanil, two fungicides used against Botrytis cinerea, on carbohydrate physiology in Vitis vinifera L. Pest Manag Sci 59(10):1083–1092

    CAS  PubMed  Google Scholar 

  • Santos KFA, Zanardi OZ, deMorais MR (2017) The impact of six insecticides commonly used in control of agricultural pests on the generalist predator Hippodamia convergens (Coleoptera: Coccinellidae). Chemosphere 186:218–226

    CAS  PubMed  Google Scholar 

  • Sarnaik SS, Kanekar PP, Raut VM, Taware SP, Chavan KS, Bhadbhade BJ (2006) Effect of application of different pesticides to soybean on the soil microflora. J Environ Biol 37(2):423–426

    Google Scholar 

  • Schneider CW, Tautz J, Grünewald B (2012) RFID tracking of sublethal effects of two neonicotinoid insecticides on the foraging behavior of Apis mellifera. PLoS One 7(1):e30023

    CAS  PubMed  PubMed Central  Google Scholar 

  • Shahid M, Zaidi A, Ehtram A (2019) In vitro investigation to explore the toxicity of different groups of pesticides for an agronomically important rhizosphere isolate Azotobacter vinelandii. Pest Biochem Physiol 157:33–44

    CAS  Google Scholar 

  • Singh B, Kaur A (2018) Control of insect pests in crop plants and stored food grains using plant saponins: a review. LWT 87:93–101

    CAS  Google Scholar 

  • Singh S, Gupta R, Sharma S (2015) Effects of chemical and biological pesticides on plant growth parameters and rhizospheric bacterial community structure in Vigna radiata. J hazard mater 291:102–110

    CAS  PubMed  Google Scholar 

  • Soloneski S, Kujawski M, Scuto A, Larramendy ML (2015) Carbamates: a study on genotoxic, cytotoxic, and apoptotic effects induced in Chinese hamster ovary (CHO-K1) cells. Toxicol In Vitro 29(5):834–844

    CAS  PubMed  Google Scholar 

  • Srinivasulu M, Ortiz DR (2017) Effect of pesticides on bacterial and fungal populations in Ecuadorian tomato cultivated soils. Environ Proc 4(1):93–105

    CAS  Google Scholar 

  • Subramaniam K, Solomon J (2006) Organochlorine pesticides BHC and DDE in human blood in and around Madurai, India. Indian J Clin Biochem 21(2):169–172

    CAS  PubMed  PubMed Central  Google Scholar 

  • Taiwo AM (2019) A review of environmental and health effects of organochlorine pesticide residues in Africa. Chemosphere 220:1126–1140

    CAS  Google Scholar 

  • Toscano NC, Sances FV, Johnson MW, Lapré LF (1982) Effect of various pesticides on lettuce physiology and yield. J Econ Entomol 75(4):738–741

    Google Scholar 

  • Turusov V, Rakitsky V, Tomatis L (2002) Dichlorodiphenyltrichloroethane (DDT): ubiquity, persistence, and risks. Environ Health Persp 110(2):125–128

    CAS  Google Scholar 

  • United Nations (2015) World population projected to reach 9.7 billion by 2050. Available at http://www.un.org/en/development/desa/news/population/2015-report.html

  • Untiedt R, Blanke MM (2004) Effects of fungicide and insecticide mixtures on apple tree canopy photosynthesis, dark respiration and carbon economy. Crop Prot 23(10):1001–1006

    CAS  Google Scholar 

  • Van SJP, Simon-Delso N, Goulson D (2013) Neonicotinoids, bee disorders and the sustainability of pollinator services. Curr Opin Environ Sustain 5(3–4):293–305

    Google Scholar 

  • van den Berg H (2009) Global status of DDT and its alternatives for use in vector control to prevent disease. Environ Health Perspect 117(11):1656–1663

    PubMed  PubMed Central  Google Scholar 

  • Van Iersel MW, Bugbee B (1996) Phytotoxic effects of benzimidazole fungicides on bedding plants. J Am Soc Hortic Sci 121(6):1095–1102

    PubMed  Google Scholar 

  • Wang MC, Liu YH, Wang Q et al (2008) Impacts of methamidophos on the biochemical, catabolic, and genetic characteristics of soil microbial communities. Soil Biol Biochem 40(3):778–788

    CAS  Google Scholar 

  • Weber R, Gaus C, Tysklind M et al (2008) Dioxin and POP-contaminated sites—contemporary and future relevance and challenges overview on background, aims and scope of the series. Environ Sci Pollut Res 15:363–393

    CAS  Google Scholar 

  • WHO (World Health Organization) (2009) The WHO recommended classification of pesticides by hazard

    Google Scholar 

  • Wu YX, Von TA (2002) Impact of fungicides on active oxygen species and antioxidant enzymes in spring barley (Hordeum vulgare L.) exposed to ozone. Environ Pollut 116(1):37–47

    CAS  PubMed  Google Scholar 

  • Wu X, Xu J, Dong F, Liu X, Zheng Y (2014) Responses of soil microbial community to different concentration of fomesafen. J Hazard Mater 273:155–164

    CAS  PubMed  Google Scholar 

  • Xia XJ, Huang YY, Wang L (2006) Pesticides-induced depression of photosynthesis was alleviated by 24-epibrassinolide pretreatment in Cucumis sativus L. Pest Biochem Physiol 86(1):42–48

    CAS  Google Scholar 

  • Yang YH, Yao J, Hu S (2000) Effects of agricultural chemicals on DNA sequence diversity of soil microbial community: a study with RAPD marker. Microb Ecol 39(1):72–79

    CAS  PubMed  Google Scholar 

  • Youngman RR, Leigh TF, Kerby TA, Toscano NC, Jackson CE (1990) Pesticides and cotton: effect on photosynthesis, growth, and fruiting. J Econ Entomol 83(4):1549–1557

    CAS  Google Scholar 

  • Yu Y, Li X, Yang G (2019) Joint toxic effects of cadmium and four pesticides on the earthworm (Eisenia fetida). Chemosphere 227:489–495

    CAS  PubMed  Google Scholar 

  • Zhuang R, Chen H, Yao J et al (2011) Impact of beta-cypermethrin on soil microbial community associated with its bioavailability: a combined study by isothermal microcalorimetry and enzyme assay techniques. J Hazard Mater 189(1–2):323–328

    CAS  PubMed  Google Scholar 

Download references

Acknowledgement

Author Kuldeep Bauddh is thankful to the Science and Engineering Research Board (SERB) for the award of Research Grant (EEQ/2017/000476). Ankit is thankful to the University Grant Commission for granting Junior Research Fellow (UGC-JRF).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kuldeep Bauddh .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ankit, Saha, L., Kishor, V., Bauddh, K. (2020). Impacts of Synthetic Pesticides on Soil Health and Non-targeted Flora and Fauna. In: Bauddh, K., Kumar, S., Singh, R., Korstad, J. (eds) Ecological and Practical Applications for Sustainable Agriculture. Springer, Singapore. https://doi.org/10.1007/978-981-15-3372-3_4

Download citation

Publish with us

Policies and ethics