Skip to main content

Biochar Amendment in Agricultural Soil for Mitigation of Abiotic Stress

  • Chapter
  • First Online:
Ecological and Practical Applications for Sustainable Agriculture

Abstract

Abiotic stresses like drought, cold, salinity, heat, oxidative stress and the presence of excess levels of heavy metal in the agroecosystems lead to a decrease in the growth and productivity of major crops worldwide. The majority of stresses are connected with each other and results in elevated adverse impacts on the plants as well as other important components of the environment. The intensity of stresses and associated adverse impacts are increasing substantially in the era of climate change that again triggers to produce abnormalities in the crops. To overcome the effects of abiotic stresses, a number of strategies have been investigated, such as developing and cultivate stress-tolerant varieties, use of organic fertilizers, and the application of high yielding varieties. Application of biochar to mitigate the impacts of major abiotic stresses especially drought, salinity, and heavy metal has been found very effective. Amendment of biochar in stress affected agroecosystems improves the soil physicochemical and biological features and thereby enhances the productivity of crops. In this chapter, efforts have been made to discuss about three major stresses, i.e. drought, salinity, and heavy metals, their impacts on soil as well as plant productivity. Further, the efficiency and mechanism of biochar in reducing the impacts of stresses when using as a soil amendment have also been discussed thoroughly.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abbas T, Rizwan M, Ali S, Zia-ur-Rehman M, Qayyum MF, Abbas F, Hannan F, Rinklebe J, Ok YS (2017) Effect of biochar on cadmium bioavailability and uptake in wheat (Triticum aestivum L.) grown in a soil with aged contamination. Ecotoxicol Environ Saf 140:37–47

    CAS  PubMed  Google Scholar 

  • Abbas AH, Sulaiman WR, Jaafar MZ, Aja AA (2018) Micelle formation of aerosol-OT surfactants in sea water salinity. Arab J Sci Eng 43:2515–2519

    CAS  Google Scholar 

  • Ackova DG (2018) Heavy metals and their general toxicity on plants. Plant Sci 5(1):14–18

    CAS  Google Scholar 

  • Ahmad M, Lee SS, Yang JE, Ro HM, Lee YH, Ok YS (2012) Effects of soil dilution and amendments (mussel shell, cow bone, and biochar) on Pb availability and phytotoxicity in military shooting range soil. Ecotoxicol Environ Saf 79:225–231

    CAS  PubMed  Google Scholar 

  • Akhtar SS, Andersen MN, Naveed M, Zahir ZA, Liu F (2015) Interactive effect of biochar and plant growth-promoting bacterial endophytes on ameliorating salinity stress in maize. Funct Plant Biol 42(8):770–781

    CAS  PubMed  Google Scholar 

  • Alaboudi KA, Ahmed B, Brodie G (2019) Effect of biochar on Pb, Cd and Cr availability and maize growth in artificial contaminated soil. Ann Agric Sci 4(1):95–102

    Google Scholar 

  • Alam SM (1999) Nutrient uptake by plants under stress conditions. Handbook of plant and crop stress 19(2):285–313

    Google Scholar 

  • AL-Amoudi OA, Rashed AA (2012) Effect of nutrient cations to improving salinity-tolerance responses in Sorghum bicolor L. Life Sci 50:77–81

    Google Scholar 

  • Alharby HF, Al-Zahrani HS, Hakeem KR, Iqbal M (2019) Identification of physiological and biochemical markers for salt (NaCl) stress in the seedlings of mung bean [Vigna radiata (L.) Wilczek] genotypes. Saudi J Biol Sci 26(5):1053–1060

    CAS  PubMed  Google Scholar 

  • Al-Kaisi MM, Elmore RW, Guzman JG, Hanna HM, Hart CE, Helmers MJ, Hodgson EW, Lenssen AW, Mallarino AP, Robertson AE, Sawyer JE (2013) Drought impact on crop production and the soil environment: 2012 experiences from Iowa. J Soil Water Conserv 68(1):19A–24A

    Google Scholar 

  • Amini S, Ghadiri H, Chen C, Marschner P (2015) Salt-affected soils, reclamation, carbon dynamics, and biochar: a review. J Soils Sediments 16(3):939–953

    Google Scholar 

  • Andresen E, Peiter E, Kupper H (2018) Trace metal metabolism in plants. J Exp Bot 69:909–954

    CAS  PubMed  Google Scholar 

  • Anjum F, Yaseen M, Rasul E, Wahid A, Anjum S (2003) Water stress in barley (Hordeum vulgare L.) II. Effect on chemical composition and chlorophyll contents. Pak J Agric Sci 40:45–49

    Google Scholar 

  • Anwaar SA, Ali S, Ali S, Ishaque W, Farid M, Farooq MA, Najeeb U, Abbas F, Sharif M (2015) Silicon (Si) alleviates cotton (Gossypium hirsutum L.) from zinc (Zn) toxicity stress by limiting Zn uptake and oxidative damage. Environ Sci Pollut Res Int 5:3441–3450

    Google Scholar 

  • Arafat Y, Wei X, Jiang Y, Chen T, Saqib H, Lin S, Lin W (2017) Spatial distribution patterns of root-associated bacterial communities mediated by root exudates in different aged ratooning tea monoculture systems. Int J Mol Sci 18(8):1727

    PubMed Central  Google Scholar 

  • Arif N, Yadav V, Singh S, Singh S, Ahmad P, Mishra RK, Sharma S, Tripathi DK, Dubey NK, Chauhan DK (2016) Influence of high and low levels of plant-beneficial heavy metal ions on plant growth and development. Chemosphere 139:604–608

    Google Scholar 

  • Arora N, Patel A, Sharma M, Mehtani J, Pruthi PA, Pruthi V, Poluri KM (2017) Insights into the enhanced lipid production characteristics of a fresh water microalga under high salinity conditions. Ind Eng Chem Res 56(25):7413–7421

    CAS  Google Scholar 

  • Asati A, Pichhode M, Nikhil K (2016) Effect of heavy metals on plants: an overview. Int J Innov Eng Res Manag 5(3):56–66

    Google Scholar 

  • Ashfaque F, Inam A, Sahay S, Iqbal S (2016) Influence of heavy metal toxicity on plant growth, metabolism and its alleviation by phytoremediation—a promising technology. J Agric Ecol Res Int 6(2):1–19

    Google Scholar 

  • Ashraf MY, Azmi AR, Khan AH, Ala SA (1994) Effect of water stress on total phenols, peroxidase activity and chlorophyll content in wheat (Triticum aestivum L.) genotypes under soil water deficits. Acta Physiol Plant 16:185–191

    CAS  Google Scholar 

  • Atafar Z, Mesdaghinia A, Nouri J, Homaee M, Yunesian M, Ahmadimoghaddam M, Mahvi AH (2010) Effect of fertilizer application on soil heavy metal concentration. Environ Monit Assess 160:83–89

    CAS  PubMed  Google Scholar 

  • Bagheri A (2009) Effects of drought stress on chlorophyll, proline and rates of photosynthesis and respiration and activity of superoxide dismutase and peroxidase in millet (Panicum milenaceum L.). National conference on water scarcity and drought management in agriculture. Islamic Azad University Arsanjan. p. 16

    Google Scholar 

  • Banuls J, Legaz F, Primo-Millo E (1991) Salinity-calcium interactions on growth and ionic concentration of citrus plants. Plant Soil 133(1):39–46

    CAS  Google Scholar 

  • Bardgett RD, Wardle DA (2010) Aboveground-belowground linkages: biotic interactions, ecosystem processes, and global change. Oxford University Press, Oxford

    Google Scholar 

  • Baronti S, Vaccari FP, Miglietta F, Calzolari C, Lugato E, Orlandini S, Pini R, Zulian C, Genesio L (2014) Impact of biochar application on plant water relations in Vitis vinifera (L.). Eur J Agron 53:38–44

    CAS  Google Scholar 

  • Bartell FE, Miller EJ (1923) Adsorption by activated sugar charcoal. II1, 2. J Am Chem Soc 45(5):1106–1115

    CAS  Google Scholar 

  • Bauddh K, Singh RP (2009) Genotypic differences in cadmium (Cd) toxicity in Indian mustard (Brassica juncea L.). Pollut Res 28(4):699–704

    CAS  Google Scholar 

  • Bauddh K, Singh RP (2011) Differential toxicity of cadmium to mustard (Brassica juncia L.) genotypes under higher metal levels. J Environ Biol 32(3):355–362

    CAS  PubMed  Google Scholar 

  • Bauddh K, Singh RP (2012) Growth, tolerance efficiency and phytoremediation potential of Ricinus communis (L.) and Brassica juncea (L.) in salinity and drought affected cadmium contaminated soil. Ecotoxicol Environ Saf 85:13–22

    CAS  PubMed  Google Scholar 

  • Bauddh K, Kumar A, Srivastava S, Singh RP, Tripathi RD (2015) A study on the effect of cadmium on the antioxidative defense system and alteration in different functional groups in castor bean and Indian mustard. Arch Agron Soil Sci 62(6):877–891

    Google Scholar 

  • Bauddh K, Singh K, Singh RP (2016) Ricinus communis L. a value added crop for remediation of cadmium contaminated soil. Bull Environ Contam Toxicol 96(2):265–269

    CAS  PubMed  Google Scholar 

  • Baum C, Leinweber P, Schlichting A (2003) Effects of chemical conditions in re-wetted peats on temporal variation in microbial biomass and acid phosphatase activity within the growing season. Appl Soil Ecol 22(2):167–174

    Google Scholar 

  • Bhaduri D, Saha A, Desai D, Meena HN (2016) Restoration of carbon and microbial activity in salt-induced soil by application of peanut shell biochar during short-term incubation study. Chemosphere 148:86–98

    CAS  PubMed  Google Scholar 

  • Bhaskar P, Bauddh K, Singh RP (2009) Differential response of two high yielding cultivars of Indian mustard (Brassica juncea L.) to NaCl salinity during seed germination and early seedling growth. J Ecophysiol Occup Health 9:137–144

    Google Scholar 

  • Bhatt RM, Rao NS (2005) Influence of pod load on response of okra to water stress. Indian J Plant Physiol 10(1):54

    Google Scholar 

  • Biederman LA, Harpole WS (2013) Biochar and its effects on plant productivity and nutrient cycling: a meta-analysis. GCB Bioenergy 5(2):202–214

    CAS  Google Scholar 

  • Bohn HL, McNeal BL, O’Connor GA (2001) Soil chemistry, 3rd edn. Wiley, New York

    Google Scholar 

  • Břendová K, Tlustoš P, Száková J (2015) Biochar immobilizes cadmium and zinc and improves phytoextraction potential of willow plants on extremely contaminated soil. Plant Soil Environ 61(7):303–308

    Google Scholar 

  • Brugnoli E, Björkman O (1992) Growth of cotton under continuous salinity stress: influence on allocation pattern, stomatal and non-stomatal components of photosynthesis and dissipation of excess light energy. Planta 187(3):335–347

    CAS  PubMed  Google Scholar 

  • Chander K, Goyal S, Mundra MC, Kapoor KK (1997) Organic matter, microbial biomass and enzyme activity of soils under different crop rotations in the tropics. Biol Fertil Soils 24(3):306–310

    CAS  Google Scholar 

  • Chaves MM, Flexas J, Pinheiro C (2009) Photosynthesis under drought and salt stress: regulation mechanisms from whole plant to cell. Ann Bot 103:551–560

    CAS  PubMed  Google Scholar 

  • Chibuike GU, Obiora SC (2014) Heavy metal polluted soils: effect on plants and bioremediation methods. Appl Environ Soil Sci 752708:1–12

    Google Scholar 

  • Chodak M, Gołębiewski M, Morawska-Płoskonka J, Kuduk K, Niklińska M (2015) Soil chemical properties affect the reaction of forest soil bacteria to drought and rewetting stress. Ann Microbiol 65:1627–1637

    CAS  PubMed  Google Scholar 

  • Chu D (2018) Effects of heavy metals on soil microbial community. Earth Environ Sci 113:1–5

    Google Scholar 

  • Clauw P, Coppens F, De Beuf K, Dhondt S, Van Daele T, Maleux K, Storme V, Clement L, Gonzalez N, Inzé D (2015) Leaf responses to mild drought stress in natural variants of Arabidopsis. Plant Physiol 167(3):800–816

    CAS  PubMed  PubMed Central  Google Scholar 

  • Connor DO, Peng T, Zhang J, Tsang DCW, Alessi DS, Shen Z, Bolan NS, Hou D (2018) Biochar application for the remediation of heavy metal polluted land: a review of in situ field trials. Sci Total Environ 619–620:815–826

    Google Scholar 

  • Dikinya O, Hinz C, Aylmore G (2006) Dispersion and re-deposition of fine particles and their effects on saturated hydraulic conductivity. Soil Res 44(1):47–56

    CAS  Google Scholar 

  • Drake JA, Cavagnaro TR, Cunningham SC, Jackson WR, Patti AF (2016) Does biochar improve establishment of tree seedlings in saline sodic soils? Land Degrad Dev 27(1):52–59

    Google Scholar 

  • Dubey S, Shri M, Gupta A, Rani V, Chakrabarty D (2018) Toxicity and detoxifcation of heavy metals during plant growth and metabolism. Environ Chem Lett 16(4):1169–1192

    CAS  Google Scholar 

  • Edward D, Wright D (2008) The effects of winter water-logging and summer drought on the growth and yield of winter wheat (Triticum aestivum L.). Eur J Agron 28:234–244

    Google Scholar 

  • Egamberdieva D, Reckling M, Wirth S (2017) Biochar-based Bradyrhizobium inoculum improves growth of lupin (Lupinus angustifolius L.) under drought stress. Eur J Soil Biol 78:38–42

    CAS  Google Scholar 

  • Eze OC, Tukura BW, Atolaiye BO, Opaluwa OD (2018) Assessment of some physicochemical parameters of soil and heavy metals in vegetables cultivated on irrigated sites along the bank of Mpape River in FCT, Abuja, Nigeria. J Environ Sci Toxicol Food Technol 12(5):28–38

    CAS  Google Scholar 

  • Fahr M, Laplaze L, Bendaou N, Hocher V, Mzibri ME, Bogusz D, Smouni A (2013) Effect of lead on root growth. Front Plant Sci 4:175. https://doi.org/10.3389/fpls.2013.00175

    Article  PubMed  PubMed Central  Google Scholar 

  • Farhangi-Abriz S, Torabian S (2018a) Biochar improved nodulation and nitrogen metabolism of soybean under salt stress. Symbiosis 74(3):215–223

    CAS  Google Scholar 

  • Farhangi-Abriz S, Torabian S (2018b) Effect of biochar on growth and ion contents of bean plant under saline condition. Environ Sci Pollut R 25(12):11556–11564

    Google Scholar 

  • Farid G, Sarwar N, Saifullah AA, Ghafoor A, Rehman M (2015) Heavy metals (Cd, Ni and Pb) contamination of soils, plants and waters in Madina town of Faisalabad metropolitan and preparation of GIS based maps. Adv Crop Sci Techn 4(1):1–7

    Google Scholar 

  • Farooq M, Basra SM, Wahid A, Cheema ZA, Cheema MA, Khaliq A (2008) Physiological role of exogenously applied glycinebetaine to improve drought tolerance in fine grain aromatic rice (Oryza sativa L.). J Agron Crop Sci 194(5):325–333

    CAS  Google Scholar 

  • Farooq M, Wahid A, Kobayashi N, Fujita D, Basra SM (2009) Plant drought stress: effects, mechanisms and management. In: Lichtfouse E, Navarrete M, Debaeke P, Véronique S, Alberola C (eds) Sustainable agriculture. Springer, Dordrecht, pp 153–188

    Google Scholar 

  • Fazal A, Bano A (2016) Role of plant growth-promoting rhizobacteria (PGPR), biochar, and chemical fertilizer under salinity stress. Commun Soil Sci Plant Anal 47(17):1985–1993

    CAS  Google Scholar 

  • Gama PB, Inanaga S, Tanaka K, Nakazawa R (2007) Physiological response of common bean (Phaseolus vulgaris L.) seedlings to salinity stress. Afr J Biotechnol 6(2):421–426

    Google Scholar 

  • Ganesh SK, Sundaramoorthy P (2018) Copper and zinc induced changes in soybean (Glycine max (L.) Merr.). Innov Agri 1(1):9–12

    Google Scholar 

  • Garcia C, Hernandez T, Costa F (1994) Microbial activity in soils under Mediterranean environmental conditions. Soil Biol Biochem 26(9):1185–1191

    CAS  Google Scholar 

  • Garg BK, Burman U, Kathju S (2004) The influence of phosphorus nutrition on the physiological response of moth bean genotypes to drought. J Plant Nutr Soil Sci 167(4):503–508

    CAS  Google Scholar 

  • Ghodsi M, Nazeri M, Zarea-Fizabady A (1998) The reaction of new cultivars and elite lines of spring wheat into drought stress. In Collection of abstract articles of 5th Iranian agronomy and plant breeding conference, Karaj, Iran. p. 252

    Google Scholar 

  • Griffiths RI, Whiteley AS, O’Donnell AG, Bailey MJ (2003) Physiological and community responses of established grassland bacterial populations to water stress. Appl Environ Microbiol 69:6961–6968

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ha E, Ikhajiagba B, Bamidele JF, Ogic-Odia E (2008) Salinity effects on young healthy seedling of Kyllingia peruviana collected from escravos, Delta state. Glob J Environ Res 2(2):74–88

    Google Scholar 

  • Haggag WM, Abouziena HF, Abd-El-Kreem F, El Habbasha S (2015) Agriculture biotechnology for management of multiple biotic and abiotic environmental stress in crops. J Chem Pharm Res 7(10):882–889

    Google Scholar 

  • Hagmanna DF, Goodeya NM, Mathieua C, Evans J, Aronsonc MFJ, Gallagher F, Krumins JA (2015) Effect of metal contamination on microbial enzymatic activity in soil. Soil Biol Biochem 91:291–297

    Google Scholar 

  • Hasanuzzaman M, Nahar K, Rahman A, Mahmud JA, Alharby HF, Fujita M (2018) Exogenous glutathione attenuates lead-induced oxidative stress in wheat by improving antioxidant defense and physiological mechanisms. J Plant Interact 13(1):203–212

    Google Scholar 

  • Hayat S, Khalique G, Irfan M, Wani AS, Tripathi BN, Ahmad A (2012a) Physiological changes induced by chromium stress in plants: an overview. Protoplasma 249(3):599–561

    CAS  PubMed  Google Scholar 

  • Hayat S, Yadav S, Wani AS, Irfan M, Alyemini MN, Ahmad A (2012b) Impact of sodium nitroprusside on nitrate reductase, proline content, and antioxidant system in tomato under salinity stress. Hortic Environ Biotechnol 53(5):362–367

    CAS  Google Scholar 

  • Hayyat A, Javed M, Rasheed I, Ali S, Shahid MJ, Rizwan M (2016) Role of biochar in remediating heavy metals in soil. Phytoremediation 3:420–437

    Google Scholar 

  • Heuer B, Nadler A (1995) Growth and development of potatoes under salinity and water deficit. Aust J Agric Res 46(7):1477–1486

    Google Scholar 

  • Hniličková H, Hnilička F, Orsák M, Hejnák V (2019) Effect of salt stress on growth, electrolyte leakage, Na+ and K+ content in selected plant species. Plant Soil Environ 65(2):90–96

    Google Scholar 

  • Hoogmoed M, Sadras VO (2016) The importance of water-soluble carbohydrates in the theoretical framework for nitrogen dilution in shoot biomass of wheat. Field Crop Res 193:196–200

    Google Scholar 

  • Houimli SI, Denden M, El Hadj SB (2008) Induction of salt tolerance in pepper (Capsicum annuum) by 24-epibrassinolide. Eur Asian J Bio Sci 2:83–90

    Google Scholar 

  • Hu XF, Jiang Y, Shu Y, Hu X, Liu L, Luo F (2014) Effects of mining wastewater discharges on heavy metal pollution and soil enzyme activity of the paddy fields. J Geochem Explor 147:139–150

    CAS  Google Scholar 

  • Hueso S, García C, Hernández T (2012) Severe drought conditions modify the microbial community structure, size and activity in amended and unamended soils. Soil Biol Biochem 50:167–173

    CAS  Google Scholar 

  • Hussain TM, Hazara M, Sultan Z, Saleh BK, Gopal GR (2008) Recent advances in salt stress biology a review. Biotechnol Mol Biol Res 3(1):8–13

    Google Scholar 

  • ICARDA (2002) Marginal quality water: a solution to fresh water scarcity. International Center for Agricultural Research in the Dry Areas, Aleppo, Syria

    Google Scholar 

  • Isayenkov SV, Maathuis FJM (2019) Plant salinity stress: many unanswered questions remain. Front Plant Sci 10:80. https://doi.org/10.3389/fpls.2019.00080

    Article  PubMed  PubMed Central  Google Scholar 

  • Iyengar ERR, Reddy MP (1996) Photosynthesis in highly salt tolerant plants. In: Pessaraki M (ed) Handbook of photosynthesis. Marcel Dekker, New York, pp 897–909

    Google Scholar 

  • Jaleel CA, Gopi R, Manivannan P, Gomathinayagam M, Sridharan R, Panneerselvam R (2008a) Antioxidant potential and indole alkaloid profile variations with water deficits along different parts of two varieties of Catharanthus roseus. Colloids Surf B Biointerfaces 62(2):312–318

    CAS  PubMed  Google Scholar 

  • Jaleel CA, Gopi R, Panneerselvam R (2008b) Growth and photosynthetic pigments responses of two varieties of Catharanthus roseus to triadimefon treatment. C R Biol 331(4):272–277

    PubMed  Google Scholar 

  • Jaleel CA, Gopi R, Sankar B, Gomathinayagam M, Panneerselvam R (2008c) Differential responses in water use efficiency in two varieties of Catharanthus roseus under drought stress. C R Biol 331(1):42–47

    PubMed  Google Scholar 

  • Jaleel CA, Manivannan P, Lakshmanan GM, Gomathinayagam M, Panneerselvam R (2008d) Alterations in morphological parameters and photosynthetic pigment responses of Catharanthus roseus under soil water deficits. Colloid Surface B Biointerfaces 61(2):298–303

    CAS  Google Scholar 

  • Jaleel CA, Sankar B, Murali PV, Gomathinayagam M, Lakshmanan GM, Panneerselvam R (2008e) Water deficit stress effects on reactive oxygen metabolism in Catharanthus roseus; impacts on ajmalicine accumulation. Colloid Surface B Biointerfaces 62(1):105–111

    CAS  Google Scholar 

  • Jan AT, Azam M, Siddiqui K, Ali A, Choi I, Mohd A, Haq R (2015) Heavy metals and human health, Mechanistic insight into toxicity and counter defense system of antioxidants. Int J Mol Sci 16(12):29592–29630

    CAS  PubMed  PubMed Central  Google Scholar 

  • Jatav HS, Singh SK, Singh Y, Kumar O (2016) Biochar and sewage sludge application increases yield and micronutrient uptake in rice (Oryza sativa L.). Commun Soil Sci Plan 50(14):1732–1742

    Google Scholar 

  • Jeffery S, Verheijen FGA, van der Velde M, Bastos AC (2011) A quantitative review of the effects of biochar applications to soils on crop productivity using meta-analysis. Agric Ecosyst Environ 144:175–187

    Google Scholar 

  • Jin Z, Li Z, Li Q, Hu Q, Yang R, Tang H, Li M, Huang B, Zhang J, Li G (2015) Canonical correspondence analysis of soil heavy metal pollution, microflora and enzyme activities in the Pb–Zn mine tailing dam collapse area of Sidi village, SW China. Environ Earth Sci 73(1):267–274

    CAS  Google Scholar 

  • John R, Ahmad P, Gadgila K, Sharma K (2009) Heavy metal toxicity: effect on plant growth, biochemical parameters and metal accumulation by Brassica juncea L. Int J Plant Prod 3(3):65–67

    CAS  Google Scholar 

  • Kanwal S, Ilyas N, Shabir S, Saeed M, Gul R, Zahoor M, Batool N, Mazhar R (2018) Application of biochar in mitigation of negative effects of salinity stress in wheat (Triticum aestivum L.). J Plant Nutr 41(4):526–538

    CAS  Google Scholar 

  • Karami N, Clemente R, Moreno-Jiménez E, Lepp NW, Beesley L (2011) Efficiency of green waste compost and biochar soil amendments for reducing lead and copper mobility and uptake to ryegrass. J Hazard Mater 191(1-3):41–48

    CAS  PubMed  Google Scholar 

  • Khan M (2000) Effect of metals contamination on soil microbial diversity, enzymatic activity, organic matter decomposition and nitrogen mineralization (a review). Pak J Biol Sci 3(11):1950–1956

    Google Scholar 

  • Khan S, Hesham AEL, Qiao M, Rehman S, He JZ (2010) Effects of Cd and Pb on soil microbial community structure and activities. Environ Sci Pollut Res 17(2):288–296

    CAS  Google Scholar 

  • Khan S, Chao C, Muhammad W, Arp HPH, Zhu YG (2013) Sewage sludge biochar influence upon rice (Oryza sativa L) yield, metal bioaccumulation and greenhouse gas emissions from acidic paddy soil. Environ Sci Technol 47(15):8624–8632

    CAS  PubMed  Google Scholar 

  • Kiani SP, Maury P, Sarrafi A, Grieu P (2008) QTL analysis of chlorophyll fluorescence parameters in sunflower (Helianthus annuus L.) under well-watered and water-stressed conditions. Plant Sci 175:565–573

    Google Scholar 

  • Kim DI, Matsuyama Y, Nagasoe S, Yamaguchi M, Yoon YH, Oshima Y, Imada N, Honjo T (2004) Effects of temperature, salinity and irradiance on the growth of the harmful red tide dinoflagellate Cochlodinium polykrikoides Margalef (Dinophyceae). J Plankton Res 26(1):61–66

    Google Scholar 

  • Kim HS, Kim KR, Kim HJ, Yoon JH, Yang JE, Ok YS, Owens G, Kim KH (2015) Effect of biochar on heavy metal immobilization and uptake by lettuce (Lactuca sativa L.) in agricultural soil. Environ Earth Sci 74:1249–1259

    CAS  Google Scholar 

  • Kim BH, Ramanan R, Kang Z, Cho DH, Oh HM, Kim HS (2016) Chlorella sorokiniana HS1, a novel freshwater green algal strain, grows and hyper accumulates lipid droplets in seawater salinity. Biomass Bioenergy 85:300–305

    CAS  Google Scholar 

  • Kouchou A, Rais N, Elsass F, Duplay J, Fahli N, Ghachtouli NEL (2017) Effects of long-term heavy metals contamination on soil microbial characteristics in calcareous agricultural lands (Saiss plain, North Morocco). J Mater Environ Sci 8(2):691–695

    CAS  Google Scholar 

  • Kuchenbuch R, Claassen N, Jungk A (1986) Potassium availability in relation to soil moisture. Plant Soil 95(2):233–243

    CAS  Google Scholar 

  • Kumar N, Bauddh K, Singh R, Anand K, Barman SC, Singh DP (2009) Phytotoxicity of trace metals (Cu and Cd) to gram (Cicer aerientinum) and mung (Phasiolus mungo). J Ecophysiol Occup Health 9(2):59–65

    CAS  Google Scholar 

  • Kusaka M, Ohta M, Fujimura T (2005) Contribution of inorganic components to osmotic adjustment and leaf folding for drought tolerance in pearl millet. Physiol Plant 125(4):474–489

    CAS  Google Scholar 

  • Lakhdar A, Rabhi M, Ghnaya T, Montemurro F, Jedidi N, Abdelly C (2009) Effectiveness of compost use in salt-affected soil. J Hazard Mater 171(1-3):29–37

    CAS  PubMed  Google Scholar 

  • Lashari MS, Liu Y, Li L, Pan W, Fu J, Pan G, Zheng J, Zheng J, Zhang X, Yu X (2013) Effects of amendment of biochar-manure compost in conjunction with pyroligneous solution on soil quality and wheat yield of a salt-stressed cropland from Central China Great Plain. Field Crop Res 144:113–118

    Google Scholar 

  • Lawlor DW, Cornic G (2002) Photosynthetic carbon assimilation and associated metabolism in relation to water deficits in higher plants. Plant Cell Environ 25:275–294

    CAS  PubMed  Google Scholar 

  • Lawson T, Oxborough K, Morison JI, Baker NR (2003) The responses of guard and mesophyll cell photosynthesis to CO2, O2, light and water stress in a range of species are similar. J Exp Bot 54:1743–1752

    CAS  PubMed  Google Scholar 

  • Lehmann J, Rillig MC, Thies J, Masiello CA, Hockaday WC, Crowley D (2011) Biochar effects on soil biota–a review. Soil Biol Biochem 43(9):1812–1836

    CAS  Google Scholar 

  • Leila R (2007) Response of Tunisian autochthonous peral millet to drought stress induced by polyethylene glycol 6000. Afr J Biotechnol 6:1102–1105

    Google Scholar 

  • Liu C, Liu F, Ravnskov S, Rubæk GH, Sun Z, Andersen MN (2017) Impact of wood biochar and its interactions with mycorrhizal fungi, phosphorus fertilization and irrigation strategies on potato growth. J Agron Crop Sci 203:131–145

    Google Scholar 

  • Lu HP, Li ZA, Gascó G, Méndez A, Shen Y, Paz-Ferreiro J (2018) Use of magnetic biochars for the immobilization of heavy metals in a multi-contaminated soil. Sci Total Environ 622-623:892–899

    CAS  PubMed  Google Scholar 

  • Luo JY, Zhang S, Peng J, Zhu XZ, Lv LM, Wang CY, Li CH, Zhou ZG, Cui JJ (2017) Effects of soil salinity on the expression of Bt toxin (Cry1Ac) and the control efficiency of Helicoverpa armigera in field-grown transgenic Bt cotton. PLoS One 12(1):0170379

    Google Scholar 

  • Major J, Rondon M, Molina D, Riha SJ, Lehmann J (2010) Maize yield and nutrition after 4 years of doing biochar application to a Colombian savanna oxisol. Plant Soil 333:117–128

    CAS  Google Scholar 

  • Manivannan P, Jaleel CA, Kishorekumar A, Sankar B, Somasundaram R, Sridharan R, Panneerselvam R (2007) Changes in antioxidant metabolism of Vigna unguiculata (L.) Walp. by propiconazole under water deficit stress. Colloids Surf B Biointerfaces 57(1):69–74

    CAS  PubMed  Google Scholar 

  • Manivannan P, Jaleel CA, Somasundaram R, Panneerselvam R (2008) Osmoregulation and antioxidant metabolism in drought-stressed Helianthus annuus under triadimefon drenching. C R Biol 331(6):418–425

    CAS  PubMed  Google Scholar 

  • Marschner H (1995) Mineral nutrition of higher plants. Academic, London, p 889

    Google Scholar 

  • Mas-Carrió E, Dini-Andreote F, Brossi MJDL, Salles JF, Olff H (2018) Organic amendment under increasing agricultural intensification: effects on soil bacterial communities and plant productivity. Front Microbiol 9:2612

    PubMed  PubMed Central  Google Scholar 

  • Massacci A, Nabiev SM, Pietrosanti L, Nematov SK, Chernikova TN, Thor K, Leipner J (2008) Response of the photosynthetic apparatus of cotton (Gossypium hirsutum) to the onset of drought stress under field conditions studied by gas-exchange analysis and chlorophyll fluorescence imaging. Plant Physiol Biochem 46(2):189–195

    CAS  PubMed  Google Scholar 

  • Memon SA, Hou X, Wang LJ (2010) Morphlogical analysis of salt stress response of Pak Choi. Electron J Environ Agric Food Chem 9(1):203–207

    Google Scholar 

  • Meng L, Li W, Zhang S, Wu C, Jiang W, Sha C (2016) Effect of different extra carbon sources on nitrogen loss control and the change of bacterial populations in sewage sludge composting. Ecol Eng 94:238–243

    Google Scholar 

  • Meng J, Tao M, Wang L, Liu X, Xu J (2018) Changes in heavy metal bioavailability and speciation from a Pb-Zn mining soil amended with biochars from co-pyrolysis of rice straw and swine manure. Sci Total Environ 633:300–307

    CAS  PubMed  Google Scholar 

  • Metternicht GI, Zinck JA (2003) Remote sensing of soil salinity: potentials and constraints. Remote Sens Environ 85(1):1–20

    Google Scholar 

  • Mickan BS, Abbott LK, Stefanova K, Solaiman ZM (2016) Interactions between biochar and mycorrhizal fungi in a water-stressed agricultural soil. Mycorrhiza 26:565–574

    CAS  PubMed  Google Scholar 

  • Minhas PS, Rane J, Pasala RK (2017) Abiotic stresses in agriculture: an overview. In: Minhas P, Rane J, Pasala R (eds) Abiotic stress management for resilient agriculture. Springer, Singapore

    Google Scholar 

  • Mishra S, Bharagava RN (2016) Toxic and geno-toxic effects of hexavalent chromium in environment and its bioremediation strategies. J Environ Sci Health C Environ Carcinog Ecotoxicol Rev 34(1):1–32

    CAS  PubMed  Google Scholar 

  • Mishra S, Bharagava RN, More N, Yadav A, Zainith S, Mani S, Chowdhary P (2018) Heavy metal contamination: an alarming threat to environment and human health. In: Sobti R, Arora N, Kothari R (eds) Environmental biotechnology: for sustainable future. Springer, Singapore, pp 103–125

    Google Scholar 

  • Monneveux P, Sanchez C, Beck D, Edmeades GO (2006) Drought tolerance improvement in tropical maize source populations: evidence of progress. Crop Sci 46:180–191

    Google Scholar 

  • Muneer M, Oades JM (1989) The role of Ca-organic interactions in soil aggregate stability. II. Field studies with 14C-labeled straw, CaCO3 and CaSO42.H2O. Soil Res 27(2):401–409

    CAS  Google Scholar 

  • Munns R, Tester M (2008) Mechanisms of salinity tolerance. Annu Rev Plant Biol 59:651–681

    CAS  PubMed  Google Scholar 

  • Mutale I, Franco IB, Jewette M (2019) Corporate sustainability performance: an approach to effective sustainable community development or not? A case study of the Luanshya copper mine in Zambia. Sustainability 11(20):5775

    Google Scholar 

  • Nadeem SM, Zahir ZA, Naveed M, Nawaz S (2013) Mitigation of salinity-induced negative impact on the growth and yield of wheat by plant growth-promoting rhizobacteria in naturally saline conditions. Ann Microbiol 63(1):225–232

    CAS  Google Scholar 

  • Nakayama NO, Saneoka HI, Moghaieb RE, Premachandra GS, Fujita KO (2007) Response of growth, photosynthetic gas exchange, translocation of 13C-labelled photosynthate and N accumulation in two soybean (Glycine max L. Merrill) cultivars to drought stress. Int J Agric Biol 9(5):669–674

    CAS  Google Scholar 

  • Nazir R, Khan M, Masab M, Rehman HU, Rauf NU, Shahab S, Ameer N, Sajed M, Ullah M, Rafeeq M, Shaheen Z (2015) Accumulation of heavy metals (Ni, Cu, Cd, Cr, Pb, Zn, Fe) in the soil, water and plants and analysis of physico-chemical parameters of soil and water collected from Tanda Dam Kohat. J Pharm Sci Res 7(3):89–97

    CAS  Google Scholar 

  • Nelson PN, Oades JM (1998) Organic matter, sodicity and soil structure. In: Sumner ME, Naidu RI (eds) Sodic soils, distribution, processes, management and environmental consequences. Oxford University Press, New York, pp 51–75

    Google Scholar 

  • Nemeskeri E, Molnar K, Vigh R, Nagy J, Dobos A (2015) Relationships between stomatal behaviour, spectral traits and water use and productivity of green peas (Pisum sativum L.) in dry seasons. Acta Physiol Plant 37:1–16

    CAS  Google Scholar 

  • Nguyen D, Rieu I, Mariani C, van Dam NM (2016) How plants handle multiple stresses: hormonal interactions underlying responses to abiotic stress and insect herbivory. Plant Mol Biol 91(6):727–740

    CAS  PubMed  PubMed Central  Google Scholar 

  • Nie C, Yang X, Niazi NK, Xu X, Wen Y, Rinklebei J, Ok YS, Xu S, Wang H (2018) Impact of sugarcane bagasse-derived biochar on heavy metal availability and microbial activity: a field study. Chemosphere 200:274–282

    CAS  PubMed  Google Scholar 

  • Obasi NA, Akubugwo EI, Ugbogu OC, Chinyere GC (2012) Heavy metals bioavailability and phyto-accumulation potentials of selected plants on burrow-pit dumpsites in Aba and Ntigha Dumpsite in Isiala Ngwa of Abia State, Nigeria. Nigerian J Biochem Mol Biol 27(1):27–45

    Google Scholar 

  • Odueze JC, Nwakonobi TU, Itodo IN (2017) Influence of physico-chemical characteristics of soils on heavy metal contamination in Makurdi, Benue state. J Environ Sci Toxicol Food Technol 11(5):84–92

    CAS  Google Scholar 

  • Oijagbe IJ, Abubakar BY, Edogbanya PRO, Suleiman MO, Olorunmola JB (2019) Effects of heavy metals on soil microbial biomass carbon. J Biol Med 4(1):30–32

    Google Scholar 

  • OlabimpeIyabo O, Oluwafemi JR, Grace AM, Oladele O (2017) Heavy metals and some physicochemical parameters in soil of major domestic dumpsites in Akure township, ondo state, South-Western Nigeria. Int J Eng Res Manag Technol 4(10):26–32

    Google Scholar 

  • Olayinka OO, Akande OO, Bamgbose K, Adetunji MT (2017) Physicochemical characteristics and heavy metal levels in soil samples obtained from selected anthropogenic sites in Abeokuta, Nigeria. J Appl Sci Environ Manag 21(5):883–891

    CAS  Google Scholar 

  • Osakabe Y, Osakabe K, Shinozaki K, Tran LSP (2014) Response of plants to water stress. Front Plant Sci 5:1–8

    Google Scholar 

  • Oster JD, Shainberg I (2001) Soil responses to sodicity and salinity: challenges and opportunities. Soil Res 39(6):1219–1224

    CAS  Google Scholar 

  • Paliwal KV, Gandhi AP (1976) Effect of salinity, SAR, Ca: Mg ratio in irrigation water, and soil texture on the predictability of exchangeable sodium percentage. Soil Sci 122(2):85–90

    CAS  Google Scholar 

  • Pathak H, Rao DLN (1998) Carbon and nitrogen mineralization from added organic matter in saline and alkali soils. Soil Biol Biochem 30(6):695–702

    CAS  Google Scholar 

  • Petropoulos SA, Daferera D, Polissiou MG, Passam HC (2008) The effect of water deficit stress on the growth, yield and composition of essential oils of parsley. Sci Hortic 115(4):393–407

    CAS  Google Scholar 

  • Pinkerton A, Simpson JR (1986) Interactions of surface drying and subsurface nutrients affecting plant growth on acidic soil profiles from an old pasture. Aust J Exp Agric 26(6):681–689

    CAS  Google Scholar 

  • Pressler Y, Foster EJ, Moore JC, Cotrufo MF (2017) Coupled biochar amendment and limited irrigation strategies do not affect a degraded soil food web in a maize agroecosystem, compared to the native grassland. GCB Bioenergy 9(8):1344–1355

    Google Scholar 

  • Qadir A, Sharif M, Ziad M (2000) Homotheties of cylindrically symmetric static manifolds and their global extension. Classical Quant Gravity 17(2):345

    Google Scholar 

  • Quirk J (1994) Interparticle forces: a basis for the interpretation of soil physical behavior. Adv Agron 53:121–183

    CAS  Google Scholar 

  • Rahimi G, Kolahchi Z, Charkhabi A (2017) Uptake and translocation of some heavy metals by rice crop (Oryza sativa) in paddy soils. Agriculture (Poľnohospodárstvo) 63(4):163–175

    Google Scholar 

  • Rahman M, Sabir AA, Mukta JA, Khan MMA, Mohi-Ud-Din M, Miah MG, Islam MT (2018) Plant probiotic bacteria Bacillus and Paraburkholderia improve growth, yield and content of antioxidants in strawberry fruit. Sci Rep 8:2504–2510

    PubMed  PubMed Central  Google Scholar 

  • Rahmani N (2006) Effect of irrigation and nitrogen application on the quantity and quality of medicinal plant Marigold (Calendula officinalis L.). Master Thesis Agronomy, University of Takestan Branch.

    Google Scholar 

  • Rauf S, Al-Khayri JM, Zaharieva M, Monneveux P, Khalil F (2015) Breeding strategies to enhance drought tolerance in crops. In: Al-Khayri JM et al (eds) Advances in plant breeding strategies; agronomic, abiotic and biotic stress traits. Springer, Berlin, pp 1–70

    Google Scholar 

  • Reddy AR, Chaitanya KV, Vivekanandan M (2004) Drought induced responses of photosynthesis and antioxidant metabolism in higher plants. J Plant Physiol 161:1189–1202

    CAS  Google Scholar 

  • Rengasamy P, Olsson KA (1991) Sodicity and soil structure. Soil Res 29(6):935–952

    CAS  Google Scholar 

  • Rengasamy P, Sumner ME (1998) Processes involved in sodic behaviour. In: Sumner ME, Naidu R (eds) Sodic soils: distribution management and environmental consequences. Oxford University Press, New York, pp 35–50

    Google Scholar 

  • Resnik ME (1970) Effect of mannitol and polyethylene glycol on phosphorus uptake by maize plants. Ann Bot 34(3):497–504

    CAS  Google Scholar 

  • Rietz DN, Haynes RJ (2003) Effects of irrigation-induced salinity and sodicity on soil microbial activity. Soil Biol Biochem 35(6):845–854

    CAS  Google Scholar 

  • Rui L, Sun W, Chao M, Ji C, Wang M, Ye B (2009) Leaf anatomical changes of Bruguiera gymnorrhiza seedlings under salt stress. J Trop Subtropical Bot 17(2):169–175

    Google Scholar 

  • Sachan P, Lal N (2017) An overview of nickel (Ni2+) essentiality, toxicity and tolerance strategies in plants. Asian J Biol 2(4):1–15

    Google Scholar 

  • Sacks MM, Silk WK, Burman P (1997) Effect of water stress on cortical cell division rates within the apical meristem of primary roots of maize. Plant Physiol 114(2):519–527

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sairam RK, Tyagi A (2004) Physiology and molecular biology of salinity stress tolerance in plants. Curr Sci 10:407–421

    Google Scholar 

  • Sallam A, Alqudah AM, Dawood MFA, Baenziger PS, Börne A (2019) Drought stress tolerance in wheat and barley: advances in physiology, breeding and genetics research. Int J Mol Sci 20(13):31–37

    Google Scholar 

  • Salman SA, Zeid SAM, Seleem E-MM, Abdel-Hafiz MA (2019) Soil characterization and heavy metal pollution assessment in Orabi farms, El Obour, Egypt. Bull Nat Res Cent 43:42. https://doi.org/10.1186/s42269-019-0082-1

    Article  Google Scholar 

  • Sankar B, Jaleel CA, Manivannan P, Kishorekumar A, Somasundaram R, Panneerselvam R (2007) Effect of paclobutrazol on water stress amelioration through antioxidants and free radical scavenging enzymes in Arachis hypogaea L. Colloids Surf B Biointerfaces 60(2):229–235

    CAS  PubMed  Google Scholar 

  • Sankar B, Jaleel CA, Manivannan P, Kishorekumar A, Somasundaram R, Panneerselvam R (2008) Relative efficacy of water use in five varieties of Abelmoschus esculentus (L.) Moench. Under water-limited conditions. Colloids Surf B Biointerfaces 62(1):125–129

    CAS  PubMed  Google Scholar 

  • Scherer HW (2001) Sulphur in crop production. Eur J Agron 14(2):81–111

    CAS  Google Scholar 

  • Schmidt R, Kunkowska AB, Schippers JH (2016) Role of reactive oxygen species during cell expansion in leaves. Plant Physiol 172(4):2098–2106

    CAS  PubMed  PubMed Central  Google Scholar 

  • Shah FUR, Ahmad N, Masood KR, Peralta-Videa JR, Ahmad FD (2010) Heavy metal toxicity in plants. In: Ashraf M, Ozturk M, Ahmad M (eds) Plant adaptation and phytoremediation. Springer, Dordrecht

    Google Scholar 

  • Shaheen HL, Shahbaz M, Ullah I, Iqbal MZ (2012) Morpho-physiological responses of cotton (Gossypium hirsutum) to salt stress. Int J Agric Biol 14(6):980–984

    Google Scholar 

  • Shainberg I, Levy GJ, Rengasamy P, Frenkel H (1992) Aggregate stability and seal formation as affected by drops’ impact energy and soil amendments. Soil Sci 154(2):113–119

    CAS  Google Scholar 

  • Shao HB, Chu LY, Shao MA, Jaleel CA, Hong-Mei M (2008) Higher plant antioxidants and redox signaling under environmental stresses. C R Biol 331(6):433–441

    CAS  PubMed  Google Scholar 

  • Shekari F (2000) Effect of drought stress on phenology, water relations, growth, yield and quality canola, doctorate thesis in the field of Agriculture, University of Tabriz, p. 180.

    Google Scholar 

  • Shi W, Ma X (2017) Effects of heavy metal Cd pollution on microbial activities in soil. Ann Agric Environ Med 24(4):722–725

    CAS  PubMed  Google Scholar 

  • Singh RP, Bauddh K, Sainger M, Sainger PA, Singh JS, Jaiwal PK (2010) Nitrogen use efficiency in higher plants under drought, high temperature, salinity and heavy metal contaminations. In: Jain V, Kumar PA (eds) Nitrogen use efficiency in higher plants. New India Publishing Agency (India) Pvt. Ltd., New Delhi, pp 99–123

    Google Scholar 

  • Singh JS, Pandey VC, Singh DP (2011) Efficient soil microorganisms: a new dimension for sustainable agriculture and environmental development. Agric Ecosyst Environ 140:339–353

    Google Scholar 

  • Sinsabaugh RL, Manzoni S, Moorhead DL, Richter A (2013) Carbon use efficiency of microbial communities: stoichiometry, methodology and modelling. Ecol Lett 16(7):930–939

    PubMed  Google Scholar 

  • Six D, Fily M, Blarel L, Goloub P (2005) First aerosol optical thickness measurements at dome C (East Antarctica), summer season 2003–2004. Atmos Environ 39(28):5041–5050

    CAS  Google Scholar 

  • Smika DE, Haas HJ, Power JF (1965) Effects of moisture and nitrogen fertilizer on growth and water use by native grass 1. Agron J 57(5):483–486

    Google Scholar 

  • Sobolev D, Begonia MF (2008) Effects of heavy metal contamination upon soil microbes: lead-induced changes in general and denitrifying microbial communities as evidenced by molecular markers. Int J Environ Res Public Health 5(5):450–456

    CAS  PubMed  PubMed Central  Google Scholar 

  • Soriano MA, Villalobos FJ, Federes E (2002) Stress timing effects on sunflower harvest index. In: Villalobos FJ, Testi L (eds) VII Congress of the European Society for Agronomy. Sevilla, Consejería de Agricultural Pesca, Spain JA, pp 141–142

    Google Scholar 

  • Sowerby A, Emmett B, Beier C, Tietema A, Penuelas J, Estiarte M, Freeman C (2005) Microbial community changes in heathland soil communities along a geographical gradient: interaction with climate change manipulations. Soil Biol Biochem 37(10):1805–1813

    CAS  Google Scholar 

  • Specht JE, Chase K, Macrander M, Graef GL, Chung J, Markwell JP, Germann M, Orf JH, Lark KG (2001) Soybean response to water. A QTL analysis of drought tolerance. Crop Sci 41:493–509

    CAS  Google Scholar 

  • Streeter JG (2003) Effects of drought on nitrogen fixation in soybean root nodules. Plant Cell Environ 26(8):1199–1204

    CAS  Google Scholar 

  • Su C, Jiang L , Zhang W (2014) A review on heavy metal contamination in the soil worldwide: situation, impact and remediation techniques. Environ Skep Critic 3(2):24–27

    Google Scholar 

  • Sudhir P, Murthy SD (2004) Effects of salt stress on basic processes of photosynthesis. Photosynthetica 42(2):481–486

    CAS  Google Scholar 

  • Sun L, Wei P, Pu W, Wang B, Wu Y, Tan T (2016) The oil recovery enhancement by nitrogen foam in high-temperature and high-salinity environments. J Pet Sci Eng 147:485–494

    CAS  Google Scholar 

  • Swift MJ, Heal OW, Anderson JM, Anderson JM (1979) Decomposition in terrestrial ecosystems. University of California Press, Berkeley

    Google Scholar 

  • Syed R, Kapoor D, Bhat AA (2018) Heavy metal toxicity in plants: a review. Plant Arch 18(2):1229–1238

    Google Scholar 

  • Tahir MHN, Mehid SS (2001) Evaluation of open pollinated sunflower (Helianthus annuus L.) populations under water stress and normal conditions. Int J Agric Biol 3:236–238

    Google Scholar 

  • Tahkokorpi M, Taulavuori K, Laine K, Taulavuori E (2007) After effects of drought-related winter stress in previous and current year stems of Vaccinium myrtillus L. Environ Exp Bot 61:85–93

    CAS  Google Scholar 

  • Thomas S, Anand A, Chinnusamy V, Dahuja A, Basu S (2013) Magnetopriming circumvents the effect of salinity stress on germination in chickpea seeds. Acta Physiol Plant 35(12):3401–3411

    CAS  Google Scholar 

  • Tilman D, Cassman KG, Matson PA, Naylor R, Polasky S (2002) Agricultural sustainability and intensive production practices. Nature 8(418):671–677

    Google Scholar 

  • Tiwari KK, Singh NK, Rai UN (2013) Chromium phytotoxicity in radish (Raphanus sativus): effects on metabolism and nutrient uptake. Bull Environ Contam Toxicol 91:339–344

    CAS  PubMed  Google Scholar 

  • Trenberth KE, Dai A, Van Der Schrier G, Jones PD, Barichivich J, Briffa KR, Sheffield J (2014) Global warming and changes in drought. Nat Clim Chang 4(1):17–22

    Google Scholar 

  • Tripathi VN, Srivastava S (2006) Ni2+-uptake in Pseudomonas putida strain S4: a possible role of Mg2+-uptake pump. J Biosci 31(1):61–67

    CAS  PubMed  Google Scholar 

  • Turner LB (1985) Changes in the phosphorus content of Capsicum annuum leaves during water stress. J Plant Physiol 121(5):429–439

    CAS  Google Scholar 

  • Uddin SR, Farid M, Saeed R, Ali S, Md R, Md TH, SAH B (2017) Citric acid enhanced the antioxidant defense system and chromium uptake by Lemna minor L. grown in hydroponics under Cr stress. Environ Sci Pollut Res 24(21):17669–17678

    Google Scholar 

  • United States Salinity Laboratory Staff (1954) Diagnosis and improvement of saline and alkali soils, Agriculture Handbook No. 60. United States Department of Agriculture, Washington, DC

    Google Scholar 

  • Usman AR, Al-Wabel MI, Abdulaziz AH, Mahmoud WA, El-Naggar AH, Ahmad M, Abdulelah AF, Abdulrasoul AO (2016) Conocarpus biochar induces changes in soil nutrient availability and tomato growth under saline irrigation. Pedosphere 26(1):27–38

    CAS  Google Scholar 

  • Wall DH, Ritz K, Six J, Strong DR, van der Putten WH (2012) Soil ecology and ecosystem services. Oxford University Press, Oxford

    Google Scholar 

  • Wang YP, Li QB, Shi JY, Lin Q, Chen XC, Wu W, Chen YX (2008) Assessment of microbial activity and bacterial community composition in the rhizosphere of a copper accumulator and a non-accumulator. Soil Biol Biochem 40(5):1167–1177

    CAS  Google Scholar 

  • Wang X, Yuan B, Chen Y, Li X, Ren Y (2014) Integration of micro-filtration into osmotic membrane bioreactors to prevent salinity build-up. Bioresour Technol 167:116–123

    CAS  PubMed  Google Scholar 

  • Wang S, Xu Y, Norbu N, Wang Z (2018) Remediation of biochar on heavy metal polluted soils. IOP Conference Series: Earth and Environmental Science 108(4):042113. IOP Publishing

    Google Scholar 

  • Wardle DA, Nilsson MC, Zackrisson O (2008) Fire-derived charcoal causes loss of forest humus. Science 320(5876):629–632

    CAS  PubMed  Google Scholar 

  • Webber M, Barnett J, Finlayson B, Wang M (2006) Pricing China’s irrigation water (working paper). School of Anthropology, Geography and Environmental Studies, The University of Melbourne, VIC, Australia

    Google Scholar 

  • Wichern J, Wichern F, Joergensen RG (2006) Impact of salinity on soil microbial communities and the decomposition of maize in acidic soils. Geoderma 137(1-2):100–108

    CAS  Google Scholar 

  • Wicke B, Smeets E, Dornburg V, Vashev B, Gaiser T, Turkenburg W, Faaij A (2011) The global technical and economic potential of bioenergy from salt affected soils. Energy Environ Sci 4:2669–2681

    Google Scholar 

  • Wilson A, Punginelli C, Gall A, Bonetti C, Alexandre M, Routaboul JM, Kerfeld CA, Van Grondelle R, Robert B, Kennis JT, Kirilovsky D (2008) A photoactive carotenoid protein acting as light intensity sensor. PNAS 105(33):12075–12080

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wong VN, Dalal RC, Greene RS (2009) Carbon dynamics of sodic and saline soils following gypsum and organic material additions: a laboratory incubation. Appl Soil Ecol 41(1):29–40

    Google Scholar 

  • Wu QS, Xia RX, Zou YN (2008) Improved soil structure and citrus growth after inoculation with three arbuscular mycorrhizal fungi under drought stress. Eur J Soil Biol 44(1):122–128

    Google Scholar 

  • Wu W, Mhaimeed AS, Al-Shafie WM, Ziadat F, Dhehibi B, Nangia V, De Pauw E (2014) Mapping soil salinity changes using remote sensing in Central Iraq. Geoderma Reg 2:21–31

    Google Scholar 

  • Wuana RA, Okieimen FE (2011) Heavy metals in contaminated soils: a review of sources, chemistry, risks and best available strategies for remediation. Int Sch Res Notices Ecol 402647:1–20

    Google Scholar 

  • Wullschleger SD, Yin TM, DiFazio SP, Tschaplinski TJ, Gunter LE, Davis MF, Tuskan GA (2005) Phenotypic variation in growth and biomass distribution for two advanced-generation pedigrees of hybrid poplar. Can J For Res 35(8):1779–1789

    CAS  Google Scholar 

  • Xian Y, Wang M, Chen W (2015) Quantitative assessment on soil enzyme activities of heavy metal contaminated soils with various soil properties. Chemosphere 139:604–608

    CAS  PubMed  Google Scholar 

  • Xiao X, Wang M, Zhu H, Guo Z, Han X, Zeng P (2017) Response of soil microbial activities and microbial community structure to vanadium stress. Ecotoxicol Environ Saf 142:200–206

    CAS  PubMed  Google Scholar 

  • Xu Y, Seshadri B, Sarkar B, Wang H, Rumpel C, Sparks D, Farrell M, Hall T, Yang X, Bolan N (2018) Biochar modulates heavy metal toxicity and improves microbial carbon use efficiency in soil. Sci Total Environ 621:148–159

    CAS  PubMed  Google Scholar 

  • Yadav SK (2010) Heavy metals toxicity in plants: an overview on the role of glutathione and phytochelatins in heavy metal stress tolerance of plants. Soil Biol Biochem 76(2):67–179

    Google Scholar 

  • Yadav G, Srivastava PK, Singh VP, Prasad SM (2014) Light intensity alters the extent of arsenic toxicity in Helianthus annuus L. seedlings. Biol Trace Elem Res 158:410–421

    CAS  PubMed  Google Scholar 

  • Yuan B, Shen X, Li X, Xu C, Wang S (2007) Mitogen-activated protein kinase OsMPK6 negatively regulates rice disease resistance to bacterial pathogens. Planta 226(4):953–960

    CAS  PubMed  Google Scholar 

  • Yuan P, Wang J, Pan Y, Shen B, Wu C (2019) Review of biochar for the management of contaminated soil: preparation, application and prospect. Sci Total Environ 659:473–490

    CAS  PubMed  Google Scholar 

  • Zareian J (2004) Effects of drought on the different stages of growth, and growth traits, varieties of winter canola, MS Thesis Agronomy, Faculty of Agriculture, Islamic Azad University of Khorasgan

    Google Scholar 

  • Zeid IM, Ghazi SM, Shedeed ZA, Nabawy DM (2018) Biochar mitigates cadmium stress on alfalfa seeds during germination. Int J Prog Sci Technol 6:251–261

    Google Scholar 

  • Zhang H, Wang X, Wang S (2004) A study on stomatal traits of Platanus acerifolia under urban stress. J Fudan Univ 43:651–656

    Google Scholar 

  • Zhang H, Kim MS, Sun Y, Dowd SE, Shi H, Paré PW (2008) Soil bacteria confer plant salt tolerance by tissue-specific regulation of the sodium transporter HKT1. Mol Plant-Microbe Interact 21(6):737–744

    PubMed  Google Scholar 

  • Zhang FP, Li CF, Tong LG, Yue LX, Li P, Ciren YC, Cao CG (2010) Response of microbial characteristics to heavy metal pollution of mining soils in Central Tibet, China. Appl Soil Ecol 45(3):144–151

    Google Scholar 

  • Zhao W, Sun Y, Kjelgren R, Liu X (2015) Response of stomatal density and bound gas exchange in leaves of maize to soil water deficit. Acta Physiol Plant 37(1):1704. https://doi.org/10.1007/s11738-014-1704-8

    Article  Google Scholar 

  • Zheng R, Chen Z, Cai C, Tie B, Liu X, Reid BJ, Huang Q, Lei M, Sun G, Baltrėnaitė E (2015) Mitigating heavy metal accumulation into rice (Oryza sativa L.) using biochar amendment a field experiment in Hunan China. Environ Sci Pollut Res 22:11097–11108

    CAS  Google Scholar 

  • Zheng R, Sun G, Li C, Reid BJ, Xie Z, Zhang B, Wang Q (2017) Mitigating cadmium accumulation in greenhouse lettuce production using biochar. Environ Sci Pollut Res 24(7):6532–6542

    CAS  Google Scholar 

  • Zornoza R, Mataix-Solera J, Guerrero C, Arcenegui V, García-Orenes F, Mataix-Beneyto J, Morugán A (2007) Evaluation of soil quality using multiple lineal regression based on physical, chemical and biochemical properties. Sci Total Environ 378(1-2):233–237

    CAS  PubMed  Google Scholar 

  • Zou L, Morris G, Qi D (2008) Using activated carbon electrode in electrosorptive deionisation of brackish water. Desalination 225(1–3):329–340

    CAS  Google Scholar 

Download references

Acknowledgments

Kuldeep Bauddh is thankful to the Science and Engineering Research Board (SERB) for the award of Research Grant (EEQ/2017/000476). Author Abhishek Guldhe is thankful to the Department of Biotechnology, Govt. of India for the Ramalingaswami Fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kuldeep Bauddh .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kumari, K. et al. (2020). Biochar Amendment in Agricultural Soil for Mitigation of Abiotic Stress. In: Bauddh, K., Kumar, S., Singh, R., Korstad, J. (eds) Ecological and Practical Applications for Sustainable Agriculture. Springer, Singapore. https://doi.org/10.1007/978-981-15-3372-3_14

Download citation

Publish with us

Policies and ethics