Skip to main content

Regression Model of Frame Rate Processing Performance for Embedded Systems Devices

  • Chapter
  • First Online:
Applications of Machine Learning

Abstract

In this paper, regression model for estimation of the multimedia device performance has been established. The model takes into consideration peculiarities of the processing pipeline organized on the device. In this case, system works in the single-threaded mode, and therefore, all stages of processing are performed sequentially. We define all the stages for data processing within embedded system based on the system-on-chip circuit. According to the analysis of the process, we identified that the conventional unit of display area can be selected as independent variable in the model. The attained experimental results show that the proposed model is feasible for performance assessment and can be used in practical implementation to observe the frame rate parameter of the system and thus develop programming convention to follow during functionality implementation. The main peculiarity of the current investigation is that device processes multimedia data using its own resources without external assist from other devices.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Gubbi J, Buyya R, Marusic S, Palaniswami M (2013) Internet of things (IoT): a vision, architectural elements, and future directions. Future Gener Comput Syst 29(7):1645–1660. https://doi.org/10.1016/j.future.2013.01.010

    Article  Google Scholar 

  2. Miraz MH, Ali M, Excell PS, Picking R (2015) A review on internet of things (IoT), internet of everything (IoE) and internet of nano things (IoNT). In: 2015 internet technologies and applications (ITA), IEEE, pp 219–224. https://doi.org/10.1109/itecha.2015.7317398

  3. Al-Turijan F, Alturijan S (2018) 5G/IoT-enabled UAVs for multimedia delivery in industry-oriented applications. Multimedia Tools Appl 1–22. https://doi.org/10.1007/s11042-018-6288-7

  4. Alvi SA, Aflaz B, Shah GA, Atzori L, Mahmood W (2015) Internet of multimedia things: vision and challenges. Ad Hoc Netw 33:87–111. https://doi.org/10.1016/j.adhoc.2015.04.006

    Article  Google Scholar 

  5. Conti F, Schilling R, Schiavone PD, Pullini A, Rossi D, Gurkaynak FK, Muehlberghuber M, Gautschi M, Loi I, Hauhou G, Mangard S, Benini L (2017) An IoT endpoint system-on-chip for secure and energy-efficient near-sensor analytics. IEEE Trans Circ Syst I Regul Pap 64(9):2481–2494. https://doi.org/10.1109/TCSI.2017.2698019

    Article  Google Scholar 

  6. Chianese A, Piccialli F (2014) Designing a smart museum: when cultural heritage joins IoT. In: 2014 eighth international conference on next generation mobile apps, services and technologies, IEEE, pp 300–306. https://doi.org/10.1109/ngmast.2014.21

  7. Sivanathan A, Sherratt D, Gharakheili HH, Radford A, Wijenayke C, Vishwanath A, Sivarman V (2017) Characterizing and classifying IoT traffic in smart cities and campuses. In: 2017 IEEE conference on computer communications workshops (INFOCOM WKSHPS), IEEE, pp 559–564. https://doi.org/10.1109/infcomw.2017.8116438

  8. Wan J, Al-awlaqi M, Li M, O’Grady M, Gu X, Wang J, Cao N (2018) Wearable IoT enabled real-time health monitoring system. EURASIP J Wirel Commun Netw. https://doi.org/10.1186/s13638-018-1308-x

    Article  Google Scholar 

  9. Patel S, Park H, Bonato P, Chan L, Rodgers M (2012) A review of wearable sensors and systems with application in rehabilitation. J NeuroEng Rehabil 9:21. https://doi.org/10.1186/1743-0003-9-21

    Article  Google Scholar 

  10. Albagory Y, Nofal M, Al Raddadym F (2018) IoT-RTP and IoT-RTCP: adaptive protocols for multimedia transmission over internet of things environments. IEEE Access 5:16757–16773. https://doi.org/10.1109/ACCESS.2017.2726902

    Article  Google Scholar 

  11. NanoPi Neo Air. https://www.friendlyarm.com/index.php?route=product/product&product_id=151. Last accessed 2019/08/03

  12. Yang Y, Sun L, Guo C (2018) Aero-material consumption prediction based on linear regression model. Procedia Comput Sci 131:825–831. https://doi.org/10.1016/j.procs.2018.04.271

    Article  Google Scholar 

  13. Permai SD, Tanty H (2018) Linear regression model using bayesian approach for energy performance of residential building. Procedia Comput Sci 135:671–677. https://doi.org/10.1016/j.procs.2018.08.219

    Article  Google Scholar 

  14. Austin PC, Steyerberg EW (2015) The number of subjects per variable required in linear regression analyses. J Clin Epidemiol 68(6):627–636. https://doi.org/10.1016/j.jclinepi.2014.12.014

    Article  Google Scholar 

  15. Ibrahim S, Daut I, Irwan YM, Irwanto M, Gomesh N, Farhana Z (2012) Linear regression model in estimating solar radiation in Perlis. Energy Procedia 18:1402–1412. https://doi.org/10.1016/j.egypro.2012.05.156

    Article  Google Scholar 

  16. Shreiner D, Sellers G, Kessenich J, Licea-Kane B (2013) OpenGL programming guide: the official guide to learning OpenGL, Version 4.3. Addison-Wesley

    Google Scholar 

  17. LWJGL—Lightweight Java Game Library. https://www.lwjgl.org/. Last accessed 2019/08/05

  18. Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, Blondel M, Prettenhofer P, Weiss R, Dubourg V, Vanderplas J, Passos A, Cournapeau D, Brucher M, Perrot M, Duchesnay E (2011) Scikit-learn: machine learning in python. J Mach Learn Res 12:2825–2830

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yaroslav Krainyk .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Krainyk, Y. (2020). Regression Model of Frame Rate Processing Performance for Embedded Systems Devices. In: Johri, P., Verma, J., Paul, S. (eds) Applications of Machine Learning. Algorithms for Intelligent Systems. Springer, Singapore. https://doi.org/10.1007/978-981-15-3357-0_17

Download citation

  • DOI: https://doi.org/10.1007/978-981-15-3357-0_17

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-15-3356-3

  • Online ISBN: 978-981-15-3357-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics