Skip to main content

Role of Regulatory T Lymphocytes in Health and Disease

  • Chapter
  • First Online:
Systems and Synthetic Immunology

Abstract

T cells are conventionally categorized into two basic types, viz., CD4+ helper and CD8+ cytotoxic T cells. CD4+ T cells were known to “help” in the activation and differentiation of various immune cells such as NK cells, macrophages, and dendritic cells, whereas CD8+ T cells were known to kill foreign antigens. In 1970s, it was reported that functions exhibited by T cells were not merely restricted to augmenting an immune response but also to dampen it [1]. These T supressor cells were famously named as regulatory T cells or Tregs. Suppression caused by Tregs on various T cells was believed to mediate immunological tolerance by discriminating between self- and non-self-antigen [2, 3]. Tregs are believed to play an important role in maintaining homeostasis of the immune system by restricting the enormity of effector responses and permitting the initiation of immunological tolerance [4–6]. Treg populations are majorly divided into two major types: nTregs (natural Tregs) originating from the thymus and iTregs (induced Tregs) arising extrathymically, i.e., from secondary lymphoid organs or inflamed tissues [7]. Tregs are further differentiated into five subtypes based upon their origin, phenotypes, and expression of markers.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Gershon RK, Kondo K (1970) Cell interactions in the induction of tolerance: the role of thymic lymphocytes. Immunology 18:723–737

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Gershon RK, Cohen P, Hencin R, Liebhaber SA (1972) Suppressor T cells. J Immunol 108:586–590

    CAS  PubMed  Google Scholar 

  3. Gershon RK, Kondo K (1971) Infectious immunological tolerance. Immunology 21:903–914

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Hori S, Nomura T, Sakaguchi S (2003) Control of regulatory T cell development by the transcription factor Foxp3. Science 299:1057–1061

    Article  CAS  PubMed  Google Scholar 

  5. Fontenot JD, Gavin MA, Rudensky AY (2003) Foxp3 programs the development and function of CD4+CD25+ regulatory T cells. Nat Immunol 4:330–336

    Article  CAS  PubMed  Google Scholar 

  6. Sakaguchi S (2000) Regulatory T cells: key controllers of immunologic self-tolerance. Cell 101:455–458

    Article  CAS  PubMed  Google Scholar 

  7. Curotto de Lafaille MA, Lafaille JJ (2009) Natural and adaptive foxp3+ regulatory T cells: more of the same or a division of labor? Immunity 30:626–635

    Article  CAS  PubMed  Google Scholar 

  8. Moller G (1988) Do suppressor T cells exist? Scand J Immunol 27:247–250

    Article  CAS  PubMed  Google Scholar 

  9. Sakaguchi S, Wing K, Miyara M (2007) Regulatory T cells – a brief history and perspective. Eur J Immunol 37(Suppl 1):S116–S123

    Article  CAS  PubMed  Google Scholar 

  10. Kappler JW, Roehm N, Marrack P (1987) T cell tolerance by clonal elimination in the thymus. Cell 49:273–280

    CAS  PubMed  Google Scholar 

  11. Goodnow CC, Cyster JG, Hartley SB, Bell SE, Cooke MP, Healy JI, Akkaraju S, Rathmell JC, Pogue SL, Shokat KP (1995) Self-tolerance checkpoints in B lymphocyte development. Adv Immunol 59:279–368

    Article  CAS  PubMed  Google Scholar 

  12. O’Garra A, Murphy K (1994) Role of cytokines in determining T-lymphocyte function. Curr Opin Immunol 6:458–466

    Article  PubMed  Google Scholar 

  13. Chen Y, Kuchroo VK, Inobe J, Hafler DA, Weiner HL (1994) Regulatory T cell clones induced by oral tolerance: suppression of autoimmune encephalomyelitis. Science 265:1237–1240

    Article  CAS  PubMed  Google Scholar 

  14. Nishizuka Y, Sakakura T (1969) Thymus and reproduction: sex-linked dysgenesia of the gonad after neonatal thymectomy in mice. Science 166:753–755

    Article  CAS  PubMed  Google Scholar 

  15. Sakaguchi S, Fukuma K, Kuribayashi K, Masuda T (1985) Organ-specific autoimmune diseases induced in mice by elimination of T cell subset. I. Evidence for the active participation of T cells in natural self-tolerance; deficit of a T cell subset as a possible cause of autoimmune disease. J Exp Med 161:72–87

    Article  CAS  PubMed  Google Scholar 

  16. Bloom BR, Salgame P, Diamond B (1992) Revisiting and revising suppressor T cells. Immunol Today 13:131–136

    Article  CAS  PubMed  Google Scholar 

  17. Brunkow ME, Jeffery EW, Hjerrild KA, Paeper B, Clark LB, Yasayko SA, Wilkinson JE, Galas D, Ziegler SF, Ramsdell F (2001) Disruption of a new forkhead/winged-helix protein, scurfin, results in the fatal lymphoproliferative disorder of the scurfy mouse. Nat Genet 27:68–73

    Article  CAS  PubMed  Google Scholar 

  18. Bennett CL, Christie J, Ramsdell F, Brunkow ME, Ferguson PJ, Whitesell L, Kelly TE, Saulsbury FT, Chance PF, Ochs HD (2001) The immune dysregulation, polyendocrinopathy, enteropathy, X-linked syndrome (IPEX) is caused by mutations of FOXP3. Nat Genet 27:20–21

    Article  CAS  PubMed  Google Scholar 

  19. Khattri R, Cox T, Yasayko SA, Ramsdell F (2003) An essential role for scurfin in CD4+CD25+ T regulatory cells. Nat Immunol 4:337–342

    Article  CAS  PubMed  Google Scholar 

  20. Weiner HL (2001) Induction and mechanism of action of transforming growth factor-beta-secreting Th3 regulatory cells. Immunol Rev 182:207–214

    Article  CAS  PubMed  Google Scholar 

  21. Kohm AP, Carpentier PA, Anger HA, Miller SD (2002) Cutting edge: CD4+CD25+ regulatory T cells suppress antigen-specific autoreactive immune responses and central nervous system inflammation during active experimental autoimmune encephalomyelitis. J Immunol 169:4712–4716

    Article  CAS  PubMed  Google Scholar 

  22. Zheng J, Chan PL, Liu Y, Qin G, Xiang Z, Lam KT, Lewis DB, Lau YL, Tu W (2013) ICOS regulates the generation and function of human CD4+ Treg in a CTLA-4 dependent manner. PLoS One 8:e82203

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  23. Currie AJ, Prosser A, McDonnell A, Cleaver AL, Robinson BW, Freeman GJ, van der Most RG (2009) Dual control of antitumor CD8 T cells through the programmed death-1/programmed death-ligand 1 pathway and immunosuppressive CD4 T cells: regulation and counterregulation. J Immunol 183:7898–7908

    Article  CAS  PubMed  Google Scholar 

  24. Harada H, Salama AD, Sho M, Izawa A, Sandner SE, Ito T, Akiba H, Yagita H, Sharpe AH, Freeman GJ, Sayegh MH (2003) The role of the ICOS-B7h T cell costimulatory pathway in transplantation immunity. J Clin Invest 112:234–243

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Bertram EM, Tafuri A, Shahinian A, Chan VS, Hunziker L, Recher M, Ohashi PS, Mak TW, Watts TH (2002) Role of ICOS versus CD28 in antiviral immunity. Eur J Immunol 32:3376–3385

    Article  CAS  PubMed  Google Scholar 

  26. Maeda S, Fujimoto M, Matsushita T, Hamaguchi Y, Takehara K, Hasegawa M (2011) Inducible costimulator (ICOS) and ICOS ligand signaling has pivotal roles in skin wound healing via cytokine production. Am J Pathol 179:2360–2369

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Haribhai D, Williams JB, Jia S, Nickerson D, Schmitt EG, Edwards B, Ziegelbauer J, Yassai M, Li SH, Relland LM, Wise PM, Chen A, Zheng YQ, Simpson PM, Gorski J, Salzman NH, Hessner MJ, Chatila TA, Williams CB (2011) A requisite role for induced regulatory T cells in tolerance based on expanding antigen receptor diversity. Immunity 35:109–122

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Ray A, Khare A, Krishnamoorthy N, Qi Z, Ray P (2010) Regulatory T cells in many flavors control asthma. Mucosal Immunol 3:216–229

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Sogut A, Yilmaz O, Kirmaz C, Ozbilgin K, Onur E, Celik O, Pinar E, Vatansever S, Dinc G, Yuksel H (2012) Regulatory-T, T-helper 1, and T-helper 2 cell differentiation in nasal mucosa of allergic rhinitis with olive pollen sensitivity. Int Arch Allergy Immunol 157:349–353

    Article  CAS  PubMed  Google Scholar 

  30. Wu K, Bi Y, Sun K, Wang C (2007) IL-10-producing type 1 regulatory T cells and allergy. Cell Mol Immunol 4:269–275

    PubMed  Google Scholar 

  31. Noble A, Giorgini A, Leggat JA (2006) Cytokine-induced IL-10-secreting CD8 T cells represent a phenotypically distinct suppressor T-cell lineage. Blood 107:4475–4483

    Article  CAS  PubMed  Google Scholar 

  32. Cowan JE, Parnell SM, Nakamura K, Caamano JH, Lane PJ, Jenkinson EJ, Jenkinson WE, Anderson G (2013) The thymic medulla is required for Foxp3+ regulatory but not conventional CD4+ thymocyte development. J Exp Med 210:675–681

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Itoh M, Takahashi T, Sakaguchi N, Kuniyasu Y, Shimizu J, Otsuka F, Sakaguchi S (1999) Thymus and autoimmunity: production of CD25+CD4+ naturally anergic and suppressive T cells as a key function of the thymus in maintaining immunologic self-tolerance. J Immunol 162:5317–5326

    CAS  PubMed  Google Scholar 

  34. Salomon B, Lenschow DJ, Rhee L, Ashourian N, Singh B, Sharpe A, Bluestone JA (2000) B7/CD28 costimulation is essential for the homeostasis of the CD4+CD25+ immunoregulatory T cells that control autoimmune diabetes. Immunity 12:431–440

    Article  CAS  PubMed  Google Scholar 

  35. Cheng G, Yu A, Dee MJ, Malek TR (2013) IL-2R signaling is essential for functional maturation of regulatory T cells during thymic development. J Immunol 190:1567–1575

    Article  CAS  PubMed  Google Scholar 

  36. D'Cruz LM, Klein L (2005) Development and function of agonist-induced CD25+Foxp3+ regulatory T cells in the absence of interleukin 2 signaling. Nat Immunol 6:1152–1159

    Article  CAS  PubMed  Google Scholar 

  37. Tai X, Cowan M, Feigenbaum L, Singer A (2005) CD28 costimulation of developing thymocytes induces Foxp3 expression and regulatory T cell differentiation independently of interleukin 2. Nat Immunol 6:152–162

    Article  CAS  PubMed  Google Scholar 

  38. Zhang R, Huynh A, Whitcher G, Chang J, Maltzman JS, Turka LA (2013) An obligate cell-intrinsic function for CD28 in Tregs. J Clin Invest 123:580–593

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Stritesky GL, Jameson SC, Hogquist KA (2011) Selection of self-reactive T cells in the thymus. Annu Rev Immunol 30:95–114

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  40. Martin-Gayo E, Sierra-Filardi E, Corbi AL, Toribio ML (2010) Plasmacytoid dendritic cells resident in human thymus drive natural Treg cell development. Blood 115:5366–5375

    Article  CAS  PubMed  Google Scholar 

  41. Srivastava RK, Tomar GB, Barhanpurkar AP, Gupta N, Pote ST, Mishra GC, Wani MR (2011) IL-3 attenuates collagen-induced arthritis by modulating the development of Foxp3+ regulatory T cells. J Immunol 186:2262–2272

    Article  CAS  PubMed  Google Scholar 

  42. Coquet JM, Middendorp S, van der Horst G, Kind J, Veraar EA, Xiao Y, Jacobs H, Borst J (2012) The CD27 and CD70 costimulatory pathway inhibits effector function of T helper 17 cells and attenuates associated autoimmunity. Immunity 38:53–65

    Article  PubMed  CAS  Google Scholar 

  43. Sun CM, Hall JA, Blank RB, Bouladoux N, Oukka M, Mora JR, Belkaid Y (2007) Small intestine lamina propria dendritic cells promote de novo generation of Foxp3 T reg cells via retinoic acid. J Exp Med 204:1775–1785

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Lio CW, Hsieh CS (2008) A two-step process for thymic regulatory T cell development. Immunity 28:100–111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Burchill MA, Yang J, Vang KB, Moon JJ, Chu HH, Lio CW, Vegoe AL, Hsieh CS, Jenkins MK, Farrar MA (2008) Linked T cell receptor and cytokine signaling govern the development of the regulatory T cell repertoire. Immunity 28:112–121

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Mahmud SA, Manlove LS, Schmitz HM, Xing Y, Wang Y, Owen DL, Schenkel JM, Boomer JS, Green JM, Yagita H, Chi H, Hogquist KA, Farrar MA (2014) Costimulation via the tumor-necrosis factor receptor superfamily couples TCR signal strength to the thymic differentiation of regulatory T cells. Nat Immunol 15:473–481

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Burchill MA, Yang J, Vogtenhuber C, Blazar BR, Farrar MA (2007) IL-2 receptor beta-dependent STAT5 activation is required for the development of Foxp3+ regulatory T cells. J Immunol 178:280–290

    Article  CAS  PubMed  Google Scholar 

  48. Yao Z, Kanno Y, Kerenyi M, Stephens G, Durant L, Watford WT, Laurence A, Robinson GW, Shevach EM, Moriggl R, Hennighausen L, Wu C, O'Shea JJ (2007) Nonredundant roles for Stat5a/b in directly regulating Foxp3. Blood 109:4368–4375

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Bluestone JA, Abbas AK (2003) Natural versus adaptive regulatory T cells. Nat Rev Immunol 3:253–257

    Article  CAS  PubMed  Google Scholar 

  50. Baecher-Allan C, Brown JA, Freeman GJ, Hafler DA (2003) CD4+CD25+ regulatory cells from human peripheral blood express very high levels of CD25 ex vivo. Novartis Found Symp 252:67–88; discussion 88–91, 106–14

    CAS  PubMed  Google Scholar 

  51. Graca L, Le Moine A, Cobbold SP, Waldmann H (2003) Dominant transplantation tolerance. Opin Curr Opin Immunol 15:499–506

    Article  CAS  PubMed  Google Scholar 

  52. Bettini M, Vignali DA (2009) Regulatory T cells and inhibitory cytokines in autoimmunity. Curr Opin Immunol 21:612–618

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. La Cava A (2009) Natural Tregs and autoimmunity. Front Biosci (Landmark Ed) 14:333–343

    Article  Google Scholar 

  54. Miyara M, Yoshioka Y, Kitoh A, Shima T, Wing K, Niwa A, Parizot C, Taflin C, Heike T, Valeyre D, Mathian A, Nakahata T, Yamaguchi T, Nomura T, Ono M, Amoura Z, Gorochov G, Sakaguchi S (2009) Functional delineation and differentiation dynamics of human CD4+ T cells expressing the FoxP3 transcription factor. Immunity 30:899–911

    Article  CAS  PubMed  Google Scholar 

  55. Liu W, Putnam AL, Xu-Yu Z, Szot GL, Lee MR, Zhu S, Gottlieb PA, Kapranov P, Gingeras TR, Fazekas de St Groth B, Clayberger C, Soper DM, Ziegler SF, Bluestone JA (2006) CD127 expression inversely correlates with FoxP3 and suppressive function of human CD4+ T reg cells. J Exp Med 203:1701–1711

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Thornton AM, Korty PE, Tran DQ, Wohlfert EA, Murray PE, Belkaid Y, Shevach EM (2010) Expression of Helios, an Ikaros transcription factor family member, differentiates thymic-derived from peripherally induced Foxp3+ T regulatory cells. J Immunol 184:3433–3441

    Article  CAS  PubMed  Google Scholar 

  57. MacDonald KG, Han JM, Himmel ME, Huang Q, Kan B, Campbell AI, Lavoie PM, Levings MK (2013) Response to comment on “helios+ and helios- cells coexist within the natural FOXP3+ T regulatory cell subset in humans”. J Immunol 190:4440–4441

    Article  CAS  PubMed  Google Scholar 

  58. Kim YC, Bhairavabhotla R, Yoon J, Golding A, Thornton AM, Tran DQ, Shevach EM (2012) Oligodeoxynucleotides stabilize Helios-expressing Foxp3+ human T regulatory cells during in vitro expansion. Blood 119:2810–2818

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. McClymont SA, Putnam AL, Lee MR, Esensten JH, Liu W, Hulme MA, Hoffmuller U, Baron U, Olek S, Bluestone JA, Brusko TM (2011) Plasticity of human regulatory T cells in healthy subjects and patients with type 1 diabetes. J Immunol 186:3918–3926

    Article  CAS  PubMed  Google Scholar 

  60. Ito T, Hanabuchi S, Wang YH, Park WR, Arima K, Bover L, Qin FX, Gilliet M, Liu YJ (2008) Two functional subsets of FOXP3+ regulatory T cells in human thymus and periphery. Immunity 28:870–880

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Seddiki N, Santner-Nanan B, Tangye SG, Alexander SI, Solomon M, Lee S, Nanan R, Fazekas de Saint Groth B (2006) Persistence of naive CD45RA+ regulatory T cells in adult life. Blood 107:2830–2838

    Article  CAS  PubMed  Google Scholar 

  62. Apostolou I, Sarukhan A, Klein L, von Boehmer H (2002) Origin of regulatory T cells with known specificity for antigen. Nat Immunol 3:756–763

    Article  CAS  PubMed  Google Scholar 

  63. Thorstenson KM, Khoruts A (2001) Generation of anergic and potentially immunoregulatory CD25+CD4 T cells in vivo after induction of peripheral tolerance with intravenous or oral antigen. J Immunol 167:188–195

    Article  CAS  PubMed  Google Scholar 

  64. Yamazaki S, Dudziak D, Heidkamp GF, Fiorese C, Bonito AJ, Inaba K, Nussenzweig MC, Steinman RM (2008) CD8+ CD205+ splenic dendritic cells are specialized to induce Foxp3+ regulatory T cells. J Immunol 181:6923–6933

    Article  CAS  PubMed  Google Scholar 

  65. Gottschalk RA, Corse E, Allison JP (2010) TCR ligand density and affinity determine peripheral induction of Foxp3 in vivo. J Exp Med 207:1701–1711

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Turner MS, Kane LP, Morel PA (2009) Dominant role of antigen dose in CD4+Foxp3+ regulatory T cell induction and expansion. J Immunol 183:4895–4903

    Article  CAS  PubMed  Google Scholar 

  67. Molinero LL, Miller ML, Evaristo C, Alegre ML (2011) High TCR stimuli prevent induced regulatory T cell differentiation in a NF-kappaB-dependent manner. J Immunol 186:4609–4617

    Article  CAS  PubMed  Google Scholar 

  68. Lathrop SK, Bloom SM, Rao SM, Nutsch K, Lio CW, Santacruz N, Peterson DA, Stappenbeck TS, Hsieh CS (2011) Peripheral education of the immune system by colonic commensal microbiota. Nature 478:250–254

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Atarashi K, Tanoue T, Shima T, Imaoka A, Kuwahara T, Momose Y, Cheng G, Yamasaki S, Saito T, Ohba Y, Taniguchi T, Takeda K, Hori S, Ivanov II, Umesaki Y, Itoh K, Honda K (2011) Induction of colonic regulatory T cells by indigenous Clostridium species. Science 331:337–341

    Article  CAS  PubMed  Google Scholar 

  70. Dar HY, Pal S, Shukla P, Mishra PK, Tomar GB, Chattopadhyay N, Srivastava RK (2018) Bacillus clausii inhibits bone loss by skewing Treg-Th17 cell equilibrium in postmenopausal osteoporotic mice model. Nutrition 54:118–128

    Article  CAS  PubMed  Google Scholar 

  71. Dar HY, Shukla P, Mishra PK, Anupam R, Mondal RK, Tomar GB, Sharma V, Srivastava RK (2018) Lactobacillus acidophilus inhibits bone loss and increases bone heterogeneity in osteoporotic mice via modulating Treg-Th17 cell balance. Bone Rep 8:46–56

    Article  PubMed  PubMed Central  Google Scholar 

  72. Round JL, Mazmanian SK (2010) Inducible Foxp3+ regulatory T-cell development by a commensal bacterium of the intestinal microbiota. Proc Natl Acad Sci U S A 107:12204–12209

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Josefowicz SZ, Niec RE, Kim HY, Treuting P, Chinen T, Zheng Y, Umetsu DT, Rudensky AY (2012) Extrathymically generated regulatory T cells control mucosal TH2 inflammation. Nature 482:395–399

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Chaudhry A, Rudensky AY (2013) Control of inflammation by integration of environmental cues by regulatory T cells. J Clin Invest 123:939–944

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Zheng Y, Josefowicz S, Chaudhry A, Peng XP, Forbush K, Rudensky AY (2010) Role of conserved non-coding DNA elements in the Foxp3 gene in regulatory T-cell fate. Nature 463:808–812

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Gottschalk RA, Corse E, Allison JP (2011) Expression of Helios in peripherally induced Foxp3+ regulatory T cells. J Immunol 188:976–980

    Article  PubMed  CAS  Google Scholar 

  77. Himmel ME, MacDonald KG, Garcia RV, Steiner TS, Levings MK (2013) Helios+ and Helios- cells coexist within the natural FOXP3+ T regulatory cell subset in humans. J Immunol 190:2001–2008

    Article  CAS  PubMed  Google Scholar 

  78. Abbas AK, Benoist C, Bluestone JA, Campbell DJ, Ghosh S, Hori S, Jiang S, Kuchroo VK, Mathis D, Roncarolo MG, Rudensky A, Sakaguchi S, Shevach EM, Vignali DA, Ziegler SF (2013) Regulatory T cells: recommendations to simplify the nomenclature. Nat Immunol 14:307–308

    Article  CAS  PubMed  Google Scholar 

  79. Murugaiyan G, Mittal A, Weiner HL (2010) Identification of an IL-27/osteopontin axis in dendritic cells and its modulation by IFN-gamma limits IL-17-mediated autoimmune inflammation. Proc Natl Acad Sci U S A 107:11495–11500

    Article  PubMed  PubMed Central  Google Scholar 

  80. Maynard CL, Harrington LE, Janowski KM, Oliver JR, Zindl CL, Rudensky AY, Weaver CT (2007) Regulatory T cells expressing interleukin 10 develop from Foxp3+ and Foxp3- precursor cells in the absence of interleukin 10. Nat Immunol 8:931–941

    Article  CAS  PubMed  Google Scholar 

  81. Meiron M, Zohar Y, Anunu R, Wildbaum G, Karin N (2008) CXCL12 (SDF-1alpha) suppresses ongoing experimental autoimmune encephalomyelitis by selecting antigen-specific regulatory T cells. J Exp Med 205:2643–2655

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Groux H, O'Garra A, Bigler M, Rouleau M, Antonenko S, de Vries JE, Roncarolo MG (1997) A CD4+ T-cell subset inhibits antigen-specific T-cell responses and prevents colitis. Nature 389:737–742

    Article  CAS  PubMed  Google Scholar 

  83. Bacchetta R, Sartirana C, Levings MK, Bordignon C, Narula S, Roncarolo MG (2002) Growth and expansion of human T regulatory type 1 cells are independent from TCR activation but require exogenous cytokines. Eur J Immunol 32:2237–2245

    Article  CAS  PubMed  Google Scholar 

  84. Kohyama M, Sugahara D, Sugiyama S, Yagita H, Okumura K, Hozumi N (2004) Inducible costimulator-dependent IL-10 production by regulatory T cells specific for self-antigen. Proc Natl Acad Sci U S A 101:4192–4197

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Rahmoun M, Foussat A, Groux H, Pene J, Yssel H, Chanez P (2006) Enhanced frequency of CD18- and CD49b-expressing T cells in peripheral blood of asthmatic patients correlates with disease severity. Int Arch Allergy Immunol 140:139–149

    Article  PubMed  Google Scholar 

  86. Afonina IS, Zhong Z, Karin M, Beyaert R (2017) Limiting inflammation-the negative regulation of NF-kappaB and the NLRP3 inflammasome. Nat Immunol 18:861–869

    Article  CAS  PubMed  Google Scholar 

  87. Dinesh RK, Skaggs BJ, La Cava A, Hahn BH, Singh RP (2010) CD8+ Tregs in lupus, autoimmunity, and beyond. Autoimmun Rev 9:560–568

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Emregul E, David A, Balthasar JP, Yang VC (2005) A GPIIb/IIIa bioreactor for specific treatment of immune thrombocytopenic purpura, an autoimmune disease. Preparation, in vitro characterization, and preliminary proof-of-concept animal studies. J Biomed Mater Res A 75:648–655

    Article  PubMed  CAS  Google Scholar 

  89. Chang CC, Ciubotariu R, Manavalan JS, Yuan J, Colovai AI, Piazza F, Lederman S, Colonna M, Cortesini R, Dalla-Favera R, Suciu-Foca N (2002) Tolerization of dendritic cells by T(S) cells: the crucial role of inhibitory receptors ILT3 and ILT4. Nat Immunol 3:237–243

    Article  CAS  PubMed  Google Scholar 

  90. Bin Dhuban K, Kornete M, Mason ES, Piccirillo CA (2014) Functional dynamics of Foxp3(+) regulatory T cells in mice and humans. Immunol Rev 259:140–158

    Article  CAS  PubMed  Google Scholar 

  91. Assadiasl S, Ahmadpoor P, Nafar M, Lessan Pezeshki M, Pourrezagholi F, Parvin M, Shahlaee A, Sepanjnia A, Nicknam MH, Amirzargar A (2014) Regulatory T cell subtypes and TGF-beta1 gene expression in chronic allograft dysfunction. Iran J Immunol 11:139–152

    PubMed  Google Scholar 

  92. Negrini S, Fenoglio D, Parodi A, Kalli F, Battaglia F, Nasi G, Curto M, Tardito S, Ferrera F, Filaci G (2017) Phenotypic alterations involved in CD8+ Treg impairment in systemic sclerosis. Front Immunol 8:18

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  93. Velasquez-Lopera MM, Correa LA, Garcia LF (2008) Human spleen contains different subsets of dendritic cells and regulatory T lymphocytes. Clin Exp Immunol 154:107–114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Wang B, Jiao Z, Shao X, Lu L, Yang N, Zhou X, Xin L, Zhou Y, Chou KY (2010) Phenotypic alterations of dendritic cells are involved in suppressive activity of trichosanthin-induced CD8+CD28- regulatory T cells. J Immunol 185:79–88

    Article  CAS  PubMed  Google Scholar 

  95. Nikoueinejad H, Amirzargar A, Sarrafnejad A, Einollahi B, Nafar M, Ahmadpour P, Pour-Reze-Gholi F, Sehat O, Lesanpezeshki M (2014) Dynamic changes of regulatory T cell and dendritic cell subsets in stable kidney transplant patients: a prospective analysis. Iran J Kidney Dis 8:130–138

    PubMed  Google Scholar 

  96. Pierini A, Schneidawind D, Nishikii H, Negrin RS, Regulatory T (2016) Cell immunotherapy in immune-mediated diseases. Curr Stem Cell Rep 1:177–186

    Article  CAS  Google Scholar 

  97. Long SA, Thorpe J, DeBerg HA, Gersuk V, Eddy J, Harris KM, Ehlers M, Herold KC, Nepom GT, Linsley PS (2017) Partial exhaustion of CD8 T cells and clinical response to teplizumab in new-onset type 1 diabetes. Sci Immunol 1

    Google Scholar 

  98. Chiswick EL, Mella JR, Bernardo J, Remick DG (2015) Acute-phase deaths from murine polymicrobial Sepsis are characterized by innate immune suppression rather than exhaustion. J Immunol 195:3793–3802

    Article  CAS  PubMed  Google Scholar 

  99. O’Leary S, Lloyd ML, Shellam GR, Robertson SA (2008) Immunization with recombinant murine cytomegalovirus expressing murine zona pellucida 3 causes permanent infertility in BALB/c mice due to follicle depletion and ovulation failure. Biol Reprod 79:849–860

    Article  PubMed  CAS  Google Scholar 

  100. Cheng MH, Nelson LM (2011) Mechanisms and models of immune tolerance breakdown in the ovary. Semin Reprod Med 29:308–316

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Zhou C, Wu J, Borillo J, Torres L, McMahon J, Lou YH (2009) Potential roles of a special CD8 alpha alpha+ cell population and CC chemokine thymus-expressed chemokine in ovulation related inflammation. J Immunol 182:596–603

    Article  CAS  PubMed  Google Scholar 

  102. Xu H, Wang X, Malam N, Aye PP, Alvarez X, Lackner AA, Veazey RS (2015) Persistent simian immunodeficiency virus infection drives differentiation, aberrant accumulation, and latent infection of germinal center follicular T helper cells. J Virol 90:1578–1587

    Article  PubMed  CAS  Google Scholar 

  103. Bruno F, Fornara C, Zelini P, Furione M, Carrara E, Scaramuzzi L, Cane I, Mele F, Sallusto F, Lilleri D, Gerna G (2016) Follicular helper T-cells and virus-specific antibody response in primary and reactivated human cytomegalovirus infections of the immunocompetent and immunocompromised transplant patients. J Gen Virol 97:1928–1941

    Article  CAS  PubMed  Google Scholar 

  104. Muema DM, Macharia GN, Olusola BA, Hassan AS, Fegan GW, Berkley JA, Urban BC, Nduati EW (2017) Proportions of circulating follicular helper T cells are reduced and correlate with memory B cells in HIV-infected children. PLoS One 12:e0175570

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  105. Kurita D, Miyoshi H, Yoshida N, Sasaki Y, Kato S, Niino D, Sugita Y, Hatta Y, Takei M, Makishima M, Ohshima K (2016) A clinicopathologic study of Lennert lymphoma and possible prognostic factors: the importance of follicular helper T-cell markers and the association with angioimmunoblastic T-cell lymphoma. Am J Surg Pathol 40:1249–1260

    Article  PubMed  Google Scholar 

  106. Miles B, Miller SM, Folkvord JM, Levy DN, Rakasz EG, Skinner PJ, Connick E (2016) Follicular regulatory CD8 T cells impair the germinal center response in SIV and ex vivo HIV infection. PLoS Pathog 12:e1005924

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  107. Dar HY, Singh A, Shukla P, Anupam R, Mondal RK, Mishra PK, Srivastava RK (2018) High dietary salt intake correlates with modulated Th17-Treg cell balance resulting in enhanced bone loss and impaired bone-microarchitecture in male mice. Sci Rep 8:2503

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  108. Maggi L, Santarlasci V, Capone M, Peired A, Frosali F, Crome SQ, Querci V, Fambrini M, Liotta F, Levings MK, Maggi E, Cosmi L, Romagnani S, Annunziato F (2010) CD161 is a marker of all human IL-17-producing T-cell subsets and is induced by RORC. Eur J Immunol 40:2174–2181

    Article  CAS  PubMed  Google Scholar 

  109. Barbi J, Pardoll D, Pan F (2014) Treg functional stability and its responsiveness to the microenvironment. Immunol Rev 259:115–139

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Beriou G, Costantino CM, Ashley CW, Yang L, Kuchroo VK, Baecher-Allan C, Hafler DA (2009) IL-17-producing human peripheral regulatory T cells retain suppressive function. Blood 113:4240–4249

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Du R, Zhao H, Yan F, Li H (2014) IL-17+Foxp3+ T cells: an intermediate differentiation stage between Th17 cells and regulatory T cells. J Leukoc Biol 96:39–48

    Article  PubMed  CAS  Google Scholar 

  112. Duarte JH, Zelenay S, Bergman ML, Martins AC, Demengeot J (2009) Natural Treg cells spontaneously differentiate into pathogenic helper cells in lymphopenic conditions. Eur J Immunol 39:948–955

    Article  CAS  PubMed  Google Scholar 

  113. Tran DQ, Ramsey H, Shevach EM (2007) Induction of FOXP3 expression in naive human CD4+FOXP3 T cells by T-cell receptor stimulation is transforming growth factor-beta dependent but does not confer a regulatory phenotype. Blood 110:2983–2990

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Bhaskaran N, Cohen S, Zhang Y, Weinberg A, Pandiyan P (2015) TLR-2 signaling promotes IL-17A production in CD4+CD25+Foxp3+ regulatory cells during oropharyngeal candidiasis. Pathogens 4:90–110

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Saini C, Siddiqui A, Ramesh V, Nath I (2016) Leprosy reactions show increased Th17 cell activity and reduced FOXP3+ Tregs with concomitant decrease in TGF-beta and increase in IL-6. PLoS Negl Trop Dis 10:e0004592

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  116. Joller N, Lozano E, Burkett PR, Patel B, Xiao S, Zhu C, Xia J, Tan TG, Sefik E, Yajnik V, Sharpe AH, Quintana FJ, Mathis D, Benoist C, Hafler DA, Kuchroo VK (2014) Treg cells expressing the coinhibitory molecule TIGIT selectively inhibit proinflammatory Th1 and Th17 cell responses. Immunity 40:569–581

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Komatsu N, Okamoto K, Sawa S, Nakashima T, Oh-hora M, Kodama T, Tanaka S, Bluestone JA, Takayanagi H (2013) Pathogenic conversion of Foxp3+ T cells into TH17 cells in autoimmune arthritis. Nat Med 20:62–68

    Article  PubMed  CAS  Google Scholar 

  118. Zhou X, Bailey-Bucktrout S, Jeker LT, Bluestone JA (2009) Plasticity of CD4(+) FoxP3(+) T cells. Curr Opin Immunol 21:281–285

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Voo KS, Wang YH, Santori FR, Boggiano C, Arima K, Bover L, Hanabuchi S, Khalili J, Marinova E, Zheng B, Littman DR, Liu YJ (2009) Identification of IL-17-producing FOXP3+ regulatory T cells in humans. Proc Natl Acad Sci U S A 106:4793–4798

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Kleinewietfeld M, Hafler DA (2013) The plasticity of human Treg and Th17 cells and its role in autoimmunity. Semin Immunol 25:305–312

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Koenen HJ, Smeets RL, Vink PM, van Rijssen E, Boots AM, Joosten I (2008) Human CD25highFoxp3pos regulatory T cells differentiate into IL-17-producing cells. Blood 112:2340–2352

    Article  CAS  PubMed  Google Scholar 

  122. de Waal Malefyt R, Abrams J, Bennett B, Figdor CG, de Vries JE (1991) Interleukin 10(IL-10) inhibits cytokine synthesis by human monocytes: an autoregulatory role of IL-10 produced by monocytes. J Exp Med 174:1209–1220

    Article  PubMed  Google Scholar 

  123. de Waal Malefyt R, Yssel H, de Vries JE (1993) Direct effects of IL-10 on subsets of human CD4+ T cell clones and resting T cells. Specific inhibition of IL-2 production and proliferation. J Immunol 150:4754–4765

    PubMed  Google Scholar 

  124. Chaudhry A, Samstein RM, Treuting P, Liang Y, Pils MC, Heinrich JM, Jack RS, Wunderlich FT, Bruning JC, Muller W, Rudensky AY (2011) Interleukin-10 signaling in regulatory T cells is required for suppression of Th17 cell-mediated inflammation. Immunity 34:566–578

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Murai M, Turovskaya O, Kim G, Madan R, Karp CL, Cheroutre H, Kronenberg M (2009) Interleukin 10 acts on regulatory T cells to maintain expression of the transcription factor Foxp3 and suppressive function in mice with colitis. Nat Immunol 10:1178–1184

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Shouval DS, Biswas A, Goettel JA, McCann K, Conaway E, Redhu NS, Mascanfroni ID, Al Adham Z, Lavoie S, Ibourk M, Nguyen DD, Samsom JN, Escher JC, Somech R, Weiss B, Beier R, Conklin LS, Ebens CL, Santos FG, Ferreira AR, Sherlock M, Bhan AK, Muller W, Mora JR, Quintana FJ, Klein C, Muise AM, Horwitz BH, Snapper SB (2014) Interleukin-10 receptor signaling in innate immune cells regulates mucosal immune tolerance and anti-inflammatory macrophage function. Immunity 40:706–719

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Cottrez F, Groux H (2001) Regulation of TGF-beta response during T cell activation is modulated by IL-10. J Immunol 167:773–778

    Article  CAS  PubMed  Google Scholar 

  128. Donnelly RP, Dickensheets H, Finbloom DS (1999) The interleukin-10 signal transduction pathway and regulation of gene expression in mononuclear phagocytes. J Interf Cytokine Res 19:563–573

    Article  CAS  Google Scholar 

  129. Goodman WA, Young AB, McCormick TS, Cooper KD, Levine AD (2011) Stat3 phosphorylation mediates resistance of primary human T cells to regulatory T cell suppression. J Immunol 186:3336–3345

    Article  CAS  PubMed  Google Scholar 

  130. Taylor A, Akdis M, Joss A, Akkoc T, Wenig R, Colonna M, Daigle I, Flory E, Blaser K, Akdis CA (2007) IL-10 inhibits CD28 and ICOS costimulations of T cells via src homology 2 domain-containing protein tyrosine phosphatase 1. J Allergy Clin Immunol 120:76–83

    Article  CAS  PubMed  Google Scholar 

  131. Kops GJ, Medema RH, Glassford J, Essers MA, Dijkers PF, Coffer PJ, Lam EW, Burgering BM (2002) Control of cell cycle exit and entry by protein kinase B-regulated forkhead transcription factors. Mol Cell Biol 22:2025–2036

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Ouyang W, Liao W, Luo CT, Yin N, Huse M, Kim MV, Peng M, Chan P, Ma Q, Mo Y, Meijer D, Zhao K, Rudensky AY, Atwal G, Zhang MQ, Li MO (2012) Novel Foxo1-dependent transcriptional programs control T(reg) cell function. Nature 491:554–559

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Letterio JJ, Roberts AB (1998) Regulation of immune responses by TGF-beta. Annu Rev Immunol 16:137–161

    Article  CAS  PubMed  Google Scholar 

  134. Kehrl JH, Wakefield LM, Roberts AB, Jakowlew S, Alvarez-Mon M, Derynck R, Sporn MB, Fauci AS (1986) Production of transforming growth factor beta by human T lymphocytes and its potential role in the regulation of T cell growth. J Exp Med 163:1037–1050

    Article  CAS  PubMed  Google Scholar 

  135. Gorelik L, Fields PE, Flavell RA (2000) Cutting edge: TGF-beta inhibits Th type 2 development through inhibition of GATA-3 expression. J Immunol 165:4773–4777

    Article  CAS  PubMed  Google Scholar 

  136. Heath VL, Murphy EE, Crain C, Tomlinson MG, O'Garra A (2000) TGF-beta1 down-regulates Th2 development and results in decreased IL-4-induced STAT6 activation and GATA-3 expression. Eur J Immunol 30:2639–2649

    Article  CAS  PubMed  Google Scholar 

  137. Ludviksson BR, Seegers D, Resnick AS, Strober W (2000) The effect of TGF-beta1 on immune responses of naive versus memory CD4+ Th1/Th2 T cells. Eur J Immunol 30:2101–2111

    Article  CAS  PubMed  Google Scholar 

  138. Zhang X, Giangreco L, Broome HE, Dargan CM, Swain SL (1995) Control of CD4 effector fate: transforming growth factor beta 1 and interleukin 2 synergize to prevent apoptosis and promote effector expansion. J Exp Med 182:699–709

    Article  CAS  PubMed  Google Scholar 

  139. Swain SL, Huston G, Tonkonogy S, Weinberg A (1991) Transforming growth factor-beta and IL-4 cause helper T cell precursors to develop into distinct effector helper cells that differ in lymphokine secretion pattern and cell surface phenotype. J Immunol 147:2991–3000

    CAS  PubMed  Google Scholar 

  140. Massague J (1998) TGF-beta signal transduction. Annu Rev Biochem 67:753–791

    Article  CAS  PubMed  Google Scholar 

  141. Miyazono K (2000) TGF-beta signaling by Smad proteins. Cytokine Growth Factor Rev 11:15–22

    Article  CAS  PubMed  Google Scholar 

  142. Roberts AB (1999) TGF-beta signaling from receptors to the nucleus. Microbes Infect 1:1265–1273

    Article  CAS  PubMed  Google Scholar 

  143. Groux H, Bigler M, de Vries JE, Roncarolo MG (1996) Interleukin-10 induces a long-term antigen-specific anergic state in human CD4+ T cells. J Exp Med 184:19–29

    Article  CAS  PubMed  Google Scholar 

  144. Zeller JC, Panoskaltsis-Mortari A, Murphy WJ, Ruscetti FW, Narula S, Roncarolo MG, Blazar BR (1999) Induction of CD4+ T cell alloantigen-specific hyporesponsiveness by IL-10 and TGF-beta. J Immunol 163:3684–3691

    CAS  PubMed  Google Scholar 

  145. Collison LW, Workman CJ, Kuo TT, Boyd K, Wang Y, Vignali KM, Cross R, Sehy D, Blumberg RS, Vignali DA (2007) The inhibitory cytokine IL-35 contributes to regulatory T-cell function. Nature 450:566–569

    Article  CAS  PubMed  Google Scholar 

  146. Niedbala W, Wei XQ, Cai B, Hueber AJ, Leung BP, McInnes IB, Liew FY (2007) IL-35 is a novel cytokine with therapeutic effects against collagen-induced arthritis through the expansion of regulatory T cells and suppression of Th17 cells. Eur J Immunol 37:3021–3029

    Article  CAS  PubMed  Google Scholar 

  147. Devergne O, Hummel M, Koeppen H, Le Beau MM, Nathanson EC, Kieff E, Birkenbach M (1996) A novel interleukin-12 p40-related protein induced by latent Epstein-Barr virus infection in B lymphocytes. J Virol 70:1143–1153

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Oppmann B, Lesley R, Blom B, Timans JC, Xu Y, Hunte B, Vega F, Yu N, Wang J, Singh K, Zonin F, Vaisberg E, Churakova T, Liu M, Gorman D, Wagner J, Zurawski S, Liu Y, Abrams JS, Moore KW, Rennick D, de Waal-Malefyt R, Hannum C, Bazan JF, Kastelein RA (2000) Novel p19 protein engages IL-12p40 to form a cytokine, IL-23, with biological activities similar as well as distinct from IL-12. Immunity 13:715–725

    Article  CAS  PubMed  Google Scholar 

  149. Yen D, Cheung J, Scheerens H, Poulet F, McClanahan T, McKenzie B, Kleinschek MA, Owyang A, Mattson J, Blumenschein W, Murphy E, Sathe M, Cua DJ, Kastelein RA, Rennick D (2006) IL-23 is essential for T cell-mediated colitis and promotes inflammation via IL-17 and IL-6. J Clin Invest 116:1310–1316

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Pflanz S, Timans JC, Cheung J, Rosales R, Kanzler H, Gilbert J, Hibbert L, Churakova T, Travis M, Vaisberg E, Blumenschein WM, Mattson JD, Wagner JL, To W, Zurawski S, McClanahan TK, Gorman DM, Bazan JF, de Waal Malefyt R, Rennick D, Kastelein RA (2002) IL-27, a heterodimeric cytokine composed of EBI3 and p28 protein, induces proliferation of naive CD4+ T cells. Immunity 16:779–790

    Article  CAS  PubMed  Google Scholar 

  151. Carl JW, Bai XF (2008) IL27: its roles in the induction and inhibition of inflammation. Int J Clin Exp Pathol 1:117–123

    CAS  PubMed  PubMed Central  Google Scholar 

  152. Bardel E, Larousserie F, Charlot-Rabiega P, Coulomb-L’Hermine A, Devergne O (2008) Human CD4+ CD25+ Foxp3+ regulatory T cells do not constitutively express IL-35. J Immunol 181:6898–6905

    Article  CAS  PubMed  Google Scholar 

  153. Collison LW, Chaturvedi V, Henderson AL, Giacomin PR, Guy C, Bankoti J, Finkelstein D, Forbes K, Workman CJ, Brown SA, Rehg JE, Jones ML, Ni HT, Artis D, Turk MJ, Vignali DA (2010) IL-35-mediated induction of a potent regulatory T cell population. Nat Immunol 11:1093–1101

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Chaturvedi V, Collison LW, Guy CS, Workman CJ, Vignali DA (2011) Cutting edge: human regulatory T cells require IL-35 to mediate suppression and infectious tolerance. J Immunol 186:6661–6666

    Article  CAS  PubMed  Google Scholar 

  155. Schmidt A, Oberle N, Krammer PH (2012) Molecular mechanisms of Treg-mediated T cell suppression. Front Immunol 3:51

    CAS  PubMed  PubMed Central  Google Scholar 

  156. Grossman WJ, Revell PA, Lu ZH, Johnson H, Bredemeyer AJ, Ley TJ (2003) The orphan granzymes of humans and mice. Curr Opin Immunol 15:544–552

    Article  CAS  PubMed  Google Scholar 

  157. Appay V, Zaunders JJ, Papagno L, Sutton J, Jaramillo A, Waters A, Easterbrook P, Grey P, Smith D, McMichael AJ, Cooper DA, Rowland-Jones SL, Kelleher AD (2002) Characterization of CD4(+) CTLs ex vivo. J Immunol 168:5954–5958

    Article  CAS  PubMed  Google Scholar 

  158. Chtanova T, Kemp RA, Sutherland AP, Ronchese F, Mackay CR (2001) Gene microarrays reveal extensive differential gene expression in both CD4(+) and CD8(+) type 1 and type 2 T cells. J Immunol 167:3057–3063

    Article  CAS  PubMed  Google Scholar 

  159. Smyth MJ, Trapani JA (1995) Granzymes: exogenous proteinases that induce target cell apoptosis. Immunol Today 16:202–206

    Article  CAS  PubMed  Google Scholar 

  160. Trapani JA, Jans DA, Jans PJ, Smyth MJ, Browne KA, Sutton VR (1998) Efficient nuclear targeting of granzyme B and the nuclear consequences of apoptosis induced by granzyme B and perforin are caspase-dependent, but cell death is caspase-independent. J Biol Chem 273:27934–27938

    Article  CAS  PubMed  Google Scholar 

  161. Sarin A, Williams MS, Alexander-Miller MA, Berzofsky JA, Zacharchuk CM, Henkart PA (1997) Target cell lysis by CTL granule exocytosis is independent of ICE/Ced-3 family proteases. Immunity 6:209–215

    Article  CAS  PubMed  Google Scholar 

  162. Nagata S, Golstein P (1995) The Fas death factor. Science 267:1449–1456

    Article  CAS  PubMed  Google Scholar 

  163. Van Parijs L, Abbas AK (1996) Role of Fas-mediated cell death in the regulation of immune responses. Curr Opin Immunol 8:355–361

    Article  PubMed  Google Scholar 

  164. Motyka B, Korbutt G, Pinkoski MJ, Heibein JA, Caputo A, Hobman M, Barry M, Shostak I, Sawchuk T, Holmes CF, Gauldie J, Bleackley RC (2000) Mannose 6-phosphate/insulin-like growth factor II receptor is a death receptor for granzyme B during cytotoxic T cell-induced apoptosis. Cell 103:491–500

    Article  CAS  PubMed  Google Scholar 

  165. Beresford PJ, Xia Z, Greenberg AH, Lieberman J (1999) Granzyme A loading induces rapid cytolysis and a novel form of DNA damage independently of caspase activation. Immunity 10:585–594

    Article  CAS  PubMed  Google Scholar 

  166. Grossman WJ, Verbsky JW, Barchet W, Colonna M, Atkinson JP, Ley TJ (2004) Human T regulatory cells can use the perforin pathway to cause autologous target cell death. Immunity 21:589–601

    Article  CAS  PubMed  Google Scholar 

  167. Bird CH, Sutton VR, Sun J, Hirst CE, Novak A, Kumar S, Trapani JA, Bird PI (1998) Selective regulation of apoptosis: the cytotoxic lymphocyte serpin proteinase inhibitor 9 protects against granzyme B-mediated apoptosis without perturbing the Fas cell death pathway. Mol Cell Biol 18:6387–6398

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  168. Chambers CA, Kuhns MS, Egen JG, Allison JP (2001) CTLA-4-mediated inhibition in regulation of T cell responses: mechanisms and manipulation in tumor immunotherapy. Annu Rev Immunol 19:565–594

    Article  CAS  PubMed  Google Scholar 

  169. Collins AV, Brodie DW, Gilbert RJ, Iaboni A, Manso-Sancho R, Walse B, Stuart DI, van der Merwe PA, Davis SJ (2002) The interaction properties of costimulatory molecules revisited. Immunity 17:201–210

    Article  CAS  PubMed  Google Scholar 

  170. Egen JG, Kuhns MS, Allison JP (2002) CTLA-4: new insights into its biological function and use in tumor immunotherapy. Nat Immunol 3:611–618

    Article  CAS  PubMed  Google Scholar 

  171. Parry RV, Chemnitz JM, Frauwirth KA, Lanfranco AR, Braunstein I, Kobayashi SV, Linsley PS, Thompson CB, Riley JL (2005) CTLA-4 and PD-1 receptors inhibit T-cell activation by distinct mechanisms. Mol Cell Biol 25:9543–9553

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  172. Krummel MF, Allison JP (1996) CTLA-4 engagement inhibits IL-2 accumulation and cell cycle progression upon activation of resting T cells. J Exp Med 183:2533–2540

    Article  CAS  PubMed  Google Scholar 

  173. Linsley PS, Bradshaw J, Greene J, Peach R, Bennett KL, Mittler RS (1996) Intracellular trafficking of CTLA-4 and focal localization towards sites of TCR engagement. Immunity 4:535–543

    Article  CAS  PubMed  Google Scholar 

  174. Tang F, Du X, Liu M, Zheng P, Liu Y (2018) Anti-CTLA-4 antibodies in cancer immunotherapy: selective depletion of intratumoral regulatory T cells or checkpoint blockade? Cell Biosci 8:30

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  175. Read S, Greenwald R, Izcue A, Robinson N, Mandelbrot D, Francisco L, Sharpe AH, Powrie F (2006) Blockade of CTLA-4 on CD4+CD25+ regulatory T cells abrogates their function in vivo. J Immunol 177:4376–4383

    Article  CAS  PubMed  Google Scholar 

  176. Piccirillo CA, Shevach EM (2004) Naturally-occurring CD4+CD25+ immunoregulatory T cells: central players in the arena of peripheral tolerance. Semin Immunol 16:81–88

    Article  CAS  PubMed  Google Scholar 

  177. Takahashi T, Tagami T, Yamazaki S, Uede T, Shimizu J, Sakaguchi N, Mak TW, Sakaguchi S (2000) Immunologic self-tolerance maintained by CD25(+)CD4(+) regulatory T cells constitutively expressing cytotoxic T lymphocyte-associated antigen 4. J Exp Med 192:303–310

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  178. Wing K, Onishi Y, Prieto-Martin P, Yamaguchi T, Miyara M, Fehervari Z, Nomura T, Sakaguchi S (2008) CTLA-4 control over Foxp3+ regulatory T cell function. Science 322:271–275

    Article  CAS  PubMed  Google Scholar 

  179. Tivol EA, Borriello F, Schweitzer AN, Lynch WP, Bluestone JA, Sharpe AH (1995) Loss of CTLA-4 leads to massive lymphoproliferation and fatal multiorgan tissue destruction, revealing a critical negative regulatory role of CTLA-4. Immunity 3:541–547

    Article  CAS  PubMed  Google Scholar 

  180. Waterhouse P, Penninger JM, Timms E, Wakeham A, Shahinian A, Lee KP, Thompson CB, Griesser H, Mak TW (1995) Lymphoproliferative disorders with early lethality in mice deficient in Ctla-4. Science 270:985–988

    Article  CAS  PubMed  Google Scholar 

  181. Karandikar NJ, Vanderlugt CL, Walunas TL, Miller SD, Bluestone JA (1996) CTLA-4: a negative regulator of autoimmune disease. J Exp Med 184:783–788

    Article  CAS  PubMed  Google Scholar 

  182. Luhder F, Hoglund P, Allison JP, Benoist C, Mathis D (1998) Cytotoxic T lymphocyte-associated antigen 4 (CTLA-4) regulates the unfolding of autoimmune diabetes. J Exp Med 187:427–432

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  183. Luhder F, Chambers C, Allison JP, Benoist C, Mathis D (2000) Pinpointing when T cell costimulatory receptor CTLA-4 must be engaged to dampen diabetogenic T cells. Proc Natl Acad Sci U S A 97:12204–12209

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  184. Nistico L, Buzzetti R, Pritchard LE, Van der Auwera B, Giovannini C, Bosi E, Larrad MT, Rios MS, Chow CC, Cockram CS, Jacobs K, Mijovic C, Bain SC, Barnett AH, Vandewalle CL, Schuit F, Gorus FK, Tosi R, Pozzilli P, Todd JA (1996) The CTLA-4 gene region of chromosome 2q33 is linked to, and associated with, type 1 diabetes. Belgian Diabetes Registry. Hum Mol Genet 5:1075–1080

    Article  CAS  PubMed  Google Scholar 

  185. Ueda H, Howson JM, Esposito L, Heward J, Snook H, Chamberlain G, Rainbow DB, Hunter KM, Smith AN, Di Genova G, Herr MH, Dahlman I, Payne F, Smyth D, Lowe C, Twells RC, Howlett S, Healy B, Nutland S, Rance HE, Everett V, Smink LJ, Lam AC, Cordell HJ, Walker NM, Bordin C, Hulme J, Motzo C, Cucca F, Hess JF, Metzker ML, Rogers J, Gregory S, Allahabadia A, Nithiyananthan R, Tuomilehto-Wolf E, Tuomilehto J, Bingley P, Gillespie KM, Undlien DE, Ronningen KS, Guja C, Ionescu-Tirgoviste C, Savage DA, Maxwell AP, Carson DJ, Patterson CC, Franklyn JA, Clayton DG, Peterson LB, Wicker LS, Todd JA, Gough SC (2003) Association of the T-cell regulatory gene CTLA4 with susceptibility to autoimmune disease. Nature 423:506–511

    Article  CAS  PubMed  Google Scholar 

  186. Gough SC, Walker LS, Sansom DM (2005) CTLA4 gene polymorphism and autoimmunity. Immunol Rev 204:102–115

    Article  CAS  PubMed  Google Scholar 

  187. Bachmann MF, Kohler G, Ecabert B, Mak TW, Kopf M (1999) Cutting edge: lymphoproliferative disease in the absence of CTLA-4 is not T cell autonomous. J Immunol 163:1128–1131

    CAS  PubMed  Google Scholar 

  188. Cardona P, Cardona PJ (2019) Regulatory T cells in Mycobacterium tuberculosis infection. Front Immunol 10:2139

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  189. Saini C, Tarique M, Kumar S, Rao DN (2015) Role of FoxP3+ Tregs cells mediating immune suppression in leprosy. Curr Immunol Rev 11:66–72

    Article  CAS  Google Scholar 

  190. Hansen DS, Schofield L (2010) Natural regulatory T cells in malaria: host or parasite allies? PLoS Pathog 6:e1000771

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  191. Kleinman AJ, Sivanandham R, Pandrea I, Chougnet CA, Apetrei C (2018) Regulatory T cells as potential targets for HIV cure research. Front Immunol 9:734

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  192. Okeke EB, Uzonna JE (2019) The pivotal role of regulatory T cells in the regulation of innate immune cells. Front Immunol 10:680

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  193. Kumar S, Naqvi RA, Khanna N, Pathak P, Rao DN (2011) Th3 immune responses in the progression of leprosy via molecular cross-talks of TGF-beta, CTLA-4 and Cbl-b. Clin Immunol 141:133–142

    Article  CAS  PubMed  Google Scholar 

  194. Saini C, Ramesh V, Nath I (2014) Increase in TGF-beta secreting CD4(+)CD25(+) FOXP3(+) T regulatory cells in anergic lepromatous leprosy patients. PLoS Negl Trop Dis 8:e2639

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  195. Kumar S, Naqvi RA, Bhat AAR, Ali R, Agnihotri A, Khanna N, Rao DN (2013) IL-10 production from dendritic cells is associated with DC SIGN in human leprosy. Immunobiology 218:1488–1496

    Article  CAS  PubMed  Google Scholar 

  196. Palermo ML, Pagliari C, Trindade MA, Yamashitafuji TM, Duarte AJ, Cacere CR, Benard G (2012) Increased expression of regulatory T cells and down-regulatory molecules in lepromatous leprosy. Am J Trop Med Hyg 86:878–883

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  197. Kumar S, Naqvi RA, Ali R, Rani R, Khanna N, Rao DN (2013) CD4+CD25+ T regs with acetylated FoxP3 are associated with immune suppression in human leprosy. Mol Immunol 56:513–520

    Article  CAS  PubMed  Google Scholar 

  198. Tarique M, Naqvi RA, Santosh KV, Kamal VK, Khanna N, Rao DN (2015) Association of TNF-alpha-(308(GG)), IL-10(-819(TT)), IL-10(-1082(GG)) and IL-1R1(+1970(CC)) genotypes with the susceptibility and progression of leprosy in North Indian population. Cytokine 73:61–65

    Article  CAS  PubMed  Google Scholar 

  199. Bobosha K, Wilson L, van Meijgaarden KE, Bekele Y, Zewdie M, van der Ploeg-van Schip JJ, Abebe M, Hussein J, Khadge S, Neupane KD, Hagge DA, Jordanova ES, Aseffa A, Ottenhoff TH, Geluk A (2014) T-cell regulation in lepromatous leprosy. PLoS Negl Trop Dis 8:e2773

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  200. Fernandes C, Goncalves HS, Cabral PB, Pinto HC, Pinto MI, Camara LM (2013) Increased frequency of CD4 and CD8 regulatory T cells in individuals under 15 years with multibacillary leprosy. PLoS One 8:e79072

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  201. Kumar S, Naqvi RA, Ali R, Rani R, Khanna N, Rao DN (2013) FoxP3 provides competitive fitness to CD4(+) CD25(+) T cells in leprosy patients via transcriptional regulation. Eur J Immunol 44:431–439

    Article  PubMed  CAS  Google Scholar 

  202. Tarique M, Saini C, Naqvi RA, Khanna N, Rao DN (2017) Increased IL-35 producing Tregs and CD19+IL-35+ cells are associated with disease progression in leprosy patients. Cytokine 91:82–88

    Article  CAS  PubMed  Google Scholar 

  203. Tarique M, Naz H, Kurra SV, Saini C, Naqvi RA, Rai R, Suhail M, Khanna N, Rao DN, Sharma A (2018) Interleukin-10 producing regulatory B cells transformed CD4(+)CD25(−) into Tregs and enhanced regulatory T cells function in human leprosy. Front Immunol 9:1636

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  204. Tarique M, Naqvi RA, Ali R, Khanna N, Rao DN (2017) CD4+ TCRgammadelta+ FoxP3+ cells: an unidentified population of immunosuppressive cells towards disease progression leprosy patients. Exp Dermatol

    Google Scholar 

  205. Saini C, Tarique M, Ramesh V, Khanna N, Sharma A (2018) Gammadelta T cells are associated with inflammation and immunopathogenesis of leprosy reactions. Immunol Lett 200:55–65

    Article  CAS  PubMed  Google Scholar 

  206. Singh I, Yadav AR, Mohanty KK, Katoch K, Bisht D, Sharma P, Sharma B, Gupta UD, Sengupta U (2012) Molecular mimicry between HSP 65 of Mycobacterium leprae and cytokeratin 10 of the host keratin; role in pathogenesis of leprosy. Cell Immunol 278:63–75

    Article  CAS  PubMed  Google Scholar 

  207. Singh I, Yadav AR, Mohanty KK, Katoch K, Sharma P, Mishra B, Bisht D, Gupta UD, Sengupta U (2015) Molecular mimicry between Mycobacterium leprae proteins (50S ribosomal protein L2 and Lysyl-tRNA synthetase) and myelin basic protein: a possible mechanism of nerve damage in leprosy. Microbes Infect 17:247–257

    Article  CAS  PubMed  Google Scholar 

  208. Singh I, Yadav AR, Mohanty KK, Katoch K, Sharma P, Pathak VK, Bisht D, Gupta UD, Sengupta U (2018) Autoimmunity to tropomyosin-specific peptides induced by Mycobacterium leprae in leprosy patients: identification of mimicking proteins. Front Immunol 9:642

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  209. Kursar M, Koch M, Mittrucker HW, Nouailles G, Bonhagen K, Kamradt T, Kaufmann SH (2007) Cutting edge: regulatory T cells prevent efficient clearance of Mycobacterium tuberculosis. J Immunol 178:2661–2665

    Article  CAS  PubMed  Google Scholar 

  210. Scott-Browne JP, Shafiani S, Tucker-Heard G, Ishida-Tsubota K, Fontenot JD, Rudensky AY, Bevan MJ, Urdahl KB (2007) Expansion and function of Foxp3-expressing T regulatory cells during tuberculosis. J Exp Med 204:2159–2169

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  211. Guyot-Revol V, Innes JA, Hackforth S, Hinks T, Lalvani A (2006) Regulatory T cells are expanded in blood and disease sites in patients with tuberculosis. Am J Respir Crit Care Med 173:803–810

    Article  CAS  PubMed  Google Scholar 

  212. Ribeiro-Rodrigues R, Resende Co T, Rojas R, Toossi Z, Dietze R, Boom WH, Maciel E, Hirsch CS (2006) A role for CD4+CD25+ T cells in regulation of the immune response during human tuberculosis. Clin Exp Immunol 144:25–34

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  213. Shafiani S, Tucker-Heard G, Kariyone A, Takatsu K, Urdahl KB (2010) Pathogen-specific regulatory T cells delay the arrival of effector T cells in the lung during early tuberculosis. J Exp Med 207:1409–1420

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  214. Saini C, Kumar P, Tarique M, Sharma A, Ramesh V (2018) Regulatory T cells antagonize proinflammatory response of IL-17 during cutaneous tuberculosis. J Inflamm Res 11:377–388

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  215. Belkaid Y, Piccirillo CA, Mendez S, Shevach EM, Sacks DL (2002) CD4+CD25+ regulatory T cells control Leishmania major persistence and immunity. Nature 420:502–507

    Article  CAS  PubMed  Google Scholar 

  216. Suffia IJ, Reckling SK, Piccirillo CA, Goldszmid RS, Belkaid Y (2006) Infected site-restricted Foxp3+ natural regulatory T cells are specific for microbial antigens. J Exp Med 203:777–788

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  217. Katara GK, Ansari NA, Verma S, Ramesh V, Salotra P (2011) Foxp3 and IL-10 expression correlates with parasite burden in lesional tissues of post kala azar dermal leishmaniasis (PKDL) patients. PLoS Negl Trop Dis 5:e1171

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  218. Katara GK, Raj A, Kumar R, Avishek K, Kaushal H, Ansari NA, Bumb RA, Salotra P (2013) Analysis of localized immune responses reveals presence of Th17 and Treg cells in cutaneous leishmaniasis due to Leishmania tropica. BMC Immunol 14:52

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  219. Mendez S, Reckling SK, Piccirillo CA, Sacks D, Belkaid Y (2004) Role for CD4(+) CD25(+) regulatory T cells in reactivation of persistent leishmaniasis and control of concomitant immunity. J Exp Med 200:201–210

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  220. Nylen S, Maurya R, Eidsmo L, Manandhar KD, Sundar S, Sacks D (2007) Splenic accumulation of IL-10 mRNA in T cells distinct from CD4+CD25+ (Foxp3) regulatory T cells in human visceral leishmaniasis. J Exp Med 204:805–817

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  221. Kemp K, Kemp M, Kharazmi A, Ismail A, Kurtzhals JA, Hviid L, Theander TG (1999) Leishmania-specific T cells expressing interferon-gamma (IFN-gamma) and IL-10 upon activation are expanded in individuals cured of visceral leishmaniasis. Clin Exp Immunol 116:500–504

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  222. Karp CL, el-Safi SH, Wynn TA, Satti MM, Kordofani AM, Hashim FA, Hag-Ali M, Neva FA, Nutman TB, Sacks DL (1993) In vivo cytokine profiles in patients with kala-azar. Marked elevation of both interleukin-10 and interferon-gamma. J Clin Invest 91:1644–1648

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  223. Ghalib HW, Piuvezam MR, Skeiky YA, Siddig M, Hashim FA, el-Hassan AM, Russo DM, Reed SG (1993) Interleukin 10 production correlates with pathology in human Leishmania donovani infections. J Clin Invest 92:324–329

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  224. Maizels RM, Smith KA (2011) Regulatory T cells in infection. Adv Immunol 112:73–136

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  225. Veiga-Parga T, Sehrawat S, Rouse BT (2013) Role of regulatory T cells during virus infection. Immunol Rev 255:182–196

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  226. Manangeeswaran M, Jacques J, Tami C, Konduru K, Amharref N, Perrella O, Casasnovas JM, Umetsu DT, Dekruyff RH, Freeman GJ, Perrella A, Kaplan GG (2012) Binding of hepatitis A virus to its cellular receptor 1 inhibits T-regulatory cell functions in humans. Gastroenterology 142:1516–1525. e3

    Article  CAS  PubMed  Google Scholar 

  227. Luhn K, Simmons CP, Moran E, Dung NT, Chau TN, Quyen NT, Thao le TT, Van Ngoc T, Dung NM, Wills B, Farrar J, McMichael AJ, Dong T, Rowland-Jones S (2007) Increased frequencies of CD4+ CD25(high) regulatory T cells in acute dengue infection. J Exp Med 204:979–985

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  228. Lund JM, Hsing L, Pham TT, Rudensky AY (2008) Coordination of early protective immunity to viral infection by regulatory T cells. Science 320:1220–1224

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  229. Kassiotis G, O’Garra A (2008) Immunology. Immunity benefits from a little suppression. Science 320:1168–1169

    Article  CAS  PubMed  Google Scholar 

  230. Moreno-Fernandez ME, Rueda CM, Rusie LK, Chougnet CA (2011) Regulatory T cells control HIV replication in activated T cells through a cAMP-dependent mechanism. Blood 117:5372–5380

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  231. Haase AT (2005) Perils at mucosal front lines for HIV and SIV and their hosts. Nat Rev Immunol 5:783–792

    Article  CAS  PubMed  Google Scholar 

  232. Graham JB, Da Costa A, Lund JM (2014) Regulatory T cells shape the resident memory T cell response to virus infection in the tissues. J Immunol 192:683–690

    Article  CAS  PubMed  Google Scholar 

  233. Aalaei-Andabili SH, Alavian SM (2012) Regulatory T cells are the most important determinant factor of hepatitis B infection prognosis: a systematic review and meta-analysis. Vaccine 30:5595–5602

    Article  CAS  PubMed  Google Scholar 

  234. Losikoff PT, Self AA, Gregory SH (2012) Dendritic cells, regulatory T cells and the pathogenesis of chronic hepatitis C. Virulence 3:610–620

    Article  PubMed  PubMed Central  Google Scholar 

  235. Self AA, Losikoff PT, Gregory SH (2013) Divergent contributions of regulatory T cells to the pathogenesis of chronic hepatitis C. Hum Vaccin Immunother 9:1569–1576

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  236. Riezu-Boj JI, Larrea E, Aldabe R, Guembe L, Casares N, Galeano E, Echeverria I, Sarobe P, Herrero I, Sangro B, Prieto J, Lasarte JJ (2011) Hepatitis C virus induces the expression of CCL17 and CCL22 chemokines that attract regulatory T cells to the site of infection. J Hepatol 54:422–431

    Article  CAS  PubMed  Google Scholar 

  237. Chevalier MF, Weiss L (2013) The split personality of regulatory T cells in HIV infection. Blood 121:29–37

    Article  CAS  PubMed  Google Scholar 

  238. Moreno-Fernandez ME, Joedicke JJ, Chougnet CA (2014) Regulatory T cells diminish HIV infection in dendritic cells – conventional CD4(+) T cell clusters. Front Immunol 5:199

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  239. Nikolova M, Carriere M, Jenabian MA, Limou S, Younas M, Kok A, Hue S, Seddiki N, Hulin A, Delaneau O, Schuitemaker H, Herbeck JT, Mullins JI, Muhtarova M, Bensussan A, Zagury JF, Lelievre JD, Levy Y (2011) CD39/adenosine pathway is involved in AIDS progression. PLoS Pathog 7:e1002110

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  240. Schulze Zur Wiesch J, Thomssen A, Hartjen P, Toth I, Lehmann C, Meyer-Olson D, Colberg K, Frerk S, Babikir D, Schmiedel S, Degen O, Mauss S, Rockstroh J, Staszewski S, Khaykin P, Strasak A, Lohse AW, Fatkenheuer G, Hauber J, van Lunzen J (2011) Comprehensive analysis of frequency and phenotype of T regulatory cells in HIV infection: CD39 expression of FoxP3+ T regulatory cells correlates with progressive disease. J Virol 85:1287–1297

    Article  CAS  PubMed  Google Scholar 

  241. Cooper GS, Bynum ML, Somers EC (2009) Recent insights in the epidemiology of autoimmune diseases: improved prevalence estimates and understanding of clustering of diseases. J Autoimmun 33:197–207

    Article  PubMed  PubMed Central  Google Scholar 

  242. Goodnow CC, Sprent J, Fazekas de St Groth B, Vinuesa CG (2005) Cellular and genetic mechanisms of self tolerance and autoimmunity. Nature 435:590–597

    Article  CAS  PubMed  Google Scholar 

  243. Gough SC, Simmonds MJ (2007) The HLA region and autoimmune disease: associations and mechanisms of action. Curr Genomics 8:453–465

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  244. Ohashi PS (2002) T-cell signalling and autoimmunity: molecular mechanisms of disease. Nat Rev Immunol 2:427–438

    Article  CAS  PubMed  Google Scholar 

  245. Torres-Aguilar H, Blank M, Jara LJ, Shoenfeld Y (2010) Tolerogenic dendritic cells in autoimmune diseases: crucial players in induction and prevention of autoimmunity. Autoimmun Rev 10:8–17

    Article  CAS  PubMed  Google Scholar 

  246. Torres-Aguilar H, Sanchez-Torres C, Jara LJ, Blank M, Shoenfeld Y (2010) IL-10/TGF-beta-treated dendritic cells, pulsed with insulin, specifically reduce the response to insulin of CD4+ effector/memory T cells from type 1 diabetic individuals. J Clin Immunol 30:659–668

    Article  CAS  PubMed  Google Scholar 

  247. Riella LV, Paterson AM, Sharpe AH, Chandraker A (2012) Role of the PD-1 pathway in the immune response. Am J Transplant 12:2575–2587

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  248. Wolfle SJ, Strebovsky J, Bartz H, Sahr A, Arnold C, Kaiser C, Dalpke AH, Heeg K (2011) PD-L1 expression on tolerogenic APCs is controlled by STAT-3. Eur J Immunol 41:413–424

    Article  PubMed  CAS  Google Scholar 

  249. Chikuma S, Terawaki S, Hayashi T, Nabeshima R, Yoshida T, Shibayama S, Okazaki T, Honjo T (2009) PD-1-mediated suppression of IL-2 production induces CD8+ T cell anergy in vivo. J Immunol 182:6682–6689

    Article  CAS  PubMed  Google Scholar 

  250. Pandiyan P, Zheng L, Ishihara S, Reed J, Lenardo MJ (2007) CD4+CD25+Foxp3+ regulatory T cells induce cytokine deprivation-mediated apoptosis of effector CD4+ T cells. Nat Immunol 8:1353–1362

    Article  CAS  PubMed  Google Scholar 

  251. Yanaba K, Bouaziz JD, Matsushita T, Magro CM, St Clair EW, Tedder TF (2008) B-lymphocyte contributions to human autoimmune disease. Immunol Rev 223:284–299

    Article  CAS  PubMed  Google Scholar 

  252. Yan W, Nguyen T, Yuki N, Ji Q, Yiannikas C, Pollard JD, Mathey EK (2014) Antibodies to neurofascin exacerbate adoptive transfer experimental autoimmune neuritis. J Neuroimmunol 277:13–17

    Article  CAS  PubMed  Google Scholar 

  253. Saadoun S, Waters P, Bell BA, Vincent A, Verkman AS, Papadopoulos MC (2010) Intra-cerebral injection of neuromyelitis optica immunoglobulin G and human complement produces neuromyelitis optica lesions in mice. Brain 133:349–361

    Article  PubMed  PubMed Central  Google Scholar 

  254. Lim HW, Hillsamer P, Banham AH, Kim CH (2005) Cutting edge: direct suppression of B cells by CD4+ CD25+ regulatory T cells. J Immunol 175:4180–4183

    Article  CAS  PubMed  Google Scholar 

  255. Liu Y, Liu A, Iikuni N, Xu H, Shi FD, La Cava A (2014) Regulatory CD4+ T cells promote B cell anergy in murine lupus. J Immunol 192:4069–4073

    Article  CAS  PubMed  Google Scholar 

  256. van der Vliet HJ, Nieuwenhuis EE (2007) IPEX as a result of mutations in FOXP3. Clin Dev Immunol 2007:89017

    PubMed  PubMed Central  Google Scholar 

  257. Steinman L, Merrill JT, McInnes IB, Peakman M (2012) Optimization of current and future therapy for autoimmune diseases. Nat Med 18:59–65

    Article  CAS  PubMed  Google Scholar 

  258. von Boehmer H, Daniel C (2013) Therapeutic opportunities for manipulating T(Reg) cells in autoimmunity and cancer. Nat Rev Drug Discov 12:51–63

    Article  CAS  Google Scholar 

  259. Akdis M, Verhagen J, Taylor A, Karamloo F, Karagiannidis C, Crameri R, Thunberg S, Deniz G, Valenta R, Fiebig H, Kegel C, Disch R, Schmidt-Weber CB, Blaser K, Akdis CA (2004) Immune responses in healthy and allergic individuals are characterized by a fine balance between allergen-specific T regulatory 1 and T helper 2 cells. J Exp Med 199:1567–1575

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  260. Akdis CA, Blesken T, Akdis M, Wuthrich B, Blaser K (1998) Role of interleukin 10 in specific immunotherapy. J Clin Invest 102:98–106

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  261. Jutel M, Akdis M, Budak F, Aebischer-Casaulta C, Wrzyszcz M, Blaser K, Akdis CA (2003) IL-10 and TGF-beta cooperate in the regulatory T cell response to mucosal allergens in normal immunity and specific immunotherapy. Eur J Immunol 33:1205–1214

    Article  CAS  PubMed  Google Scholar 

  262. Gri G, Piconese S, Frossi B, Manfroi V, Merluzzi S, Tripodo C, Viola A, Odom S, Rivera J, Colombo MP, Pucillo CE (2008) CD4+CD25+ regulatory T cells suppress mast cell degranulation and allergic responses through OX40-OX40L interaction. Immunity 29:771–781

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  263. Ring S, Schafer SC, Mahnke K, Lehr HA, Enk AH (2006) CD4+ CD25+ regulatory T cells suppress contact hypersensitivity reactions by blocking influx of effector T cells into inflamed tissue. Eur J Immunol 36:2981–2992

    Article  CAS  PubMed  Google Scholar 

  264. Trautmann A, Schmid-Grendelmeier P, Kruger K, Crameri R, Akdis M, Akkaya A, Brocker EB, Blaser K, Akdis CA (2002) T cells and eosinophils cooperate in the induction of bronchial epithelial cell apoptosis in asthma. J Allergy Clin Immunol 109:329–337

    Article  PubMed  Google Scholar 

  265. Meiler F, Klunker S, Zimmermann M, Akdis CA, Akdis M (2008) Distinct regulation of IgE, IgG4 and IgA by T regulatory cells and toll-like receptors. Allergy 63:1455–1463

    Article  CAS  PubMed  Google Scholar 

  266. Meiler F, Zumkehr J, Klunker S, Ruckert B, Akdis CA, Akdis M (2008) In vivo switch to IL-10-secreting T regulatory cells in high dose allergen exposure. J Exp Med 205:2887–2898

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  267. Platts-Mills T, Vaughan J, Squillace S, Woodfolk J, Sporik R (2001) Sensitisation, asthma, and a modified Th2 response in children exposed to cat allergen: a population-based cross-sectional study. Lancet 357:752–756

    Article  CAS  PubMed  Google Scholar 

  268. Verhasselt V, Milcent V, Cazareth J, Kanda A, Fleury S, Dombrowicz D, Glaichenhaus N, Julia V (2008) Breast milk-mediated transfer of an antigen induces tolerance and protection from allergic asthma. Nat Med 14:170–175

    Article  CAS  PubMed  Google Scholar 

  269. Karlsson MR, Rugtveit J, Brandtzaeg P (2004) Allergen-responsive CD4+CD25+ regulatory T cells in children who have outgrown cow's milk allergy. J Exp Med 199:1679–1688

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  270. Zou W (2006) Regulatory T cells, tumour immunity and immunotherapy. Nat Rev Immunol 6:295–307

    Article  CAS  PubMed  Google Scholar 

  271. Beyer M, Schultze JL (2006) Regulatory T cells in cancer. Blood 108:804–811

    Article  CAS  PubMed  Google Scholar 

  272. Curiel TJ (2007) Tregs and rethinking cancer immunotherapy. J Clin Invest 117:1167–1174

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  273. Ormandy LA, Hillemann T, Wedemeyer H, Manns MP, Greten TF, Korangy F (2005) Increased populations of regulatory T cells in peripheral blood of patients with hepatocellular carcinoma. Cancer Res 65:2457–2464

    Article  CAS  PubMed  Google Scholar 

  274. Woo EY, Chu CS, Goletz TJ, Schlienger K, Yeh H, Coukos G, Rubin SC, Kaiser LR, June CH (2001) Regulatory CD4(+)CD25(+) T cells in tumors from patients with early-stage non-small cell lung cancer and late-stage ovarian cancer. Cancer Res 61:4766–4772

    CAS  PubMed  Google Scholar 

  275. Woo EY, Yeh H, Chu CS, Schlienger K, Carroll RG, Riley JL, Kaiser LR, June CH (2002) Cutting edge: regulatory T cells from lung cancer patients directly inhibit autologous T cell proliferation. J Immunol 168:4272–4276

    Article  CAS  PubMed  Google Scholar 

  276. Orentas RJ, Kohler ME, Johnson BD (2006) Suppression of anti-cancer immunity by regulatory T cells: back to the future. Semin Cancer Biol 16:137–149

    Article  CAS  PubMed  Google Scholar 

  277. Danese S, Rutella S (2007) The Janus face of CD4+CD25+ regulatory T cells in cancer and autoimmunity. Curr Med Chem 14:649–666

    Article  CAS  PubMed  Google Scholar 

  278. Barnett BG, Ruter J, Kryczek I, Brumlik MJ, Cheng PJ, Daniel BJ, Coukos G, Zou W, Curiel TJ (2008) Regulatory T cells: a new frontier in cancer immunotherapy. Adv Exp Med Biol 622:255–260

    Article  CAS  PubMed  Google Scholar 

  279. Lutsiak ME, Tagaya Y, Adams AJ, Schlom J, Sabzevari H (2008) Tumor-induced impairment of TCR signaling results in compromised functionality of tumor-infiltrating regulatory T cells. J Immunol 180:5871–5881

    Article  CAS  PubMed  Google Scholar 

  280. Sasada T, Kimura M, Yoshida Y, Kanai M, Takabayashi A (2003) CD4+CD25+ regulatory T cells in patients with gastrointestinal malignancies: possible involvement of regulatory T cells in disease progression. Cancer 98:1089–1099

    Article  PubMed  Google Scholar 

  281. Kawaida H, Kono K, Takahashi A, Sugai H, Mimura K, Miyagawa N, Omata H, Ooi A, Fujii H (2005) Distribution of CD4+CD25high regulatory T-cells in tumor-draining lymph nodes in patients with gastric cancer. J Surg Res 124:151–157

    Article  CAS  PubMed  Google Scholar 

  282. Kono K, Kawaida H, Takahashi A, Sugai H, Mimura K, Miyagawa N, Omata H, Fujii H (2006) CD4(+)CD25high regulatory T cells increase with tumor stage in patients with gastric and esophageal cancers. Cancer Immunol Immunother 55:1064–1071

    Article  CAS  PubMed  Google Scholar 

  283. Ichihara F, Kono K, Takahashi A, Kawaida H, Sugai H, Fujii H (2003) Increased populations of regulatory T cells in peripheral blood and tumor-infiltrating lymphocytes in patients with gastric and esophageal cancers. Clin Cancer Res 9:4404–4408

    PubMed  Google Scholar 

  284. Tokuno K, Hazama S, Yoshino S, Yoshida S, Oka M (2009) Increased prevalence of regulatory T-cells in the peripheral blood of patients with gastrointestinal cancer. Anticancer Res 29:1527–1532

    PubMed  Google Scholar 

  285. Shen LS, Wang J, Shen DF, Yuan XL, Dong P, Li MX, Xue J, Zhang FM, Ge HL, Xu D (2009) CD4(+)CD25(+)CD127(low/−) regulatory T cells express Foxp3 and suppress effector T cell proliferation and contribute to gastric cancers progression. Clin Immunol 131:109–118

    Article  CAS  PubMed  Google Scholar 

  286. Xu H, Mao Y, Dai Y, Wang Q, Zhang X (2009) CD4CD25+ regulatory T cells in patients with advanced gastrointestinal cancer treated with chemotherapy. Onkologie 32:246–252

    Article  PubMed  CAS  Google Scholar 

  287. Mizukami Y, Kono K, Kawaguchi Y, Akaike H, Kamimura K, Sugai H, Fujii H (2008) CCL17 and CCL22 chemokines within tumor microenvironment are related to accumulation of Foxp3+ regulatory T cells in gastric cancer. Int J Cancer 122:2286–2293

    Article  CAS  PubMed  Google Scholar 

  288. Gobert M, Treilleux I, Bendriss-Vermare N, Bachelot T, Goddard-Leon S, Arfi V, Biota C, Doffin AC, Durand I, Olive D, Perez S, Pasqual N, Faure C, Ray-Coquard I, Puisieux A, Caux C, Blay JY, Menetrier-Caux C (2009) Regulatory T cells recruited through CCL22/CCR4 are selectively activated in lymphoid infiltrates surrounding primary breast tumors and lead to an adverse clinical outcome. Cancer Res 69:2000–2009

    Article  CAS  PubMed  Google Scholar 

  289. Qin XJ, Shi HZ, Deng JM, Liang QL, Jiang J, Ye ZJ (2009) CCL22 recruits CD4-positive CD25-positive regulatory T cells into malignant pleural effusion. Clin Cancer Res 15:2231–2237

    Article  CAS  PubMed  Google Scholar 

  290. Wieczorek G, Asemissen A, Model F, Turbachova I, Floess S, Liebenberg V, Baron U, Stauch D, Kotsch K, Pratschke J, Hamann A, Loddenkemper C, Stein H, Volk HD, Hoffmuller U, Grutzkau A, Mustea A, Huehn J, Scheibenbogen C, Olek S (2009) Quantitative DNA methylation analysis of FOXP3 as a new method for counting regulatory T cells in peripheral blood and solid tissue. Cancer Res 69:599–608

    Article  CAS  PubMed  Google Scholar 

  291. Schaefer C, Kim GG, Albers A, Hoermann K, Myers EN, Whiteside TL (2005) Characteristics of CD4+CD25+ regulatory T cells in the peripheral circulation of patients with head and neck cancer. Br J Cancer 92:913–920

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  292. Strauss L, Bergmann C, Gooding W, Johnson JT, Whiteside TL (2007) The frequency and suppressor function of CD4+CD25highFoxp3+ T cells in the circulation of patients with squamous cell carcinoma of the head and neck. Clin Cancer Res 13:6301–6311

    Article  CAS  PubMed  Google Scholar 

  293. Gao Q, Qiu SJ, Fan J, Zhou J, Wang XY, Xiao YS, Xu Y, Li YW, Tang ZY (2007) Intratumoral balance of regulatory and cytotoxic T cells is associated with prognosis of hepatocellular carcinoma after resection. J Clin Oncol 25:2586–2593

    Article  PubMed  Google Scholar 

  294. Kobayashi N, Hiraoka N, Yamagami W, Ojima H, Kanai Y, Kosuge T, Nakajima A, Hirohashi S (2007) FOXP3+ regulatory T cells affect the development and progression of hepatocarcinogenesis. Clin Cancer Res 13:902–911

    Article  CAS  PubMed  Google Scholar 

  295. Miller AM, Lundberg K, Ozenci V, Banham AH, Hellstrom M, Egevad L, Pisa P (2006) CD4+CD25high T cells are enriched in the tumor and peripheral blood of prostate cancer patients. J Immunol 177:7398–7405

    Article  CAS  PubMed  Google Scholar 

  296. Carreras J, Lopez-Guillermo A, Fox BC, Colomo L, Martinez A, Roncador G, Montserrat E, Campo E, Banham AH (2006) High numbers of tumor-infiltrating FOXP3-positive regulatory T cells are associated with improved overall survival in follicular lymphoma. Blood 108:2957–2964

    Article  CAS  PubMed  Google Scholar 

  297. Rozkova D, Tiserova H, Fucikova J, Last'ovicka J, Podrazil M, Ulcova H, Budinsky V, Prausova J, Linke Z, Minarik I, Sediva A, Spisek R, Bartunkova J (2009) FOCUS on FOCIS: combined chemo-immunotherapy for the treatment of hormone-refractory metastatic prostate cancer. Clin Immunol 131:1–10

    Article  CAS  PubMed  Google Scholar 

  298. Ahmadzadeh M, Rosenberg SA (2006) IL-2 administration increases CD4+ CD25(hi) Foxp3+ regulatory T cells in cancer patients. Blood 107:2409–2414

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  299. Jensen HK, Donskov F, Nordsmark M, Marcussen N, von der Maase H (2009) Increased intratumoral FOXP3-positive regulatory immune cells during interleukin-2 treatment in metastatic renal cell carcinoma. Clin Cancer Res 15:1052–1058

    Article  CAS  PubMed  Google Scholar 

  300. Li X, Ye DF, Xie X, Chen HZ, Lu WG (2005) Proportion of CD4+CD25+ regulatory T cell is increased in the patients with ovarian carcinoma. Cancer Investig 23:399–403

    CAS  Google Scholar 

  301. Curiel TJ (2008) Regulatory T cells and treatment of cancer. Curr Opin Immunol 20:241–246

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  302. Wolf AM, Wolf D, Steurer M, Gastl G, Gunsilius E, Grubeck-Loebenstein B (2003) Increase of regulatory T cells in the peripheral blood of cancer patients. Clin Cancer Res 9:606–612

    PubMed  Google Scholar 

  303. Liyanage UK, Moore TT, Joo HG, Tanaka Y, Herrmann V, Doherty G, Drebin JA, Strasberg SM, Eberlein TJ, Goedegebuure PS, Linehan DC (2002) Prevalence of regulatory T cells is increased in peripheral blood and tumor microenvironment of patients with pancreas or breast adenocarcinoma. J Immunol 169:2756–2761

    Article  CAS  PubMed  Google Scholar 

  304. Wang X, Zheng J, Liu J, Yao J, He Y, Li X, Yu J, Yang J, Liu Z, Huang S (2005) Increased population of CD4(+)CD25(high), regulatory T cells with their higher apoptotic and proliferating status in peripheral blood of acute myeloid leukemia patients. Eur J Haematol 75:468–476

    Article  PubMed  Google Scholar 

  305. Szczepanski MJ, Szajnik M, Czystowska M, Mandapathil M, Strauss L, Welsh A, Foon KA, Whiteside TL, Boyiadzis M (2009) Increased frequency and suppression by regulatory T cells in patients with acute myelogenous leukemia. Clin Cancer Res 15:3325–3332

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  306. Yang ZZ, Novak AJ, Ziesmer SC, Witzig TE, Ansell SM (2006) Attenuation of CD8(+) T-cell function by CD4(+)CD25(+) regulatory T cells in B-cell non-Hodgkin’s lymphoma. Cancer Res 66:10145–10152

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  307. Jones D, Glimcher LH, Aliprantis AO (2011) Osteoimmunology at the nexus of arthritis, osteoporosis, cancer, and infection. J Clin Invest 121:2534–2542

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  308. Tai P, Wang J, Jin H, Song X, Yan J, Kang Y, Zhao L, An X, Du X, Chen X, Wang S, Xia G, Wang B (2008) Induction of regulatory T cells by physiological level estrogen. J Cell Physiol 214:456–464

    Article  CAS  PubMed  Google Scholar 

  309. Zaiss MM, Axmann R, Zwerina J, Polzer K, Guckel E, Skapenko A, Schulze-Koops H, Horwood N, Cope A, Schett G (2007) Treg cells suppress osteoclast formation: a new link between the immune system and bone. Arthritis Rheum 56:4104–4112

    Article  CAS  PubMed  Google Scholar 

  310. Luo CY, Wang L, Sun C, Li DJ (2011) Estrogen enhances the functions of CD4(+)CD25(+)Foxp3(+) regulatory T cells that suppress osteoclast differentiation and bone resorption in vitro. Cell Mol Immunol 8:50–58

    Article  CAS  PubMed  Google Scholar 

  311. Srivastava RK, Dar HY, Mishra PK (2018) Immunoporosis: Immunology of Osteoporosis-Role of T Cells. Front Immunol 9:657

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  312. Okamoto K, Nakashima T, Shinohara M, Negishi-Koga T, Komatsu N, Terashima A, Sawa S, Nitta T, Takayanagi H (2017) Osteoimmunology: the Conceptual Framework Unifying the Immune and Skeletal Systems. Physiol Rev 97:1295–1349

    Article  CAS  PubMed  Google Scholar 

  313. Morgan ME, Flierman R, van Duivenvoorde LM, Witteveen HJ, van Ewijk W, van Laar JM, de Vries RR, Toes RE (2005) Effective treatment of collagen-induced arthritis by adoptive transfer of CD25+ regulatory T cells. Arthritis Rheum 52:2212–2221

    Article  CAS  PubMed  Google Scholar 

  314. Morgan ME, Sutmuller RP, Witteveen HJ, van Duivenvoorde LM, Zanelli E, Melief CJ, Snijders A, Offringa R, de Vries RR, Toes RE (2003) CD25+ cell depletion hastens the onset of severe disease in collagen-induced arthritis. Arthritis Rheum 48:1452–1460

    Article  PubMed  Google Scholar 

  315. Kelchtermans H, Geboes L, Mitera T, Huskens D, Leclercq G, Matthys P (2009) Activated CD4+CD25+ regulatory T cells inhibit osteoclastogenesis and collagen-induced arthritis. Ann Rheum Dis 68:744–750

    Article  CAS  PubMed  Google Scholar 

  316. Zaiss MM, Frey B, Hess A, Zwerina J, Luther J, Nimmerjahn F, Engelke K, Kollias G, Hunig T, Schett G, David JP (2010) Regulatory T cells protect from local and systemic bone destruction in arthritis. J Immunol 184:7238–7246

    Article  CAS  PubMed  Google Scholar 

  317. Fischer L, Herkner C, Kitte R, Dohnke S, Riewaldt J, Kretschmer K, Garbe AI (2019) Foxp3(+) Regulatory T cells in bone and hematopoietic homeostasis. Front Endocrinol (Lausanne) 10:578

    Article  Google Scholar 

  318. Tyagi AM, Yu M, Darby TM, Vaccaro C, Li JY, Owens JA, Hsu E, Adams J, Weitzmann MN, Jones RM, Pacifici R (2018) The Microbial metabolite butyrate stimulates bone formation via T regulatory cell-mediated regulation of WNT10B expression. Immunity 49:1116–1131. e7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgement

This work was financially supported by projects: DST-SERB (EMR/2016/007158), Govt. of India and intramural project from All India Institute of Medical Sciences (AIIMS), New Delhi-India sanctioned to RKS. NS, CS, LS, ZA, AB, AA and RKS acknowledge the Department of Biotechnology, AIIMS, New Delhi-India for providing infrastructural facilities. NS and AA thanks DBT for fellowship. LS and ZA thank the UGC for their respective research fellowships. AB thanks DST for research fellowship.

Author Contributions

RKS suggested the focus and outline of the chapter and wrote the review. NS, CS, LS, ZA, AB and AA participated in writing of the chapter. RKS suggested, and ZA created the illustrations.

Conflicts of Interest

The authors declare no conflicts of interest.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Shokeen, N. et al. (2020). Role of Regulatory T Lymphocytes in Health and Disease. In: Singh, S. (eds) Systems and Synthetic Immunology . Springer, Singapore. https://doi.org/10.1007/978-981-15-3350-1_8

Download citation

Publish with us

Policies and ethics