Skip to main content

Geometry-Guided View Synthesis with Local Nonuniform Plane-Sweep Volume

  • Conference paper
  • First Online:
Digital TV and Wireless Multimedia Communication (IFTC 2019)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 1181))

Abstract

In this paper we develop a geometry-guided image generation technology for scene-independent novel view synthesis from a stereo image pair. We employ the successful plane-sweep strategy to tackle the problem of 3D scene structure approximation. But instead of putting on a general configuration, we use depth information to perform a local nonuniform plane spacing. More specifically, we first explicitly estimate a depth map in the reference view and use it to guide the planes spacing in plane-sweep volume, resulting in a geometry-guided manner for scene geometry approximation. Next we learn to predict a multiplane images (MPIs) representation, which can then be used to synthesize a range of novel views of the scene, including views that extrapolate significantly beyond the input baseline, to allow for efficient view synthesis. Our results on massive YouTube video frames dataset indicate that our approach makes it possible to synthesize higher quality images, while keeping the number of depth planes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Tanimoto, M.: Overview of FTV (free-viewpoint television). In: Proceedings of the IEEE Conference on Multimedia and Expo (ICME 2009), pp. 1552–1553, June 2009

    Google Scholar 

  2. Kopf, J., Cohen, M.F., Szeliski, R.: First-person hyperlapse videos. In: SIGGRAPH (2014)

    Google Scholar 

  3. Scharstein, D., Szeliski, R.: A taxonomy and evaluation of dense two-frame stereo correspondence algorithms. Int. J. Comput. Vis. 47(1–3), 7–42 (2002)

    Article  Google Scholar 

  4. Kim, C., Zimmer, H., Pritch, Y., Sorkine-Hornung, A., Gross, M.: Scene reconstruction from high spatio-angular resolution light fields. ACM Trans. Graph. 32(4), 1–12 (2013)

    MATH  Google Scholar 

  5. Adelson, E., Bergen, J.: The plenoptic function and the elements of early vision. In: Computational Models of Visual Processing. MIT Press, Cambridge (1991)

    Google Scholar 

  6. Levoy, M., Hanrahan, P.: Light field rendering. In: Proceedings of the ACM SIGGRAPH, pp. 31–42 (1996)

    Google Scholar 

  7. Gortler, S.J., Grzeszczuk, R., Szeliski, R., Cohen, M.F.: The lumigraph. In: Proceedings of the ACM SIGGRAPH, pp. 43–54 (1996)

    Google Scholar 

  8. Buehler, C., Bosse, M., Mcmillan, L., et al.: Unstructured lumigraph rendering. In: Conference on Computer Graphics & Interactive Techniques. ACM (2001)

    Google Scholar 

  9. Chai, J., Tong, X., Chan, S., et al.: Plenoptic sampling. In: Proceedings of the ACM SIGGRAPH, pp. 307–318 (2000)

    Google Scholar 

  10. Pearson, J., Brookes, M., Dragotti, P.L.: Plenoptic layer-based modeling for image based rendering. IEEE Trans. Image Process. 22(9), 3405–3419 (2013)

    Article  MathSciNet  Google Scholar 

  11. Tatarchenko, M., Dosovitskiy, A., Brox, T.: Single-view to multi-view: reconstructing unseen views with a convolutional network. Knowl. Inf. Syst. 38(1), 231–257 (2015)

    Google Scholar 

  12. Zhou, T., Tulsiani, S., Sun, W., Malik, J., Efros, A.A.: View synthesis by appearance flow. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9908, pp. 286–301. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46493-0_18

    Chapter  Google Scholar 

  13. Sun, S.-H., Huh, M., Liao, Y.-H., Zhang, N., Lim, Joseph J.: Multi-view to novel view: synthesizing novel views with self-learned confidence. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11207, pp. 162–178. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01219-9_10

    Chapter  Google Scholar 

  14. Flynn, J., Neulander, I., Philbin, J., Snavely, N.: DeepStereo: learning to predict new views from the world’s imagery. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5515–5524 (2016)

    Google Scholar 

  15. Takeuchi, K., Okami, K., Ochi, D., et al.: Partial plane sweep volume for deep learning based view synthesis. In: ACM SIGGRAPH 2017 Posters. ACM (2017)

    Google Scholar 

  16. Liu, M., He, X., Salzmann, M.: Geometry-aware deep network for single-image novel view synthesis. In: 2018 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 4616–4624 (2018)

    Google Scholar 

  17. Kalantari, N.K., Wang, T.-C., Ramamoorthi, R.: Learning-based view synthesis for light field cameras. ACM Trans. Graph. 35(6), 1–10 (2016)

    Article  Google Scholar 

  18. Tao, M.W., Srinivasan, P.P., Malik, J., et al.: Depth from shading, defocus, and correspondence using light-field angular coherence. In: 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). IEEE Computer Society (2015)

    Google Scholar 

  19. Penner, E., Zhang, L.: Soft 3D reconstruction for view synthesis. In: Proceedings of the SIGGRAPH Asia (2017)

    Article  Google Scholar 

  20. Zhou, T., Tucker, R., Flynn, J., et al.: Stereo magnification: learning view synthesis using multiplane images (2018)

    Google Scholar 

  21. Kalantari, N.K., Wang, T.-C., Ramamoorthi, R.: Learning-based view synthesis for light field cameras. In: Proceedings of the SIGGRAPH Asia (2016)

    Google Scholar 

  22. Yao, Y., Luo, Z., Li, S., Fang, T., Quan, L.: MVSNet: depth inference for unstructured multi-view stereo. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11212, pp. 785–801. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01237-3_47

    Chapter  Google Scholar 

  23. Hu, J., Ozay, M., Zhang, Y., et al.: Revisiting single image depth estimation: toward higher resolution maps with accurate object boundaries (2018)

    Google Scholar 

  24. Lloyd, S.: Least squares quantization in PCM. IEEE Trans. Inf. Theory 28(2), 129–137 (1982)

    Article  MathSciNet  Google Scholar 

  25. Shade, J., Gortler, S., He, L., Szeliski, R.: Layered depth images. In: Proceedings of the SIGGRAPH (1998)

    Google Scholar 

  26. Collins, R.T.: A space-sweep approach to true multi-image matching. In: CVPR (1996)

    Google Scholar 

  27. Szeliski, R., Golland, P.: Stereo matching with transparency and matting. IJCV 32(1), 45–61 (1999)

    Article  Google Scholar 

  28. Jaderberg, M., Simonyan, K., Zisserman, A., et al.: Spatial transformer networks. In: NIPS (2015)

    Google Scholar 

  29. Ba, J.L., Kiros, J.R., Hinton, G.E.: Layer normalization. arXiv preprint arXiv:1607.06450 (2016)

  30. Abadi, M., et al.: TensorFlow: a system for large-scale machine learning. In: OSDI (2016)

    Google Scholar 

  31. Agarwal, S., Mierle, K., et al.: Ceres Solver (2016). http://ceres-solver.org

  32. Hasinoff, S.W., et al.: Burst photography for high dynamic range and low-light imaging on mobile cameras. In: Proceedings of the SIGGRAPH Asia (2016)

    Google Scholar 

  33. Dosovitskiy, A., Brox, T.: Generating images with perceptual similarity metrics based on deep networks. In: NIPS (2016)

    Google Scholar 

  34. Johnson, J., Alahi, A., Fei-Fei, L.: Perceptual losses for real-time style transfer and super-resolution. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9906, pp. 694–711. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46475-6_43

    Chapter  Google Scholar 

  35. Engel, J., Koltun, V., Cremers, D.: Direct sparse odometry. IEEE Trans. Pattern Anal. Mach. Intell. 40(3), 611–625 (2018)

    Article  Google Scholar 

  36. Lin, Z., Shum, H.-Y.: A geometric analysis of light field rendering. Int. J. Comput. Vis. 58(2), 121–138 (2004)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Li Fang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Li, A., Fang, L., Ye, L., Zhong, W., Zhang, Q. (2020). Geometry-Guided View Synthesis with Local Nonuniform Plane-Sweep Volume. In: Zhai, G., Zhou, J., Yang, H., An, P., Yang, X. (eds) Digital TV and Wireless Multimedia Communication. IFTC 2019. Communications in Computer and Information Science, vol 1181. Springer, Singapore. https://doi.org/10.1007/978-981-15-3341-9_32

Download citation

  • DOI: https://doi.org/10.1007/978-981-15-3341-9_32

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-15-3340-2

  • Online ISBN: 978-981-15-3341-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics