Skip to main content

Thermal Performance Prediction of Motorized Spindle

  • Chapter
  • First Online:
Book cover Intelligent Motorized Spindle Technology

Part of the book series: Springer Tracts in Mechanical Engineering ((STME))

  • 271 Accesses

Abstract

In addition to the requirements for the high speed and high power of motorized spindle, high-speed machining also requires the ability of spindle to control its own temperature rise and thermal deformation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Zhang LX, Li CQ, Wu Y et al (2017) Hybrid prediction model of the temperature field of a motorized spindle. Appl Sci 7(10):1091-1–14

    Article  Google Scholar 

  2. Zhang LX, Li JP, Wu YH et al (2018) Prediction model and experimental validation for the thermal deformation of motorized spindle. Heat Mass Trans 54(2):1–14

    Article  Google Scholar 

  3. Zhang LX, Li CQ, Li JP et al (2017) Temperature rise prediction model of high-speed and high-precision electric spindle. J Mech Eng 53(23):129–136

    Article  Google Scholar 

  4. Zhang LX, Xia WL, Li JJ et al (2016) Prediction of surface temperature of electric spindle based on genetic neural network. Control Eng 23(2):243–248

    Google Scholar 

  5. Wu YH, Li SH (2018) Ceramic motorized spindle. ISCI Publishing Ltd., London

    Google Scholar 

  6. Zhang LX, Li JP, Li CQ et al (2018) Experimental study on temperature rise and thermal deformation of high-speed spindle of CNC machine tools. Mech Des Manuf 01:129–132

    Google Scholar 

  7. Shu YJ, He BM (2011) Investigation of the high speed rolling bearing temperature rise with oil-air lubrication. J Tribol Trans ASME 133(2):021101-1–021101-9

    Google Scholar 

  8. Zhang LX (2015) A test system and method of electric spindle load. China 201310522511. 5

    Google Scholar 

  9. Shi QH, Zhang LX, Wu YH et al (2015) Analysis of thermal deformation simulation of mechanical spindle of precision lathe based on thermal-structural coupling. Dev Innov Mech Electr Prod 02:120–122

    Google Scholar 

  10. Zhang K, Xu WZ, Zhang LX (2018) The effect of contact thermal resistance on the thermal characteristics of high-speed electric spindle. Combined machine tools and automated machining technology 04:23–28

    Google Scholar 

  11. Zhang LX, Yu SY (2018) The effect of oil mist generated by oil and gas lubrication of high-speed electric spindle on air quality. J Shenyang Jianzhu Univ (Natural Science Edition) 02:341–349

    Google Scholar 

  12. Zhang K, Wang XK, Zhang LX (2018) Modeling and air flow field analysis of 100MD60Y4 electric spindle oil and gas lubrication system. J Shenyang Jianzhu Univ (Natural Science Edition) 03:505–513

    Google Scholar 

  13. Zhang LX, Xia WL, Li JJ et al (2014) An intelligent prediction method for surface temperature of electric spindle of high-speed CNC machine tool. Dev Innov Mech Electr Prod 04:133–135

    Google Scholar 

  14. Pian JX, Liu MJ, Zhang LX et al (2015) Optimization of convective heat transfer coefficient of machine tool spindle based on bee colony algorithm. J Instrum 12:2706–2713

    Google Scholar 

  15. Pian JX, Liu MJ, Liu JX et al (2016) Optimization of convective heat transfer coefficients of the mechanical spindle based on bee colony algorithm. Control Eng 23(9):1349–1355

    Google Scholar 

  16. Zhang LX, Li JP, Li CQ (2016) Experimental study on deviation and thermal deformation of 150MD24Z7.5. Electr Spindl (09):59–61

    Google Scholar 

  17. Wu YH, Yu WD, Zhang LX et al (2016) Thermal characteristics analysis of 150MD24Y20 high speed electric spindle. J Shenyang Jianzhu Univ (Natural Science Edition) 04:703–709

    Google Scholar 

  18. Zhang LX, Gong WJ (2017) Simulation analysis and research on the coupling relationship between air gap and thermal deformation of electric spindle. Micro Motor 11:34–39

    Google Scholar 

  19. Zhang LX, Gong WJ (2017) Experiment on the influence factors of thermal characteristics of 100MD60Y4 high speed electric spindle. J Shenyang Jianzhu Univ (Natural Science Edition) 04:703–712

    Google Scholar 

  20. Zhang LX, Li CQ, Li JP (2016) Experimental study on factors affecting the temperature rise of high-speed spindle. Comb Mach Tools Autom Mach Technol (06):75–77+91

    Google Scholar 

  21. Zhang LX, Liu T, Li CQ (2015) The influence of cooling water flow rate on the temperature rise of the electric spindle motor. Comb Mach Tools Autom Mach Technol (08):36–38+42

    Google Scholar 

  22. Zhang K, Chen N, Zhang LX et al (2015) The effect of cooling water channel width on the temperature rise of ceramic electric spindle. Mech Des Manuf 03:104–106

    Google Scholar 

  23. Zhang LX, Li CQ, Li JP et al (2017) The effect of high-speed electric spindle cooling water parameters on its temperature field. Mech Sci Technol 09:1414–1420

    Google Scholar 

  24. Zhang LX, Yan M, Wu YH et al (2015) Simulation analysis for two different materials motorized spindles with model coupled multi-physics. Mater Res Innov 19(1):S2-1–7

    Google Scholar 

  25. Zhang LX, Yan M, Wu YH (2014) Machine-electric-thermal-magnetic coupling model of high-speed electric spindle and its dynamic performance analysis. Comb Mach Tools Autom Mach Technol 11:35–38

    Google Scholar 

  26. Zhang LX, Yan M, Wu YH et al (2015) Machine tool and hydraulic (13):120–124

    Google Scholar 

  27. Zhang LX, Yan M, Wu YH et al (2016) Multi-field coupling model and dynamic performance prediction of 150MD24Z7.5 high speed electric spindle. Vib Shock 35(01):59–65

    Google Scholar 

  28. Wu YH, Yu WD, Zhang LX et al (2014) Temperature field analysis of electric spindle based on loss experiment. J Shenyang Jianzhu Univ (Natural Science Edition) 30(01):142–146

    Google Scholar 

  29. Wu YH, Zhang K, Deng HB et al A balancing device with built-in spindle mechanical online. China zl201510398608. 9, 2017. 05. 24

    Google Scholar 

  30. Wu YH, Zhang K, Deng HB et al. Mechanical online dynamic balancing system with built-in Spindle: Chinese patent, CN105021352A. 2015. 11. 04

    Google Scholar 

  31. Stephen H, Lane M. Rotating machine active balancer and method of dynamically balancing a rotating machine shaft with torsional vibrations. US 20060005623A1. 2006. 06. 12

    Google Scholar 

  32. Wang ZM (2009) Noise and vibration measurement. Science Press, Beijing, China, pp 134–135

    Google Scholar 

  33. Gong WJ, Zhang LX, Li JP et al (2016) A review of thermal deformation prediction models for electric spindles. Dev Innov Mech Electr Prod 29(03):125–128

    Google Scholar 

  34. Zhang LX, Gong WJ, Zhang K et al (2018) Thermal deformation prediction of high-speed motorized spindle based on biogeography optimization algorithm. Int J Adv Manuf Technol 97(5–8):3141–3151

    Article  Google Scholar 

  35. Zhang LX, Liu T, Wu YH (2016) Design of the motorized spindle temperature control system with PID algorithm. Republic of:Springer Verlag, Seoul, Korea

    Google Scholar 

  36. Yang H, Yin GF, Fang H et al (2011) Research on calculation method of convective heat transfer coefficient in machine finite element thermal analysis. J Sichuan Univ (Engineering Science Edition) 43(04):241–248

    Google Scholar 

  37. Rahmati SHA, Zandieh M (2012) A new biogeography-based optimization (BBO) algorithm for the flexible job shop scheduling problem. Int J Adv Manuf Technol 58(9–12):1115–1129

    Article  Google Scholar 

  38. Jain J, Singh R (2013) Biogeographic-based optimization algorithm for load dispatch in power system. Int J Emerg Technol Adv Eng 3(7):549–553

    Google Scholar 

  39. Ren WJ, Zhao YJ, Wang TR et al (2014) Research on neural network fault diagnosis method based on biogeographic optimization algorithm. Chem Autom Instrum 41(02):149–153+18

    Google Scholar 

  40. Ren WJ, Zhao YJ, Wang TR et al (2014) Research on fault diagnosis of pumping unit based on biogeographic optimization algorithm. J Syst Simul 26(06):1244–1250

    Google Scholar 

  41. Lu YM, Wang YC, Wu ZX (2016) Biogeographic optimization algorithm with two-fold mechanism and cylindricity deviation evaluation. J Mech Eng 52(24):80–87

    Article  Google Scholar 

  42. Dan JS (2014) A probabilistic analysis of a simplified biogeography-based optimization algorithm. Evolut Comput 19(2):167–188

    Google Scholar 

  43. Yu ZQ, Zhang K, Zhang LX et al (2014) n. Lubrication seal 39(03):79–83

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuhou Wu .

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Wu, Y., Zhang, L. (2020). Thermal Performance Prediction of Motorized Spindle. In: Intelligent Motorized Spindle Technology. Springer Tracts in Mechanical Engineering. Springer, Singapore. https://doi.org/10.1007/978-981-15-3328-0_6

Download citation

Publish with us

Policies and ethics