Skip to main content

Metal Oxides-Based SERS Substrates

  • Chapter
  • First Online:
Nanostructured Metal Oxides and Devices

Part of the book series: Materials Horizons: From Nature to Nanomaterials ((MHFNN))

Abstract

Surface-enhanced Raman scattering (SERS) spectroscopy provides molecular fingerprint information with high sensitivity as low as single-molecule detection limit and offers advantages such as narrow spectral bandwidths, ability for fluorescence quenching and capacity to be used with or without optical labels. Henceforth, SERS is a good choice for cellular imaging and biosensing, detection of chemical and bioanalytes, explosives, etc. In SERS, the Raman active molecule is adsorbed to a metallic substrate in which very large electric field is generated during localized surface plasmon resonance that enhances the Raman activity of adsorbed Raman active molecule and is termed as electromagnetic enhancement mechanism (EM). The traditional SERS substrates include roughened metal electrode, metal thin film, metal nanocolloids, patterned substrates, etc. The advancements in the fabrication of efficient SERS substrate led to the development of metal oxide-based SERS substrate which is discussed in this chapter. Good stability, biocompatibility and sensitivity of semiconductors make 3D metal-semiconductor-based SERS substrates competent with traditional coinage metal-based SERS substrates. This chapter describes the development of recyclable SERS substrate using TiO2 nanorods decorated with silver nanoparticles. This helps to overcome single-use problem of traditional SERS substrates. The SERS chemical enhancement mechanism (CM), due to the chemical bond formation between molecules, also contributes to the total SERS enhancement. The surface defect-mediated chemical enhancement observed in metal oxide followed by various applications of metal oxides-based SERS substrate is also discussed in this chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Fleischmann M, Hendra PJ, McQuillan AJ (1974) Raman spectra of pyridine adsorbed at a silver electrode. Chem Phys Lett 26:163–166. https://doi.org/10.1016/0009-2614(74)85388-1

    Article  CAS  Google Scholar 

  2. Jeanmaire DL, Van Duyne RP (1977) Surface raman spectroelectrochemistry. J Electroanal Chem Interfacial Electrochem 84:1–20. https://doi.org/10.1016/S0022-0728(77)80224-6

    Article  CAS  Google Scholar 

  3. Creighton JA, Blatchford CG, Albrecht MG (1979) Plasma resonance enhancement of Raman scattering by pyridine adsorbed on silver or gold sol particles of size comparable to the excitation wavelength. J Chem Soc Faraday Trans 75:790–798. https://doi.org/10.1039/F29797500790

    Article  CAS  Google Scholar 

  4. Kneipp K, Wang Y, Kneipp H et al (1997) Single molecule detection using surface-enhanced Raman scattering (SERS). Phys Rev Lett 78:1667–1670. https://doi.org/10.1103/PhysRevLett.78.1667

    Article  CAS  Google Scholar 

  5. Willets KA, Van Duyne RP (2007) Localized surface plasmon resonance spectroscopy and sensing. Annu Rev Phys Chem 58:267–297. https://doi.org/10.1146/annurev.physchem.58.032806.104607

    Article  CAS  Google Scholar 

  6. Wu D-Y, Liu X-M, Duan S et al (2008) Chemical enhancement effects in sers spectra: a quantum chemical study of pyridine interacting with copper, silver, gold and platinum metals. J Phys Chem C 112:4195–4204. https://doi.org/10.1021/jp0760962

    Article  CAS  Google Scholar 

  7. Park W, Kim ZH (2010) Charge transfer enhancement in the sers of a single molecule. Nano Lett 10(10):4040–4048. https://doi.org/10.1021/nl102026p

    Article  CAS  Google Scholar 

  8. Dieringer JA, Mcfarland AD, Shah NC et al (2006) Surface enhanced Raman spectroscopy: new materials, concepts, characterization tools, and applications. Faraday Discuss 132:9–26. https://doi.org/10.1039/b513431p

    Article  CAS  Google Scholar 

  9. West JL, Halas NJ (2003) Engineered nanomaterials for biophotonics applications: improving sensing, imaging, and therapeutics. Annu Rev Biomed Eng 5:285–292. https://doi.org/10.1146/annurev.bioeng.5.011303.120723

    Article  CAS  Google Scholar 

  10. Gopinath A, Boriskina SV, Premasiri WR et al (2009) Plasmonic nanogalaxies: multiscale aperiodic arrays for surface-enhanced Raman sensing. Nano Lett 9:3922–3929. https://doi.org/10.1021/nl902134r

    Article  CAS  Google Scholar 

  11. Hasna K, Antony A, Puigdollers J et al (2016) Fabrication of cost-effective, highly reproducible large area arrays of nanotriangular pillars for surface enhanced Raman scattering substrates. 9:3075–3083. https://doi.org/10.1007/s12274-016-1190-y

  12. Pisarek M, Holdynski M, Roguska A (2014) TiO2 and Al2O 3 nanoporous oxide layers decorated with silver nanoparticles—active substrates for SERS measurements. J Solid State Electrochem 18:3099–3109. https://doi.org/10.1007/s10008-013-2375-x

    Article  CAS  Google Scholar 

  13. Huang J, Chen F, Zhang Q et al (2015) 3D silver nanoparticles decorated zinc oxide/ silicon heterostructured nanomace arrays as high-performance surface- enhanced raman scattering substrates. ACS Appl Mater Interfaces 7:5725–5735. https://doi.org/10.1021/am507857x

    Article  CAS  Google Scholar 

  14. Tang H, Meng G, Huang Q et al (2012) Arrays of cone-shaped ZnO nanorods decorated with Ag nanoparticles as 3D surface-enhanced Raman scattering substrates for rapid detection of trace polychlorinated biphenyls. Adv Funct Mater 22:218–224. https://doi.org/10.1002/adfm.201102274

    Article  CAS  Google Scholar 

  15. Li BX, Chen G, Yang L et al (2010) Multifunctional Au-coated TiO2 nanotube arrays as recyclable SERS substrates for multifold organic pollutants detection. Adv Funct Mater 20:2815–2824. https://doi.org/10.1002/adfm.201000792

    Article  CAS  Google Scholar 

  16. Hildebrandt P, Stockburger M (1984) Surface-enhanced resonance Raman spectroscopy of Rhodamine 6G adsorbed on colloidal silver. J Phys Chem 88:5935–5944. https://doi.org/10.1021/j150668a038

    Article  CAS  Google Scholar 

  17. Michaels AM, Nirmal M, Brus LE (1999) Surface-enhanced Raman spectroscopy of individual rhodamine 6G molecules on large Ag nanocrystals. J Am Chem Soc 121:9932–9939. https://doi.org/10.1021/ja992128q

    Article  CAS  Google Scholar 

  18. Tan E, Yin P, You T et al (2012) Three dimensional design of large-scale TiO2 nanorods scaffold decorated by silver nanoparticles as SERS sensor for ultrasensitive malachite green detection. ACS Appl Mater Interfaces 4:3432–3437. https://doi.org/10.1021/am3004126

    Article  CAS  Google Scholar 

  19. Quagliano LG (2004) Observation of molecules adsorbed on III-V semiconductor quantum dots by surface-enhanced Raman scattering. J Am Chem Soc 126:7393–7398. https://doi.org/10.1021/ja031640f

    Article  CAS  Google Scholar 

  20. Fu X, Bei F, Wang X et al (2009) Surface-enhanced Raman scattering of 4-mercaptopyridine on sub-monolayers of α-Fe2O3 nanocrystals (sphere, spindle, cube). J Raman Spectrosc 40:1290–1295. https://doi.org/10.1002/jrs.2281

    Article  CAS  Google Scholar 

  21. Wang Y, Ruan W, Zhang J et al (2009) Direct observation of surface-enhanced Raman scattering in ZnO nanocrystals. J Raman Spectrosc 40:1072–1077. https://doi.org/10.1002/jrs.2241

    Article  CAS  Google Scholar 

  22. Rajh T, Nedeljkovic JM, Chen LX et al (1999) Improving optical and charge separation properties of nanocrystalline TiO2 by surface modification with vitamin C. J Phys Chem B 103:3515–3519. https://doi.org/10.1021/jp9901904

    Article  CAS  Google Scholar 

  23. Yang L, Jiang X, Ruan W et al (2009) Charge-transfer-induced surface-enhanced Raman scattering on Ag-TiO2 nanocomposites. J Phys Chem C 113:16226–16231. https://doi.org/10.1021/jp903600r

    Article  CAS  Google Scholar 

  24. Tarakeshwar P, Finkelstein-Shapiro D, Hurst SJ et al (2011) Surface-enhanced Raman scattering on semiconducting oxide nanoparticles: oxide nature, size, solvent, and pH effects. J Phys Chem C 115:8994–9004. https://doi.org/10.1021/jp202590e

    Article  CAS  Google Scholar 

  25. Xue X, Ji W, Mao Z et al (2012) Raman investigation of nanosized TiO2: effect of crystallite size and quantum confinement. J Phys Chem C 116:8792. https://doi.org/10.1021/jp2122196

    Article  CAS  Google Scholar 

  26. Yang L, Jiang X, Ruan W et al (2008) Observation of enhanced Raman scattering for molecules adsorbed on TiO2 nanoparticles: charge-transfer contribution. J Phys Chem C 112:20095–20098. https://doi.org/10.1021/jp8074145

    Article  CAS  Google Scholar 

  27. Greijer H, Lindgren J, Hagfeldt A (2001) Resonance Raman scattering of a dye-sensitized solar Cell: mechanism of thiocyanato ligand exchange. J Phys Chem B 105:6314–6320. https://doi.org/10.1021/jp011062u

    Article  CAS  Google Scholar 

  28. Musumeci A, Gosztola D, Schiller T et al (2009) SERS of semiconducting nanoparticles (TiO2 hybrid composites). J Am Chem Soc 131:6040–6041. https://doi.org/10.1021/ja808277u

    Article  CAS  Google Scholar 

  29. Zhang X, Zhao J, Whitney AV et al (2006) Ultrastable substrates for surface-enhanced Raman spectroscopy: Al2O3 overlayers fabricated by atomic layer deposition yield improved anthrax biomarker detection. J Am Chem Soc 128:10304–10309. https://doi.org/10.1021/ja0638760

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kudilatt Hasna .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Hasna, K., Jayaraj, M.K. (2020). Metal Oxides-Based SERS Substrates. In: Jayaraj, M. (eds) Nanostructured Metal Oxides and Devices. Materials Horizons: From Nature to Nanomaterials. Springer, Singapore. https://doi.org/10.1007/978-981-15-3314-3_5

Download citation

Publish with us

Policies and ethics