Skip to main content

Local Differential Privacy: Tools, Challenges, and Opportunities

  • Conference paper
  • First Online:
Web Information Systems Engineering (WISE 2020)

Abstract

Local Differential Privacy (LDP), where each user perturbs her data locally before sending to an untrusted party, is a new and promising privacy-preserving model. Endorsed by both academia and industry, LDP provides strong and rigorous privacy guarantee for data collection and analysis. As such, it has been recently deployed in many real products by several major software and Internet companies, including Google, Apple and Microsoft in their mainstream products such as Chrome, iOS, and Windows 10. Besides industry, it has also attracted a lot of research attention from academia. This tutorial first introduces the rationale of LDP model behind these deployed systems to collect and analyze usage data privately, then surveys the current research landscape in LDP, and finally identifies several open problems and research directions in this community.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 49.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 64.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Differential Privacy Team, Apple. Learning with privacy at scale (2017)

    Google Scholar 

  2. Abadi, M., et al.: Deep learning with differential privacy. In: Proceedings of the 2016 ACM SIGSAC Conference on Computer and Communications Security, pp. 308–318. ACM (2016). https://doi.org/10.1145/2976749.2978318

  3. Bassily, R., Nissim, K., Stemmer, U., Thakurta, A.G.: Practical locally private heavy hitters. In: Advances in Neural Information Processing Systems (NIPS), pp. 2288–2296 (2017)

    Google Scholar 

  4. Bassily, R., Smith, A.: Local, private, efficient protocols for succinct histograms. In: Proceedings of the 47th Annual ACM on Symposium on Theory of Computing (STOC), pp. 127–135. ACM (2015). https://doi.org/10.1145/2746539.2746632

  5. Bun, M., Nelson, J., Stemmer, U.: Heavy hitters and the structure of local privacy. In: Proceedings of the 35th ACM SIGMOD-SIGACT-SIGAI Symposium on Principles of Database Systems (PODS), pp. 435–447. ACM (2018). https://doi.org/10.1145/3196959.3196981

  6. Cao, Y., Xiao, Y., Xiong, L., Bai, L.: PriSTE: from location privacy to spatiotemporal event privacy. In: IEEE 35th International Conference on Data Engineering (ICDE), pp. 1606–1609. IEEE (2019). https://doi.org/10.1109/icde.2019.00153

  7. Chen, R., Li, H., Qin, A., Kasiviswanathan, S.P., Jin, H.: Private spatial data aggregation in the local setting. In: IEEE 32nd International Conference on Data Engineering (ICDE), pp. 289–300. IEEE (2016). https://doi.org/10.1109/icde.2016.7498248

  8. Cormode, G., Kulkarni, T., Srivastava, D.: Marginal release under local differential privacy. In: Proceedings of the 2018 International Conference on Management of Data (SIGMOD), pp. 131–146. ACM (2018). https://doi.org/10.1145/3183713.3196906

  9. Ding, B., Kulkarni, J., Yekhanin, S.: Collecting telemetry data privately. In: Advances in Neural Information Processing Systems (NIPS), pp. 3574–3583 (2017)

    Google Scholar 

  10. Ding, B., Nori, H., Li, P., Allen, J.: Comparing population means under local differential privacy: with significance and power. In: 32nd AAAI Conference on Artificial Intelligence (2018)

    Google Scholar 

  11. Duchi, J.C., Jordan, M.I., Wainwright, M.J.: Local privacy and statistical minimax rates. In: IEEE 54th Annual Symposium on Foundations of Computer Science (FOCS), pp. 429–438. IEEE (2013). https://doi.org/10.1109/focs.2013.53

  12. Duchi, J.C., Jordan, M.I., Wainwright, M.J.: Minimax optimal procedures for locally private estimation. J. Am. Stat. Assoc. 113(521), 182–201 (2018). https://doi.org/10.1080/01621459.2017.1389735

    Article  MathSciNet  MATH  Google Scholar 

  13. Dwork, C., McSherry, F., Nissim, K., Smith, A.: Calibrating noise to sensitivity in private data analysis. In: Halevi, S., Rabin, T. (eds.) TCC 2006. LNCS, vol. 3876, pp. 265–284. Springer, Heidelberg (2006). https://doi.org/10.1007/11681878_14

    Chapter  Google Scholar 

  14. Erlingsson, Ú., Pihur, V., Korolova, A.: RAPPOR: randomized aggregatable privacy-preserving ordinal response. In: Proceedings of the 2014 ACM SIGSAC Conference on Computer and Communications Security (CCS), pp. 1054–1067. ACM (2014). https://doi.org/10.1145/2660267.2660348

  15. Fanti, G., Pihur, V., Erlingsson, Ú.: Building a RAPPOR with the unknown: privacy-preserving learning of associations and data dictionaries. Proc. Priv. Enhancing Technol. 2016(3), 41–61 (2016). https://doi.org/10.1515/popets-2016-0015

    Article  Google Scholar 

  16. Hsu, J., Khanna, S., Roth, A.: Distributed private heavy hitters. In: Czumaj, A., Mehlhorn, K., Pitts, A., Wattenhofer, R. (eds.) ICALP 2012. LNCS, vol. 7391, pp. 461–472. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-31594-7_39

    Chapter  Google Scholar 

  17. Kairouz, P., Oh, S., Viswanath, P.: Extremal mechanisms for local differential privacy. In: Advances in Neural Information Processing Systems (NIPS), pp. 2879–2887 (2014)

    Google Scholar 

  18. Kasiviswanathan, S.P., Lee, H.K., Nissim, K., Raskhodnikova, S., Smith, A.: What can we learn privately? SIAM J. Comput. 40(3), 793–826 (2011). https://doi.org/10.1137/090756090

    Article  MathSciNet  MATH  Google Scholar 

  19. Kim, J.W., Kim, D.H., Jang, B.: Application of local differential privacy to collection of indoor positioning data. IEEE Access 6, 4276–4286 (2018). https://doi.org/10.1109/access.2018.2791588

    Article  Google Scholar 

  20. Kulkarni, T.: Answering range queries under local differential privacy. In: Proceedings of the 2019 International Conference on Management of Data, pp. 1832–1834. ACM (2019). https://doi.org/10.1145/3299869.3300102

  21. Li, N., Qardaji, W., Su, D.: On sampling, anonymization, and differential privacy or, k-anonymization meets differential privacy. In: Proceedings of the 7th ACM Symposium on Information, Computer and Communications Security (ASIACCS), pp. 32–33. ACM (2012). https://doi.org/10.1145/2414456.2414474

  22. Li, N., Ye, Q.: Mobile data collection and analysis with local differential privacy. In: IEEE International Conference on Mobile Data Management (MDM). https://doi.org/10.1109/access.2018.2791588

  23. Mishra, N., Sandler, M.: Privacy via pseudorandom sketches. In: Proceedings of the Twenty-Fifth ACM SIGMOD-SIGACT-SIGART Symposium on Principles of Database Systems (PODS), pp. 143–152. ACM (2006). https://doi.org/10.1145/1142351.1142373

  24. Qardaji, W., Yang, W., Li, N.: PriView: practical differentially private release of marginal contingency tables. In: Proceedings of the 2014 ACM SIGMOD International Conference on Management of Data (SIGMOD), pp. 1435–1446. ACM (2014). https://doi.org/10.1145/2588555.2588575

  25. Qin, Z., Yang, Y., Yu, T., Khalil, I., Xiao, X., Ren, K.: Heavy hitter estimation over set-valued data with local differential privacy. In: Proceedings of the 2016 ACM SIGSAC Conference on Computer and Communications Security (CCS), pp. 192–203. ACM (2016). https://doi.org/10.1145/2976749.2978409

  26. Qin, Z., Yu, T., Yang, Y., Khalil, I., Xiao, X., Ren, K.: Generating synthetic decentralized social graphs with local differential privacy. In: Proceedings of the 2017 ACM SIGSAC Conference on Computer and Communications Security (CCS), pp. 425–438 (2017). https://doi.org/10.1145/3133956.3134086

  27. Rana, S., Gupta, S.K., Venkatesh, S.: Differentially private random forest with high utility. In: 2015 IEEE International Conference on Data Mining (ICDM), pp. 955–960. IEEE (2015). https://doi.org/10.1109/icdm.2015.76

  28. Ren, X., et al.: LoPub: high-dimensional crowdsourced data publication with local differential privacy. IEEE Trans. Inf. Forensics Secur. 13(9), 2151–2166 (2018). https://doi.org/10.1109/tifs.2018.2812146

    Article  Google Scholar 

  29. Seshadhri, C., Kolda, T.G., Pinar, A.: Community structure and scale-free collections of erdős-rényi graphs. Phys. Rev. E 85(5), 056109 (2012). https://doi.org/10.1103/physreve.85.056109

    Article  Google Scholar 

  30. Smith, A., Thakurta, A., Upadhyay, J.: Is interaction necessary for distributed private learning? In: 2017 IEEE Symposium on Security and Privacy (SP), pp. 58–77. IEEE (2017). https://doi.org/10.1109/sp.2017.35

  31. Stephanie, B.: Facebook Scandal a ‘Game Changer’ in Data Privacy Regulation, Bloomberg, 8 April 2018

    Google Scholar 

  32. Sun, H., et al.: Analyzing subgraph statistics from extended local views with decentralized differential privacy. In: Proceedings of the 2019 ACM SIGSAC Conference on Computer and Communications Security (CCS), pp. 703–717. ACM (2019). https://doi.org/10.1145/3319535.3354253

  33. Thakurta, A.G., et al.: Learning new words. US Patent 9,594,741, 14 March 2017

    Google Scholar 

  34. Thakurta, A.G., et al.: Emoji frequency detection and deep link frequency. US Patent 9,705,908, 11 July 2017

    Google Scholar 

  35. Wang, N., et al.: PrivTrie: effective frequent term discovery under local differential privacy. In: IEEE 34th International Conference on Data Engineering (ICDE), pp. 821–832. IEEE (2018). https://doi.org/10.1109/icde.2018.00079

  36. Wang, N., et al.: Collecting and analyzing multidimensional data with local differential privacy. In: IEEE 35th International Conference on Data Engineering (ICDE) (2019). https://doi.org/10.1109/icde.2019.00063

  37. Wang, T., Blocki, J., Li, N., Jha, S.: Locally differentially private protocols for frequency estimation. In: USENIX Security Symposium, pp. 729–745 (2017)

    Google Scholar 

  38. Wang, T., Li, N., Jha, S.: Locally differentially private frequent itemset mining. In: IEEE Symposium on Security and Privacy (SP), pp. 127–143. IEEE (2018). https://doi.org/10.1109/sp.2018.00035

  39. Wang, T., et al.: Answering multi-dimensional analytical queries under local differential privacy. In: Proceedings of the 2019 International Conference on Management of Data (SIGMOD), pp. 159–176. ACM (2019). https://doi.org/10.1145/3299869.3319891

  40. Wang, T., Li, N., Jha, S.: Locally differentially private heavy hitter identification. IEEE Trans. Dependable Secur. Comput. (TDSC) (2019). https://doi.org/10.1109/tdsc.2019.2927695

    Article  Google Scholar 

  41. Warner, S.L.: Randomized response: a survey technique for eliminating evasive answer bias. J. Am. Stat. Assoc. 60(309), 63–69 (1965). https://doi.org/10.2307/2283137

    Article  MATH  Google Scholar 

  42. Xu, S., Su, S., Xiong, L., Cheng, X., Xiao, K.: Differentially private frequent subgraph mining. In: IEEE 32nd International Conference on Data Engineering (ICDE), pp. 229–240. IEEE (2016). https://doi.org/10.1109/icde.2016.7498243

  43. Yang, B., Sato, I., Nakagawa, H.: Bayesian differential privacy on correlated data. In: Proceedings of the 2015 ACM SIGMOD International Conference on Management of Data (SIGMOD), pp. 747–762. ACM (2015). https://doi.org/10.1145/2723372.2747643

  44. Ye, Q., Hu, H., Meng, X., Zheng, H.: PrivKV: key-value data collection with local differential privacy. In: IEEE Symposium on Security and Privacy (SP), pp. 317–331. IEEE (2019). https://doi.org/10.1109/sp.2019.00018

  45. Zhang, J., Cormode, G., Procopiuc, C.M., Srivastava, D., Xiao, X.: PrivBayes: private data release via Bayesian networks. In: Proceedings of the 2014 ACM SIGMOD International Conference on Management of Data (SIGMOD), pp. 1423–1434. ACM (2014). https://doi.org/10.1145/2588555.2588573

  46. Zhang, Z., Wang, T., Li, N., He, S., Chen, J.: CALM: consistent adaptive local marginal for marginal release under local differential privacy. In: Proceedings of the 2018 ACM SIGSAC Conference on Computer and Communications Security (CCS), pp. 212–229. ACM (2018). https://doi.org/10.1145/3243734.3243742

  47. Zheng, H., Ye, Q., Hu, H., Fang, C., Shi, J.: BDPL: a boundary differentially private layer against machine learning model extraction attacks. In: Sako, K., Schneider, S., Ryan, P.Y.A. (eds.) ESORICS 2019. LNCS, vol. 11735, pp. 66–83. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-29959-0_4

    Chapter  Google Scholar 

Download references

Acknowledgment

This work was supported by National Natural Science Foundation of China (Grant No: 61572413, U1636205, 91646203, 61532010, 91846204 and 61532016), the Research Grants Council, Hong Kong SAR, China (Grant No: 15238116, 15222118 and C1008-16G).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Haibo Hu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Ye, Q., Hu, H. (2020). Local Differential Privacy: Tools, Challenges, and Opportunities. In: U, L., Yang, J., Cai, Y., Karlapalem, K., Liu, A., Huang, X. (eds) Web Information Systems Engineering. WISE 2020. Communications in Computer and Information Science, vol 1155. Springer, Singapore. https://doi.org/10.1007/978-981-15-3281-8_2

Download citation

  • DOI: https://doi.org/10.1007/978-981-15-3281-8_2

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-15-3280-1

  • Online ISBN: 978-981-15-3281-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics