Skip to main content

Spatial Soil Moisture Prediction Model Over an Agricultural Land

  • Chapter
  • First Online:

Part of the book series: Studies in Big Data ((SBD,volume 72))

Abstract

Satellite remote sensing observations have the potential for efficient and reliable mapping of spatial soil moisture distributions. However, soil moisture retrievals from active/passive microwave remote sensing data are typically complex due to inherent difficulty in characterizing interactions among land surface parameters that contribute to the retrieval process. Therefore, adequate physical mathematical descriptions of microwave backscatter interaction with parameters such as land cover, vegetation density, and soil characteristics are not readily available. In such condition, non-parametric models could be used as a possible alternative for better understanding the impact of variables in the retrieval process and relating it in the absence of exact formulation. The following chapter will provide a conceptual framework for SMPM: A non-parametric approach over an agriculture land.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Ahmad, S., Kalra, A., & Stephen, H. (2010). Estimating soil moisture using remote sensing data: A machine learning approach. Advances in Water Resources, 33(1), 69–80.

    Article  Google Scholar 

  • Altese, E., Bolognani, O., & Mancini, M. (1996). Retrieving soil moisture over bare soil from ERS 1 synthetic aperture radar data: Sensitivity analysis based on a theoretical surface scattering model and field data. Water Resources Research, 32(3), 653–661.

    Article  Google Scholar 

  • Altmann, A., Toloşi, L., Sander, O., & Lengauer, T. (2010). Permutation importance: A corrected feature importance measure. Bioinformatics, 26(10), 1340–1347.

    Article  Google Scholar 

  • Álvarez-Mozos, J., González-Audícana, M., & Casalí, J. (2007). Evaluation of empirical and semi-empirical backscattering models for surface soil moisture estimation. Canadian Journal of Remote Sensing, 33(3), 176–188.

    Article  Google Scholar 

  • ASCE Task Committee. (2000a). Artificial neural networks in hydrology. I: Preliminary concepts. Journal of Hydrologic Engineering, 5(2), 115–123.

    Google Scholar 

  • ASCE Task Committee. (2000b). Artificial neural networks in hydrology. II: Hydrologic applications. Journal of Hydrologic Engineering, 5(2), 124–137.

    Google Scholar 

  • Baghdadi, N., Cresson, R., El Hajj, M., Ludwig, R., & La Jeunesse, I. (2012). Estimation of soil parameters over bare agriculture areas from C-band polarimetric SAR data using neural networks. Hydrology and Earth System Sciences, 16(6), 1607–1621.

    Article  Google Scholar 

  • Boerner, R. E. J., Morris, S. J., Sutherland, E. K., & Hutchinson, T. F. (2000). Spatial variability in soil nitrogen dynamics after prescribed burning in Ohio mixed-oak forests. Landscape Ecology, 15(5), 425–439.

    Article  Google Scholar 

  • Breiman, L., Friedman, J. H., Olshen, R. A., & Stone, C. J. (1984). Classification and regression trees. Cole Publishing, Monterey. California, USA: Wadsworth and Brooks/Cole.

    Google Scholar 

  • Breiman, L. (2001). Randomforest. Machine Learning, 45(1), 5–32.

    Article  Google Scholar 

  • Buyantuyev, A., Wu, J., & Gries, C. (2007). Estimating vegetation cover in an urban environment based on Landsat ETM+ imagery: A case study in Phoenix, USA. International Journal of Remote Sensing, 28(2), 269–291.

    Article  Google Scholar 

  • Cable, J., Kovacs, J., Shang, J., & Jiao, X. (2014). Multi-temporal polarimetric RADARSAT-2 for land cover monitoring in Northeastern Ontario, Canada. Remote Sensing, 6(3), 2372–2392.

    Article  Google Scholar 

  • Chai, S.-S., Walker, J. P., Makarynskyy, O., Kuhn, M., Veenendaal, B., & West, G. (2009). Use of soil moisture variability in artificial neural network retrieval of soil moisture. Remote Sensing, 2(1), 166–190.

    Article  Google Scholar 

  • Chang, C.-C., & Lin, C.-J. (2011). LIBSVM : A library for support vector machines.

    Google Scholar 

  • Chen, Y., & Gillieson, D. (2009). Evaluation of Landsat TM vegetation indices for estimating vegetation cover on semi-arid rangelands: A case study from Australia. Canadian Journal of Remote Sensing, 35(5), 435–446.

    Article  Google Scholar 

  • Coopersmith, E. J., Cosh, M. H., Bell, J. E., & Boyles, R. (2016). Using machine learning to produce near surface soil moisture estimates from deeper in situ records at U.S. climate reference network (USCRN) locations: Analysis and applications to AMSR-E satellite validation. Advances in Water Resources, 98, 122–131.

    Article  Google Scholar 

  • Cui, Y., Long, D., Hong, Y., Zeng, C., Zhou, J., Han, Z., et al. (2016). Validation and reconstruction of FY-3B/MWRI soil moisture using an artificial neural network based on reconstructed MODIS optical products over the Tibetan Plateau. Journal of Hydrology, 543, 242–254.

    Article  Google Scholar 

  • Das, K., & Paul, P. K. (2015). Present status of soil moisture estimation by microwave remote sensing. Cogent Geoscience, 1(1), 1–21.

    Article  Google Scholar 

  • Dawson, M. S., Fung, A. K., & Manry, M. T. (1997). A robust statistical-based estimator for soil moisture retrieval from radar measurements. IEEE Transactions on Geoscience and Remote Sensing, 35(1), 57–67.

    Article  Google Scholar 

  • Deng, J., Chen, X., Du, Z., & Zhang, Y. (2011). Soil water simulation and predication using stochastic models based on LS-SVM for red soil region of China. Water Resources Management, 25(11), 2823–2836.

    Article  Google Scholar 

  • Desalegn, T., Cruz, F., Kindu, M., Turrión, M. B., & Gonzalo, J. (2014). Land-use/land-cover (LULC) change and socioeconomic conditions of local community in the central highlands of Ethiopia. International Journal of Sustainable Development & World Ecology, 21(5), 406–413.

    Article  Google Scholar 

  • Dobson, M. C., & Ulaby, F. T. (1981). Microwave backscatter dependence on surface roughness, soil moisture and soil texture: Part III: Soil tension. IEEE Transactions on Geoscience and Remote Sensing, 19(1), 51–61.

    Article  Google Scholar 

  • Du, Y., Ulaby, F. T., & Dobson, M. C. (2000). Sensitivity to soil moisture by active and passive microwave sensors. IEEE Transactions on Geoscience and Remote Sensing, 38(1), 105–114.

    Article  Google Scholar 

  • Feng, D., Zhao, Y., Yu, L., Li, C., Wang, J., Clinton, N., et al. (2016). Circa 2014 African land-cover maps compatible with FROM-GLC and GLC2000 classification schemes based on multi-seasonal Landsat data. International Journal of Remote Sensing, 37(19), 4648–4664.

    Article  Google Scholar 

  • Gao, X., Lu, T., Liu, P., & Lu, Q. (2014). A soil moisture classification model based on SVM used in agricultural WSN. 2014 IEEE 7th Joint International Information Technology and Artificial Intelligence Conference (pp. 432–436). IEEE: Chongqing, China.

    Chapter  Google Scholar 

  • Genis, A., Vulfson, L., Blumberg, D. G., Sprinstin, M., Kotlyar, A., Freilikher, V., et al. (2013). Retrieving parameters of bare soil surface roughness and soil water content under arid environment from ERS-1, -2 SAR data. International Journal of Remote Sensing, 34(17), 6202–6215.

    Article  Google Scholar 

  • Gessler, P. E., Moore, I. D., Mckenzie, N. J., & Ryan, P. J. (1995). Soil-landscape modelling and spatial prediction of soil attributes. International Journal of Geographical Information Systems, 9(4), 421–432.

    Article  Google Scholar 

  • Gill, T., Collett, L., Armston, J., Eustace, A., Danaher, T., Scarth, P., et al. (2010). Geometric correction and accuracy assessment of Landsat-7 ETM+ and Landsat-5 TM imagery used for vegetation cover monitoring in Queensland, Australia from 1988 to 2007. Journal of Spatial Science, 55(2), 273–287.

    Article  Google Scholar 

  • Gill, T., Johansen, K., Phinn, S., Trevithick, R., Scarth, P., & Armston, J. (2017). A method for mapping Australian woody vegetation cover by linking continental-scale field data and long-term Landsat time series. International Journal of Remote Sensing, 38(3), 679–705.

    Article  Google Scholar 

  • Giraldo, M. A., Bosch, D., Madden, M., Usery, L., & Kvien, C. (2008). Landscape complexity and soil moisture variation in south Georgia, USA, for remote sensing applications. Journal of Hydrology, 357(3–4), 405–420.

    Article  Google Scholar 

  • Gorthi, S. (2011). Prediction models for estimation of moisture content. Logan, Utah: Utah State University.

    Book  Google Scholar 

  • Hsieh, C.-Y. (2001). Microwave backscattering model for a bare soil field. Electromagnetics, 21(3), 259–273.

    Article  Google Scholar 

  • Hulley, G. C., Hook, S. J., & Baldridge, A. M. (2010). Investigating the effects of soil moisture on thermal infrared land surface temperature and emissivity using satellite retrievals and laboratory measurements. Remote Sensing of Environment, 114(7), 1480–1493.

    Article  Google Scholar 

  • Hutchinson, T. F., Boerner, R. E. J., Iverson, L. R., Sutherland, S., & Sutherland, E. K. (1999). Landscape patterns of understory composition and richness across a moisture and nitrogen mineralization gradient in Ohio (U.S.A.) Quercus forests. Plant Ecology, 144(2), 177–189.

    Google Scholar 

  • Iverson, L. R., Dale, M. E., Scott, C. T., & Prasad, A. (1997). A GIS-derived integrated moisture index to predict forest composition and productivity of Ohio forests (U.S.A.). Landscape Ecology, 12(5), 331–348.

    Google Scholar 

  • Jiang, H., & Cotton, W. R. (2004). Soil moisture estimation using an artificial neural network: A feasibility study. Canadian Journal of Remote Sensing, 30(5), 827–839.

    Article  Google Scholar 

  • Khanna, S., Palacios-Orueta, A., Whiting, M. L., Ustin, S. L., Riaño, D., & Litago, J. (2007). Development of angle indexes for soil moisture estimation, dry matter detection and land-cover discrimination. Remote Sensing of Environment, 109(2), 154–165.

    Article  Google Scholar 

  • Laamanen, R., & Verlinden, A. (2006). Modeling woody vegetation resources using Landsat TM imagery in northern Namibia. The Southern African Forestry Journal, 207(1), 27–39.

    Article  Google Scholar 

  • Lakhankar, T., Ghedira, H., Temimi, M., Sengupta, M., Khanbilvardi, R., & Blake, R. (2009). Non-parametric methods for soil moisture retrieval from satellite remote sensing data. Remote Sensing, 1(1), 3–21.

    Article  Google Scholar 

  • Lakshmi, V. (2013). Remote sensing of soil moisture. ISRN Soil Science, 1–33.

    Article  Google Scholar 

  • Li, E., Du, P., Samat, A., Xia, J., & Che, M. (2015). An automatic approach for urban land-cover classification from Landsat-8 OLI data. International Journal of Remote Sensing, 36(24), 5983–6007.

    Article  Google Scholar 

  • Li, J., & Islam, S. (1999). On the estimation of soil moisture profile and surface fluxes partitioning from sequential assimilation of surface layer soil moisture. Journal of Hydrology, 220(1–2), 86–103.

    Article  Google Scholar 

  • Liaw, A., & Wiener, M. (2002). Classification and Regression by Random Forest, 2(3), 18–22.

    Google Scholar 

  • Liu, D., Yu, Z., & Lü, H. (2010). Data assimilation using support vector machines and ensemble Kalman filter for multi-layer soil moisture prediction. Water Science and Engineering, 3(4), 361–377.

    Google Scholar 

  • Liu, H., Xie, D., & Wu, W. (2008). Soil water content forecasting by ANN and SVM hybrid architecture. Environmental Monitoring and Assessment, 143(1–3), 187–193.

    Article  Google Scholar 

  • Liu, Y., Chen, K. S., Xu, P., & Li, Z. L. (2016a). Modeling and characteristics of microwave backscattering from rice canopy over growth stages. IEEE Transactions on Geoscience and Remote Sensing, 54(11), 6757–6770.

    Article  Google Scholar 

  • Liu, Y., Zeng, J., Chen, K.-S., & Li, Z. (2016b). Parameter sensitivity analysis for bistatic scattering of rough surface. 2016 IEEE International Geoscience and Remote Sensing Symposium (IGARSS) (pp. 4335–4338). IEEE: Beijing, China.

    Chapter  Google Scholar 

  • Loew, A. (2008). Impact of surface heterogeneity on surface soil moisture retrievals from passive microwave data at the regional scale: The Upper Danube case. Remote Sensing of Environment, 112(1), 231–248.

    Article  Google Scholar 

  • Louppe, G., Wehenkel, L., Sutera, A., & Geurts, P. (2013). Understanding variable importances in forests of randomized trees. Advances in Neural Information Processing Systems, 26, 431–439.

    Google Scholar 

  • Mallick, K., Bhattacharya, B. K., & Patel, N. K. (2009). Estimating volumetric surface moisture content for cropped soils using a soil wetness index based on surface temperature and NDVI. Agricultural and Forest Meteorology, 149(8), 1327–1342.

    Article  Google Scholar 

  • McBratney, A. B., Mendonça Santos, M. L., & Minasny, B. (2003). On digital soil mapping. Geoderma, 117(1–2), 3–52.

    Article  Google Scholar 

  • MirMazloumi, S. M., & Sahebi, M. R. (2016). Assessment of different backscattering models for bare soil surface parameters estimation from SAR data in band C, L and P. European Journal of Remote Sensing, 49(1), 261–278.

    Article  Google Scholar 

  • Mishra, M. D., Patel, P., Srivastava, H. S., Patel, P. R., Shukla, A., & Shukla, A. K. (2014). Absolute radiometric calibration of FRS-1 and MRS mode of RISAT-1 synthetic aperture radar (SAR) data using corner reflectors. International Journal of Advanced Engineering Research and Science, 1(6), 78–89.

    Google Scholar 

  • Morris, S. J., & Boerner, R. E. J. (1998). Landscape patterns of nitrogen mineralization and nitrification in southern Ohio hardwood forests. Landscape Ecology, 13(4), 215–224.

    Article  Google Scholar 

  • Munyati, C., & Sinthumule, N. I. (2013). Assessing change in woody vegetation cover in the Kruger National Park, South Africa, using spectral mixture analysis of a Landsat TM image time series. International Journal of Environmental Studies, 70(1), 94–110.

    Article  Google Scholar 

  • Muramatsu, K., Xiong, Y., Nakayama, S., Ochiai, F., Daigo, M., Hirata, M., et al. (2007). A new vegetation index derived from the pattern decomposition method applied to Landsat‐7/ETM+ images in Mongolia. International Journal of Remote Sensing, 28(16), 3493–3511.

    Article  Google Scholar 

  • Myers, W., Linden, S., & Wiener, G. (2009). A data mining approach to soil temperature and moisture prediction. 7th Conference on Artificial Intelligence and Its Applications to the Environmental Sciences (pp. 1–4). Phoenix: Arizona.

    Google Scholar 

  • Oppel, S., Strobl, C., & Huettmann, F. (2009). Alternative methods to quantify variable importance in ecology. Munich.

    Google Scholar 

  • Palacios-Orueta, A., Khanna, S., & Litago, J. (2005). Assessment of NDVI and NDWI spectral indices using MODIS time series analysis and development of a new spectral index based on MODIS shortwave infrared bands. In 1st International Conference of Remote Sensing and Geoinformation Processing. Trier, Germany.

    Google Scholar 

  • Paloscia, S., Pampaloni, P., Pettinato, S., & Santi, E. (2008). A comparison of algorithms for retrieving soil moisture from ENVIS AT/AS AR images. IEEE Transactions on Geoscience and Remote Sensing, 46(10), 3274–3284.

    Article  Google Scholar 

  • Paloscia, S., Pettinato, S., Santi, E., Notarnicola, C., Pasolli, L., & Reppucci, A. (2013). Soil moisture mapping using Sentinel-1 images: Algorithm and preliminary validation. Remote Sensing of Environment, 134, 234–248.

    Article  Google Scholar 

  • Pasolli, L., Notarnicola, C., Bruzzone, L., Bertoldi, G., Chiesa, S. D., Niedrist, G., et al. (2012). Polarimetric RADARSAT-2 imagery for soil moisture retrieval in alpine areas. Canadian Journal of Remote Sensing, 37(5), 535–547.

    Article  Google Scholar 

  • Patel, P., Srivastava, H. S., Panigrahy, S., & Parihar, J. S. (2006). Comparative evaluation of the sensitivity of multi-polarized multi-frequency SAR backscatter to plant density. International Journal of Remote Sensing, 27(2), 293–305.

    Article  Google Scholar 

  • Purevdorj, T., Tateishi, R., Ishiyama, T., & Honda, Y. (1998). Relationships between percent vegetation cover and vegetation indices. International Journal of Remote Sensing, 19(18), 3519–3535.

    Article  Google Scholar 

  • Ramírez-villegas, J., & Bueno-cabrera, A. (2009). Working with climate data and niche modeling: Creation of bioclimatic variables. Colombia: Cali.

    Google Scholar 

  • Rodriguez-galiano, V. F., Ghimire, B., Rogan, J., Chica-olmo, M., & Rigol-sanchez, J. P. (2012). An assessment of the effectiveness of a random forest classifier for land-cover classification. ISPRS Journal of Photogrammetry and Remote Sensing, 67, 93–104.

    Article  Google Scholar 

  • Said, S., Kothyari, U. C., & Arora, M. K. (2008). ANN-based soil moisture retrieval over bare and vegetated areas using ERS-2 SAR data. Journal of Hydrologic Engineering, 13(6), 461–475.

    Article  Google Scholar 

  • Satalino, G., Mattia, F., Davidson, M. W. J., Le Toan, T., Pasquariello, G., & Borgeaud, M. (2002). On current limits of soil moisture retrieval from ERS-SAR data. IEEE Transactions on Geoscience and Remote Sensing, 40(11), 2438–2447.

    Article  Google Scholar 

  • Shi, J., Wang, J., Hsu, A. Y., O’Neill, P. E., & Engman, E. T. (1997). Estimation of bare surface soil moisture and surface roughness parameter using L-band SAR image data. IEEE Transactions on Geoscience and Remote Sensing, 35(5), 1254–1266.

    Article  Google Scholar 

  • Shukla, G., Garg, R. D., Srivastava, H. S., & Garg, P. K. (2017). Implementation of random forest algorithm for crop mapping across an aridic to ustic area of Indian states. Journal of Applied Remote Sensing, 11(2), 26005.

    Article  Google Scholar 

  • Shukla, G., Garg, R. D., Srivastava, H. S., & Garg, P. K. (2018). Performance analysis of different predictive models for crop classification across an aridic to ustic area of Indian states. Geocarto International, 33(3), 240–259.

    Article  Google Scholar 

  • Song, X., Zhang, G., Liu, F., Li, D., Zhao, Y., & Yang, J. (2016). Modeling spatio-temporal distribution of soil moisture by deep learning-based cellular automata model. Journal of Arid Land, 8(5), 734–748.

    Article  Google Scholar 

  • Srivastava, P. K., Han, D., Ramirez, M. R., & Islam, T. (2013). Machine learning techniques for downscaling SMOS satellite soil moisture using MODIS land surface temperature for hydrological application. Water Resources Management, 27(8), 3127–3144.

    Article  Google Scholar 

  • Strobl, C., Boulesteix, A.-L., Zeileis, A., & Hothorn, T. (2007). Bias in random forest variable importance measures: Illustrations, sources and a solution. BMC Bioinformatics, 8(1), 25.

    Article  Google Scholar 

  • Su, Z., Troch, P. A., & DeTroch, F. P. (1997). Remote sensing of bare surface soil moisture using EMAC/ESAR data. International Journal of Remote Sensing, 18(10), 2105–2124.

    Article  Google Scholar 

  • Townshend, J.R., Masek, J.G., Huang, C., Vermote, E.F., Gao, F., Channan, S., et al. (2012). Global characterization and monitoring of forest cover using Landsat data: Opportunities and challenges. International Journal of Digital Earth, 5(5), 373–397.

    Article  Google Scholar 

  • Ulaby, F. T., Bradley, G. A., & Obson, M. C. (1979). Microwave backscatter dependence on surface roughness, soil moisture, and soil texture: Part II-vegetation covered soil. IEEE Transactions on Geoscience Electronics, 17(2), 33–40.

    Article  Google Scholar 

  • Ulaby, F. T., Razani, M., & Dobson, M. C. (1983). Effects of vegetation cover on the microwave radiometric sensitivity to soil moisture. IEEE Transactions on Geoscience and Remote Sensing, GE-21(1), 51–61.

    Google Scholar 

  • Vapnik, V. N. (2000). The nature of statistical learning theory. In M. Jordan, S. L. Lauritzen, J. F. Lawless, & V. Nair (Eds.), Statistics for engineering and information science (pp. 1564–1564). Springer: Verlag, New York.

    Google Scholar 

  • Verhoest, N. E. C., Lievens, H., Wagner, W., Álvarez-Mozos, J., Moran, M. S., & Mattia, F. (2008). On the soil roughness parameterization problem in soil moisture retrieval of bare surfaces from synthetic aperture radar. Sensors, 8(7), 4213–4248.

    Article  Google Scholar 

  • Wagner, W., & Scipal, K. (2000). Large-scale soil moisture mapping in western Africa using the ERS scatterometer. IEEE Transactions on Geoscience and Remote Sensing, 38(4), 1777–1782.

    Article  Google Scholar 

  • Waldteufel, P., Richaume, P., Kerr, Y., Wigneron, J. P., Mahmoodi, A., Mialon, A., et al. (2007). Optimizing the algorithm for retrieving soil moisture from SMOS data. In IEEE International Geoscience and Remote Sensing Symposium, 2007. IGARSS 2007 (pp. 3952–3954). Barcelona, Spain.

    Google Scholar 

  • Wang, L., & Qu, J. J. (2009). Satellite remote sensing applications for surface soil moisture monitoring: A review. Frontiers of Earth Science in China, 3(2), 237–247.

    Article  Google Scholar 

  • Wigneron, J. P., Calvet, J. C., Pellarin, T., Van De Griend, A. A., Berger, M., & Ferrazzoli, P. (2003). Retrieving near-surface soil moisture from microwave radiometric observations: Current status and future plans. Remote Sensing of Environment, 85(4), 489–506.

    Article  Google Scholar 

  • Witten, I. H., & Frank, E. (2005). Data mining: Practical machine learning tools and techniques (Google eBook) (2nd ed.). Complementary literature None. San Francisco: Elsevier.

    Google Scholar 

  • Xie, X. M., Xu, J. W., Zhao, J. F., Liu, S., & Wang, P. (2014). Soil moisture inversion using AMSR-E remote sensing data: An artificial neural network approach. Applied Mechanics and Materials, 501–504, 2073–2076.

    Article  Google Scholar 

  • Xin, Q., Broich, M., Zhu, P., & Gong, P. (2015). Modeling grassland spring onset across the Western United States using climate variables and MODIS-derived phenology metrics. Remote Sensing of Environment, 161, 63–77.

    Article  Google Scholar 

  • Yang, S., & Huang, Y. (2002). Application of support vector machine based on time series for soil moisture and nitrate nitrogen content prediction. In D. Li & Z. Chunjiang (Eds.), IFIP Advances in Information and Communication Technology (pp. 2037–2045). Boston: Springer.

    Google Scholar 

  • Zaman, B., McKee, M., & Neale, C. M. U. (2012). Fusion of remotely sensed data for soil moisture estimation using relevance vector and support vector machines. International Journal of Remote Sensing, 33(20), 6516–6552.

    Article  Google Scholar 

  • Zhang, D., Zhang, W., Huang, W., Hong, Z., & Meng, L. (2017). Upscaling of surface soil moisture using a deep learning model with VIIRS RDR. ISPRS International Journal of Geo-Information, 6(5), 130.

    Article  Google Scholar 

  • Zhao, S., Yang, Y., Qiu, G., Qin, Q., Yao, Y., Xiong, Y., et al. (2010). Remote detection of bare soil moisture using a surface-temperature-based soil evaporation transfer coefficient. International Journal of Applied Earth Observation and Geoinformation, 12(5), 351–358.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2020 The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Garg, P.K., Garg, R.D., Shukla, G., Srivastava, H.S. (2020). Spatial Soil Moisture Prediction Model Over an Agricultural Land. In: Digital Mapping of Soil Landscape Parameters. Studies in Big Data, vol 72. Springer, Singapore. https://doi.org/10.1007/978-981-15-3238-2_6

Download citation

Publish with us

Policies and ethics