Digital Soil Mapping: Implementation and Assessment

Part of the Studies in Big Data book series (SBD, volume 72)


As a science grows, its underlying concepts change, although the words remain the same. The following chapter will be devoted to implementation and assessment of DSM. We discuss the various methods that have been, or could be, used for fitting relationships between soil properties or classes and soil-forming factors. We also discussed the data layers that have been, or could be, used to describe the soil-forming factors and their importance in DSM.


  1. Abdelthaman, S. I., & Onsi, H. M. (1996). Application of remote sensing GIS for soil mapping of El Hasana centeral Sinai, Egypt. In International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences (Vol. XXXI/B4, pp. 1–6). Vienna: ISPRS.Google Scholar
  2. Boruvka, L., Pavlu, L., Vasat, R., Penizek, V., & Drabek, O. (2008). Delineating acidified soils in the Jizera mountains region using fuzzy classification. In A. E. Hartemink, A. McBratney, & M. L. Mendonça-Santos (Eds.), Digital soil mapping with limited data (pp. 303–309). Dordrecht: Springer Netherlands.Google Scholar
  3. Breiman, L. (1996). Bagging predictors. Machine Learning, 24(2), 123–140.zbMATHGoogle Scholar
  4. Breiman, L. (2001). Random forest. Machine Learning, 45(1), 5–32.zbMATHCrossRefGoogle Scholar
  5. Breiman, L., Friedman, J. H., Stone, C. J., & Olshen, R. A. (1984). Classification and regression trees. Monterey, California, USA: Wadsworth and Brooks/Cole.zbMATHGoogle Scholar
  6. Bui, E. N., & Moran, C. J. (2003). A strategy to fill gaps in soil survey over large spatial extents: An example from the Murray-Darling basin of Australia. Geoderma, 111(1–2), 21–44.CrossRefGoogle Scholar
  7. Bui, E. N., Loughhead, A., & Corner, R. (1999). Extracting soil-landscape rules from previous soil surveys. Australian Journal of Soil Research, 37(3), 495.CrossRefGoogle Scholar
  8. Cialella, A., Dubayah, R., Lawrence, W., & Levine, E. (1997). Predicting soil drainage class using remotely sensed and digital elevation data. Photogrammetric Engineering and Remote Sensing, 63(2), 171–177.Google Scholar
  9. Cole, N. J., & Boettinger, J. L. (2006). Pedogenic understanding raster classification methodology for mapping soils, powder river basin, Wyoming, USA. In P. Lagacherie, A. B. McBratney, & M. Voltz (Eds.), Digital soil mapping: An introductory perspective. Elsevier.Google Scholar
  10. Connolly, J., & Holden, N. M. (2009). Mapping peat soils in Ireland: Updating the derived Irish peat map. Irish Geography, 42(3), 343–352.CrossRefGoogle Scholar
  11. Dice, L. R. (1945). Measures of the amount of ecologic association between species. Ecology, 26(3), 297–302.CrossRefGoogle Scholar
  12. Eichhorn, M. P. (2016). What is a natural system? In Natural systems: The organisation of life (pp. 341–344). Chichester, UK: Wiley.Google Scholar
  13. Foody, G. M. (1995). Land cover classification by an artificial neural network with ancillary information. International Journal of Geographical Information Systems, 9(5), 527–542.CrossRefGoogle Scholar
  14. Foody, G. M., & Arora, M. K. (1997). An evaluation of some factors affecting the accuracy of classification by an artificial neural network. International Journal of Remote Sensing, 18(4), 799–810.CrossRefGoogle Scholar
  15. Genuer, R., Poggi, J.-M., & Tuleau-Malot, C. (2010). Variable selection using random forests. Pattern Recognition Letters, 31(14), 2225–2236.CrossRefGoogle Scholar
  16. Grimm, R., Behrens, T., Märker, M., & Elsenbeer, H. (2008). Soil organic carbon concentrations and stocks on Barro Colorado island—Digital soil mapping using random forests analysis. Geoderma, 146(1–2), 102–113.CrossRefGoogle Scholar
  17. Hengl, T., Toomanian, N., Reuter, H. I., & Malakouti, M. J. (2007). Methods to interpolate soil categorical variables from profile observations: Lessons from Iran. Geoderma, 140(4), 417–427.CrossRefGoogle Scholar
  18. Hilgard, E. W. (1914). Soils. London: The Macmillan Company.Google Scholar
  19. Jaccard, P. (1912). The distribution of the flora in the alpine zone. New Phytologist, 11(2), 37–50.CrossRefGoogle Scholar
  20. Jafari, A., Finke, P. A., Vande Wauw, J., Ayoubi, S., & Khademi, H. (2012). Spatial prediction of USDA- great soil groups in the arid Zarand region, Iran: Comparing logistic regression approaches to predict diagnostic horizons and soil types. European Journal of Soil Science, 63(2), 284–298.CrossRefGoogle Scholar
  21. Jafari, A., Ayoubi, S., Khademi, H., Finke, P. A., & Toomanian, N. (2013). Selection of a taxonomic level for soil mapping using diversity and map purity indices: A case study from an Iranian arid region. Geomorphology, 201, 86–97.CrossRefGoogle Scholar
  22. Jenny, H. (1941). Factors of soil formation. A system of quantitative pedology. New York: McGraw-Hill Book Company.Google Scholar
  23. Jenny, H., 1941. Factors of soil formation. A system of quantitative pedology. McGraw- Hill Book Company. New York.Google Scholar
  24. Jenny, H. (1980). The soil resource. New York, NY: Springer New York.CrossRefGoogle Scholar
  25. Joffe, J. S. (1936). Pedology. New Brunswick, NJ: Rutgers University Press.Google Scholar
  26. Kempen, B., Brus, D. J., & Heuvelink, G. B. M. (2012). Soil type mapping using the generalised linear geostatistical model: A case study in a Dutch cultivated peatland. Geoderma, 189–190, 540–553.CrossRefGoogle Scholar
  27. Kim, J., Grunwald, S., Rivero, R. G., & Robbins, R. (2012). Multi-scale modeling of soil series using remote sensing in a wetland ecosystem. Soil Science Society of America Journal, 76(6), 2327.CrossRefGoogle Scholar
  28. Korolyuk, T. V., & Shcherbenko, H. V. (1994). Compiling soil maps on the basis of remotely-sensed data digital processing: Soil interpretation. International Journal of Remote Sensing, 15(7), 1379–1400.CrossRefGoogle Scholar
  29. Kovačević, M., Bajat, B., & Gajić, B. (2010). Soil type classification and estimation of soil properties using support vector machines. Geoderma, 154(3–4), 340–347.CrossRefGoogle Scholar
  30. Labatut, V., & Cherifi, H. (2011). Evaluation of performance measures for classifiers comparison. Ubiquitous Computing and Communication Journal, 6, 21–34.Google Scholar
  31. Labatut, V., & Cherifi, H. (2012). Accuracy measures for the comparison of classifiers. In The 5th International Conference on Information Technology (p. 11). Amman, Jordan.Google Scholar
  32. Lagacherie, P., Legros, J. P., & Burfough, P. A. (1995). A soil survey procedure using the knowledge of soil pattern established on a previously mapped reference area. Geoderma, 65(3–4), 283–301.CrossRefGoogle Scholar
  33. Liaw, A., & Wiener, M. (2002). Classification and regression by random forest, 2(3), 18–22.Google Scholar
  34. Lookingbill, T., & Urban, D. (2004). An empirical approach towards improved spatial estimates of soil moisture for vegetation analysis. Landscape Ecology, 19(4), 417–433.CrossRefGoogle Scholar
  35. Louppe, G. (2014). Understanding random forests: From theory to practice. University of Liège.Google Scholar
  36. Louppe, G., Wehenkel, L., Sutera, A., & Geurts, P. (2013). Understanding variable importances in forests of randomized trees. Advances in Neural Information Processing Systems, 26, 431–439.Google Scholar
  37. Marchetti, A., Piccini, C., Santucci, S., Chiuchiarelli, I., & Francaviglia, R. (2011). Simulation of soil types in Teramo province (Central Italy) with terrain parameters and remote sensing data. CATENA, 85(3), 267–273.CrossRefGoogle Scholar
  38. McBratney, A. B., Mendonça Santos, M. L., & Minasny, B. (2003). On digital soil mapping. Geoderma, 117(1–2), 3–52.CrossRefGoogle Scholar
  39. McKenzie, N. J., & Ryan, P. J. (1999). Spatial prediction of soil properties using environmental correlation. Geoderma, 89(1–2), 67–94.CrossRefGoogle Scholar
  40. Moonjun, R., Farshad, A., Shrestha, D. P., & Vaiphasa, C. (2010). Artificial neural network and decision tree in predictive soil mapping of Hoi Num Rin Sub-Watershed, Thailand. In Digital soil mapping (pp. 151–164). Dordrecht: Springer Netherlands.Google Scholar
  41. Moran, C. J., & Bui, E. N. (2002). Spatial data mining for enhanced soil map modelling. International Journal of Geographical Information Science, 16(6), 533–549.CrossRefGoogle Scholar
  42. Pahlavan Rad, M. R., Toomanian, N., Khormali, F., Brungard, C. W., Komaki, C. B., & Bogaert, P. (2014). Updating soil survey maps using random forest and conditioned latin hypercube sampling in the loess derived soils of northern Iran. Geoderma, 232–234, 97–106.CrossRefGoogle Scholar
  43. Pal, M. (2005). Random forest classifier for remote sensing classification. International Journal of Remote Sensing, 26(1), 217–222.CrossRefGoogle Scholar
  44. Pal, M., & Mather, P. M. (2003). An assessment of the effectiveness of decision tree methods for land cover classification. Remote Sensing of Environment, 86(4), 554–565.CrossRefGoogle Scholar
  45. Pal, M., & Mather, P. M. (2005). Support vector machines for classification in remote sensing. International Journal of Remote Sensing, 26(5), 1007–1011.CrossRefGoogle Scholar
  46. Panagos, P., Jones, A., Bosco, C., & Senthil Kumar, P. S. (2011). European digital archive on soil maps (EuDASM): Preserving important soil data for public free access. International Journal of Digital Earth, 4(5), 434–443.CrossRefGoogle Scholar
  47. Pásztor, L., Szabó, J., Bakacsi, Z., Matus, J., & Laborczi, A. (2012). Compilation of 1:50,000 scale digital soil maps for Hungary based on the digital Kreybig soil information system. Journal of Maps, 8(3), 215–219.CrossRefGoogle Scholar
  48. Poggio, L., Gimona, A., & Brewer, M. J. (2013). Regional scale mapping of soil properties and their uncertainty with a large number of satellite-derived covariates. Geoderma, 209–210, 1–14.CrossRefGoogle Scholar
  49. Prasad, A. M., Iverson, L. R., & Liaw, A. (2006). Newer classification and regression tree techniques: Bagging and random forests for ecological prediction. Ecosystems, 9(2), 181–199.CrossRefGoogle Scholar
  50. Ramann, E. (1911). Bodenkunde. Berlin: Verlag Julius Springer.CrossRefGoogle Scholar
  51. Rodriguez-galiano, V. F., Ghimire, B., Rogan, J., Chica-olmo, M., & Rigol-sanchez, J. P. (2012). An assessment of the effectiveness of a Random Forest classifier for land-cover classification. ISPRS Journal of Photogrammetry and Remote Sensing, 67, 93–104.CrossRefGoogle Scholar
  52. Scull, P., Franklin, J., & Chadwick, O. A. (2005). The application of classification tree analysis to soil type prediction in a desert landscape. Ecological Modelling, 181(1), 1–15.CrossRefGoogle Scholar
  53. Shcherbenko, Y. E. V., Asmus, V. V., & Andronikov, V. L. (1992). Digital processing of remote sensing imagery in soil mapping. Mapping Sciences and Remote Sensing, 29(3), 248–261.CrossRefGoogle Scholar
  54. Shukla, G., Garg, R. D., Srivastava, H. S., & Garg, P. K. (2018). Performance analysis of different predictive models for crop classification across an aridic to ustic area of Indian states. Geocarto International, 33(3), 240–259.CrossRefGoogle Scholar
  55. Smith, C., Daneshfar, B., Frank, G., Flager, E., & Bulmer, C. (2012). Use of weights of evidence statistics to define inference rules to disaggregate soil survey maps. In B. Minasny, B. Malone, & A. McBratney (Eds.), Digital soil assessments and beyond (pp. 215–220). Sydney: CRC Press.CrossRefGoogle Scholar
  56. Stum, A. K. (2010). Random forests applied as a soil spatial predictive model in arid Utah. Utah State University.Google Scholar
  57. Taghizadeh-Mehrjardi, R. (2016). Digital mapping of cation exchange capacity using genetic programming and soil depth functions in Baneh region, Iran. Archives of Agronomy and Soil Science, 62(1), 109–126.CrossRefGoogle Scholar
  58. Taghizadeh-Mehrjardi, R., Sarmadian, F., Minasny, B., Triantafilis, J., & Omid, M. (2014). Digital mapping of soil classes using decision tree and auxiliary data in the Ardakan Region, Iran. Arid Land Research and Management, 28(2), 147–168.CrossRefGoogle Scholar
  59. The Hindu. (2017). A pioneering step in digital soil mapping. The Hindu.Google Scholar
  60. Triantafilis, J., Earl, N., & Gibbs, I. (2012). Digital soil-class mapping across the Edgeroi district using numerical clustering and gamma-ray spectrometry data. In A. B. McBratney (Ed.), Digital soil assessments and beyond (pp. 187–191). Sydney: CRC Press.CrossRefGoogle Scholar
  61. van Zijl, G., le Roux, P., & Smith, H. (2012). Rapid soil mapping under restrictive conditions in Tete, Mozambique. In B. Minasny, B. Malone, & A. McBratney (Eds.), Digital soil assessments and beyond (pp. 335–339). Sydney: CRC Press.CrossRefGoogle Scholar
  62. Vaysse, K., & Lagacherie, P. (2015). Evaluating digital soil mapping approaches for mapping GlobalSoilMap soil properties from legacy data in Languedoc-Roussillon (France). Geoderma Regional, 4, 20–30.CrossRefGoogle Scholar
  63. Zhu, A. X., Hudson, B., Burt, J., Lubich, K., & Simonson, D. (2001). Soil mapping using GIS, expert knowledge, and fuzzy logic. Soil Science Society of America Journal, 65(5), 1463.CrossRefGoogle Scholar

Copyright information

© The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2020

Authors and Affiliations

  1. 1.Geomatics Section, Civil Engineering DepartmentIndian Institute of Technology RoorkeeRoorkeeIndia
  2. 2.Surveying and Geomatics Section, Civil Engineering DepartmentMaharishi Markandeshwar UniversityAmbalaIndia
  3. 3.Indian Institute of Remote Sensing (IIRS)DehradunIndia

Personalised recommendations