Skip to main content

Different Approaches on Digital Mapping of Soil-Landscape Parameters

  • Chapter
  • First Online:
Digital Mapping of Soil Landscape Parameters

Part of the book series: Studies in Big Data ((SBD,volume 72))

Abstract

In soil-landscape parameters mapping, the implementation of geomatics-GIS, GPS, remote sensing, and DEM, suggests new alternatives. Different approaches have been applied for retrieval of soil-landscape parameters. In recent years, machine learning algorithms have received increasing attention for digital mapping.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ahmad, S., Kalra, A., & Stephen, H. (2010). Estimating soil moisture using remote sensing data: A machine learning approach. Advances in Water Resources, 33(1), 69–80.

    Google Scholar 

  • An, Q., & Yang, B. (2007). A multicrop identification model based on stepwise removal learning-support vector machine using remote sensing images. New Zealand Journal of Agricultural Research, 50(5), 1013–1019.

    Article  Google Scholar 

  • Andrade, O., Kappas, M., & Erasmi, S. (2010). Assessment of erosion hazard in Torres municipality of Laras tate (Venezuela) based on GIS. Interciencia, 35(5), 348–356.

    Google Scholar 

  • Bagheri Bodaghabadi, M., Martínez-Casasnovas, J., Salehi, M. H., Mohammadi, J., Esfandiarpoor Borujeni, I., Toomanian, N., et al. (2015). Digital soil mapping using artificial neural networks and terrain related attributes. Pedosphere, 25(4), 580–591.

    Article  Google Scholar 

  • Balkovič, J., Čemanová, G., & Kollár, J. (2007). Mapping soils using the fuzzy approach and regression-kriging case study from the Považský Inovec Mountains, Slovakia. Soil and Water Research, 2007(4), 123–134.

    Article  Google Scholar 

  • Bansal, S., Srivastav, S. K., Roy, P. S., & Krishnamuthy, Y. V. N. (2016). An analysis of land use and land cover dynamics and causative drivers in a thickly populated Yamuna river basin of India. Applied Ecology and Environmental Research, 14(3), 773–792.

    Article  Google Scholar 

  • Bauböck, R., Karpenstein-Machan, M., and Kappas, M., 2014. Computing the biomass potentials for maize and two alternative energy crops, triticale and cup plant (Silphium perfoliatum L.), with the crop model BioSTAR in the region of Hannover (Germany). Environmental Sciences Europe, 26(1), 1–12.

    Google Scholar 

  • Beg, M. K., Srivastav, S. K., Carranza, E. J. M., & de Smeth, J. B. (2011). High fluoride incidence in groundwater and its potential health effects in parts of Raigarh District, Chhattisgarh, India. Current Science, 100(5), 750–754.

    Google Scholar 

  • Bell, J. C., Grigal, D. F., & Bates, P. C. (2000). A soil terrain model for estimating spatial patterns of soil organic carbon. In I. Gallant (Ed.), Terrain analysis-principles and applications (pp. 295–310). John Wiley & Sons, New York.

    Google Scholar 

  • Bhakar, R., Srivastav, S. K., Garg, R. D., & Jetten, V. G. (2012). Upscaling soil-hydrologic parameters in sandy desert landscape—An input for distributed hydrological modelling. Asian Journal of Geoinformatics, 12(1), 1–10.

    Google Scholar 

  • Bishop, T. F. A., & McBratney, A. B. (2001). A comparison of prediction methods for the creation of field-extent soil property maps. Geoderma, 103(1–2), 149–160.

    Google Scholar 

  • Blahwar, B., Srivastav, S. K., & de Smeth, J. B. (2012). Use of high-resolution satellite imagery for investigating acid mine drainage from artisanal coal mining in North-Eastern India. Geocarto International, 27(3), 231–247.

    Article  Google Scholar 

  • Boerner, R. E. J., Morris, S. J., Sutherland, E. K., & Hutchinson, T. F. (2000). Spatial variability in soil nitrogen dynamics after prescribed burning in Ohio mixed-oak forests. Landscape Ecology, 15(5), 425–439.

    Article  Google Scholar 

  • Boloorani, A. D., Erasmi, S., & Kappas, M. (2008). Multi-source remotely sensed data combination: Projection transformation gap-fill procedure. Sensors, 8(7), 4429–4440.

    Article  Google Scholar 

  • Bourennane, H., King, D., & Couturier, A. (2000). Comparison of kriging with external drift and simple linear regression for predicting soil horizon thickness with different sample densities. Geoderma, 97(3–4), 255–271.

    Google Scholar 

  • Breiman, L. (2001). Random forest. Machine Learning, 45(1), 5–32.

    Article  MATH  Google Scholar 

  • Breiman, L., Friedman, J. H., Olshen, R. A., & Stone, C. J. (1984). Classification and regression trees. Cole Publishing, Monterey. California, USA: Wadsworth and Brooks/Cole.

    Google Scholar 

  • Bui, E. N., & Moran, C. J. (2001). Disaggregation of polygons of surficial geology and soil maps using spatial modelling and legacy data. Geoderma, 103(1–2), 79–94.

    Google Scholar 

  • Bui, E. N., & Moran, C. J. (2003). A strategy to fill gaps in soil survey over large spatial extents: An example from the Murray-Darling Basin of Australia. Geoderma, 111(1–2), 21–44.

    Article  Google Scholar 

  • Bui, E. N., Loughhead, A., & Corner, R. (1999). Extracting soil-landscape rules from previous soil surveys. Australian Journal of Soil Research, 37(3), 495.

    Article  Google Scholar 

  • Burrough, P. A., Van Gaans, P. F. M., & Hootsmans, R. (1997). Continuous classification in soil survey: Spatial correlation, confusion and boundaries. Geoderma, 77(2–4), 115–135.

    Article  Google Scholar 

  • Campling, P., Gobin, A., & Feyen, J. (2002). Logistic modeling to spatially predict the probability of soil drainage classes. Soil Science Society of America Journal, 66(4), 1390–1401.

    Article  Google Scholar 

  • Carré, F., & Girard, M. C. (2002). Quantitative mapping of soil types based on regression kriging of taxonomic distances with landform and land cover attributes. Geoderma, 110(3–4), 241–263.

    Google Scholar 

  • Carre, F., McBratney, A. B., Mayr, T., & Montanarella, L. (2007). Digital soil assessments: Beyond DSM. Geoderma, 142(1–2), 69–79.

    Article  Google Scholar 

  • Chai, S.-S., Walker, J., Makarynskyy, O., Kuhn, M., Veenendaal, B., & West, G. (2010). Use of soil moisture variability in artificial neural network retrieval of soil moisture. Remote Sensing, 2(1), 166–190.

    Google Scholar 

  • Chanasyk, D. S., & Naeth, M. A. (1996). Field measurement of soil moisture using neutron probes. Canadian Journal of Soil Science, 76(3), 317–323.

    Article  Google Scholar 

  • Chaplot, V., Walter, C., & Curmi, P. (2000). Improving soil hydromorphy prediction according to DEM resolution and available pedological data. Geoderma, 97(3–4), 405–422.

    Google Scholar 

  • Chaudhary, S. K., Kumar, D., & Jain, M. K. (2016a). Multi-classifier fusion for land use land cover mapping in Jharia Coal Field. In Geostatistical and geospatial approaches for the characterization of natural resources in the environment (pp. 773–777). Cham: Springer International Publishing.

    Google Scholar 

  • Chaudhary, S. K., Kumar, D., & Jain, M. K. (2016b). Performance analysis of hyperspherical colour sharpening method for IRS satellite images. Imaging Science Journal, 64(6), 305–312.

    Article  Google Scholar 

  • Chen, J., Wan, S., Henebry, G., Qi, J., Sun, G., Kappas, M., et al. (2013). Dryland East Asia: Land dynamics amid social and climate change. Berlin, Boston: De Gruyter: Together with Higher Education Press.

    Google Scholar 

  • ChenChi, F., ChenCheng, R., & Son Nguyen, T. (2012). Investigating rice cropping practices and growing areas from MODIS data using empirical mode decomposition and support vector machines. GIScience & Remote Sensing, 49(1), 117–138.

    Article  Google Scholar 

  • Cialella, A., Dubayah, R., Lawrence, W., & Levine, E. (1997). Predicting soil drainage class using remotely sensed and digital elevation data. Photogrammetric Engineering and Remote Sensing, 63(2), 171–177.

    Google Scholar 

  • Connolly, J., & Holden, N. M. (2009). Mapping peat soils in Ireland: updating the derived Irish peat map. Irish Geography, 42(3), 343–352.

    Google Scholar 

  • Coopersmith, E. J., Cosh, M. H., Bell, J. E., & Boyles, R. (2016). Using machine learning to produce near surface soil moisture estimates from deeper in situ records at U.S. Climate Reference Network (USCRN) locations: Analysis and applications to AMSR-E satellite validation. Advances in Water Resources, 98, 122–131.

    Article  Google Scholar 

  • Cui, Y., Long, D., Hong, Y., Zeng, C., Zhou, J., Han, Z., et al. (2016). Validation and reconstruction of FY-3B/MWRI soil moisture using an artificial neural network based on reconstructed MODIS optical products over the Tibetan Plateau. Journal of Hydrology, 543, 242–254.

    Article  Google Scholar 

  • Dashora, A., Sreenivas, B., Lohani, B., Malik, J. N., & Shah, A. A. (2006). GCP collection for CORONA satellite photographs: Issues and methodology. Journal of the Indian Society of Remote Sensing, 34(2), 153–160.

    Article  Google Scholar 

  • Dashora, A., Lohani, B., & Deb, K. (2013). Two-step procedure of optimisation for flight planning problem for airborne LiDAR data acquisition. International Journal of Mathematical Modelling and Numerical Optimisation, 4(4), 323.

    Article  MATH  Google Scholar 

  • Deng, J., Chen, X., Du, Z., & Zhang, Y. (2011). Soil water simulation and predication using stochastic models based on LS-SVM for red soil region of China. Water Resources Management, 25(11), 2823–2836.

    Article  Google Scholar 

  • Deschamps, B., McNairn, H., Shang, J., & Jiao, X. (2012). Towards operational radar-only crop type classification: Comparison of a traditional decision tree with a random forest classifier. Canadian Journal of Remote Sensing, 38(1), 60–68.

    Article  Google Scholar 

  • Dietterich, T. G. (2000). An experimental comparison of three methods for constructing ensembles of decision trees. Machine Learning, 40, 139–157.

    Article  Google Scholar 

  • Dobos, E., Micheli, E., Baumgardner, M. F., Biehl, L., & Helt, T. (2000). Use of combined digital elevation model and satellite radiometric data for regional soil mapping. Geoderma, 97(3–4), 367–391.

    Google Scholar 

  • Dobriyal, P., Qureshi, A., Badola, R., & Hussain, S. A. (2012). A review of the methods available for estimating soil moisture and its implications for water resource management. Journal of Hydrology, 458–459, 110–117.

    Article  Google Scholar 

  • Dobson, M. C., & Ulaby, F. T. (1981). Microwave backscatter dependence on surface roughness, soil moisture and soil texture: Part III—Soil tension. IEEE Transactions on Geoscience and Remote Sensing, 19(1), 51–61.

    Article  Google Scholar 

  • Dobson, M. C., Ulaby, F. T., Hallikainen, M. T., & El-Rayes, M. A. (1985). Microwave dielectric behavior of wet soil-part II: Dielectric mixing models. IEEE Transactions on Geoscience and Remote Sensing, GE-23(1), 35–46.

    Google Scholar 

  • Du, Y., Ulaby, F. T., & Dobson, M. C. (2000). Sensitivity to soil moisture by active and passive microwave sensors. IEEE Transactions on Geoscience and Remote Sensing, 38(1), 105–114.

    Article  Google Scholar 

  • Dukes, M. D., Zotarelli, L., & Morgan, K. T. (2010). Use of irrigation technologies for vegetable crops in Florida. Horttechnology, 20(1), 133–142.

    Article  Google Scholar 

  • Erasmi, S., Twele, A., Ardiansyah, M., Malik, A., & Kappas, M. (2004). Mapping deforestation and land cover conversion at the rainforest margin in central Sulawesi, Indonesia. EARSeL eProceedings, 3(3), 388–397.

    Google Scholar 

  • Erlingsson, S., Baltzer, S., Baena, J., & Bjarnason, G. (2009). Measurement techniques for water flow. In Water in road structures (pp. 45–67). Dordrecht: Springer.

    Google Scholar 

  • Fang, B., Lakshmi, V., Bindlish, R., Jackson, T. J., Cosh, M., & Basara, J. (2013). Passive microwave soil moisture downscaling using vegetation index and skin surface temperature. Vadose Zone Journal, 12(3), 1–19.

    Article  Google Scholar 

  • Fayne, J. V., Bolten, J. D., Doyle, C. S., Fuhrmann, S., Rice, M. T., Houser, P. R., et al. (2017). Flood mapping in the lower Mekong River Basin using daily MODIS observations. International Journal of Remote Sensing, 38(6), 1737–1757.

    Article  Google Scholar 

  • Finke, P. A. (2012). On digital soil assessment with models and the Pedometrics agenda. Geoderma, 171–172, 3–15.

    Article  Google Scholar 

  • Gao, Z., Xu, X., Wang, J., Yang, H., Huang, W., & Feng, H. (2013). A method of estimating soil moisture based on the linear decomposition of mixture pixels. Mathematical and Computer Modelling, 58(3–4), 606–613.

    Article  Google Scholar 

  • Gens, R. (2000). The influence of input parameters on SAR interferometric processing and its implication on the calibration of SAR interferometric data. International Journal of Remote Sensing, 21(8), 1767–1771.

    Article  Google Scholar 

  • Gens, R. (2003). Two-dimensional phase unwrapping for radar interferometry: Developments and new challenges. International Journal of Remote Sensing, 24(4), 703–710.

    Article  Google Scholar 

  • Gens, R. (2008). Oceanographic applications of SAR remote sensing. GIScience & Remote Sensing, 45(3), 275–305.

    Article  Google Scholar 

  • Gessler, P. E., Moore, I. D., Mckenzie, N. J., & Ryan, P. J. (1995). Soil-landscape modelling and spatial prediction of soil attributes. International Journal of Geographical Information Systems, 9(4), 421–432.

    Article  Google Scholar 

  • Ghosh, S., & Lohani, B. (2013). Mining lidar data with spatial clustering algorithms. International Journal of Remote Sensing, 34(14), 5119–5135.

    Article  Google Scholar 

  • Giasson, E., Clarke, R. T., Inda Junior, A. V., Merten, G. H., & Tornquist, C. G. (2006). Digital soil mapping using multiple logistic regression on terrain parameters in southern Brazil. Scientia Agricola, 63(3), 262–268.

    Article  Google Scholar 

  • Giraldo, M. A., Bosch, D., Madden, M., Usery, L., & Kvien, C. (2008). Landscape complexity and soil moisture variation in south Georgia, USA, for remote sensing applications. Journal of Hydrology, 357(3–4), 405–420.

    Article  Google Scholar 

  • Grimm, R., Behrens, T., Märker, M., & Elsenbeer, H. (2008). Soil organic carbon concentrations and stocks on Barro Colorado Island—Digital soil mapping using random forests analysis. Geoderma, 146(1–2), 102–113.

    Article  Google Scholar 

  • Hallikainen, M. T., Ulaby, F. T., Dobson, M. C., El-Rayes, M. A., & Wu, L.-K. (1985). Microwave dielectric behavior of wet soil-part I: Empirical models and experimental observations. IEEE Transactions on Geoscience and Remote Sensing, GE-23(1), 25–34.

    Google Scholar 

  • Hashemi, H., Nordin, M., Lakshmi, V., Huffman, G. J., & Knight, R. (2017). Bias correction of long-term satellite monthly precipitation product (TRMM 3B43) over the conterminous United States. Journal of Hydrometeorology, 18(9), 2491–2509.

    Article  Google Scholar 

  • Hengl, T., Toomanian, N., Reuter, H. I., & Malakouti, M. J. (2007). Methods to interpolate soil categorical variables from profile observations: Lessons from Iran. Geoderma, 140(4), 417–427.

    Article  Google Scholar 

  • Hong, S., Lakshmi, V., Small, E. E., Chen, F., Tewari, M., & Manning, K. W. (2009). Effects of vegetation and soil moisture on the simulated land surface processes from the coupled WRF/Noah model. Journal of Geophysical Research, 114(D18), D18118.

    Article  Google Scholar 

  • Hong, S., Lakshmi, V., Small, E. E., & Chen, F. (2011). The influence of the land surface on hydrometeorology and ecology : new advances from modeling and satellite remote sensing. Hydrology Research, 42.2(3), 95–113.

    Google Scholar 

  • Hsieh, C.-Y. (2001). Microwave backscattering model for a bare soil field. Electromagnetics, 21(3), 259–273.

    Article  Google Scholar 

  • Hulley, G. C., Hook, S. J., & Baldridge, A. M. (2010). Investigating the effects of soil moisture on thermal infrared land surface temperature and emissivity using satellite retrievals and laboratory measurements. Remote Sensing of Environment, 114(7), 1480–1493.

    Article  Google Scholar 

  • Hutchinson, T. F., Boerner, R. E. J., Iverson, L. R., Sutherland, S., & Sutherland, E. K. (1999). Landscape patterns of understory composition and richness across a moisture and nitrogen mineralization gradient in Ohio (U.S.A.) Quercus forests. Plant Ecology, 144(2), 177–189.

    Google Scholar 

  • Iverson, L. R., Dale, M. E., Scott, C. T., & Prasad, A. (1997). A GIS-derived integrated moisture index to predict forest composition and productivity of Ohio forests (U.S.A.). Landscape Ecology, 12(5), 331–348.

    Google Scholar 

  • Jackson, T. J. (1993). Measuring surface soil moisture using passive microwave remote sensing. Hydrological Processes, 7(2), 139–152.

    Article  Google Scholar 

  • Jafari, A., Ayoubi, S., Khademi, H., Finke, P. A., & Toomanian, N. (2013). Selection of a taxonomic level for soil mapping using diversity and map purity indices: A case study from an Iranian arid region. Geomorphology, 201, 86–97.

    Article  Google Scholar 

  • Jafari, A., Finke, P. A., Vande Wauw, J., Ayoubi, S., & Khademi, H. (2012). Spatial prediction of USDA-great soil groups in the arid Zarand region, Iran: Comparing logistic regression approaches to predict diagnostic horizons and soil types. European Journal of Soil Science, 63(2), 284–298.

    Article  Google Scholar 

  • Jenny, H. (1941). Factors of soil formation. A system of quantitative pedology. McGraw-Hill Book Company. New York.

    Google Scholar 

  • Jeyaseelan, A. T., Roy, P. S., & Young, S. S. (2007). Persistent changes in NDVI between 1982 and 2003 over India using AVHRR GIMMS (Global Inventory Modeling and Mapping Studies) data. International Journal of Remote Sensing, 28(21), 4927–4946.

    Article  Google Scholar 

  • Kale, M. P., Chavan, M., Pardeshi, S., Joshi, C., Verma, P. A., Roy, P. S., et al. (2016). Land-use and land-cover change in Western Ghats of India. Environmental Monitoring and Assessment, 188(7).

    Google Scholar 

  • Kappas, M. (2013). Estimation of global bioenergy potentials and their contribution to the world’s future energy demand—a short review. In H. Ruppert, M. Kappas, & J. Ibendorf (Eds.), Sustainable bioenergy production—An integrated approach (pp. 75–95). Dordrecht: Springer Netherlands.

    Google Scholar 

  • Kempen, B., Brus, D. J., & Heuvelink, G. B. M. (2012). Soil type mapping using the generalised linear geostatistical model: A case study in a Dutch cultivated peatland. Geoderma, 189–190, 540–553.

    Article  Google Scholar 

  • Khanna, S., Palacios-Orueta, A., Whiting, M. L., Ustin, S. L., Riaño, D., & Litago, J. (2007). Development of angle indexes for soil moisture estimation, dry matter detection and land-cover discrimination. Remote Sensing of Environment, 109(2), 154–165.

    Article  Google Scholar 

  • Kim, J., Grunwald, S., Rivero, R. G., & Robbins, R. (2012). Multi-scale modeling of soil series using remote sensing in a wetland ecosystem. Soil Science Society of America Journal, 76(6), 2327.

    Article  Google Scholar 

  • Korolyuk, T. V., & Shcherbenko, H. V. (2007). Compiling soil maps on the basis of remotely-sensed data digital processing: soil interpretation. International Journal of Remote Sensing, 15(7), 1379–1400.

    Google Scholar 

  • Kothapalli Venkata, R., Poloju, S., Mullapudi Venkata Rama, S. S., Gogineni, A., Prabir Kumar, D., Allakki Venkata, R., et al. (2017). Multi-incidence angle RISAT-1 Hybrid Polarimetric SAR data for large area mapping of maize crop—A case study in Khagaria district, Bihar, India. International Journal of Remote Sensing, 38(20), 5487–5501.

    Article  Google Scholar 

  • Kovačević, M., Bajat, B., & Gajić, B. (2010). Soil type classification and estimation of soil properties using support vector machines. Geoderma, 154(3–4), 340–347.

    Google Scholar 

  • Kravchenko, A. N. (2008). Mapping of soil drainage classes using topographical data and soil electrical conductivity. Handbook of Agricultural Geophysics (1), 255–261.

    Google Scholar 

  • Krishan, G., Srivastav, S. K., Kumar, S., Saha, S. K., & Dadhwal, V. K. (2009). Quantifying the underestimation of soil organic carbon by the Walkley and Black technique—Examples from Himalayan and Central Indian soils. Current Science, 96(8), 1133–1136.

    Google Scholar 

  • Kumar, D. (2015a). Fair allocation of multi-resources for multi-class users in cloud computing. In International Conference on Computing, Communication and Automation (ICCCA2015) (pp. 661–663). Greater Noida, India: IEEE.

    Google Scholar 

  • A survey on resource allocation techniques in cloud computing. In International Conference on Computing, Communication and Automation (ICCCA2015) (pp. 655–660). Greater Noida, India: IEEE.

    Google Scholar 

  • Kumar, D., Deb, D., & Mamgain, R. (2015a). Analysis of different multiprocessor architectures for radar signal processing with performance metrics. In IEEE Radar Conference (pp. 289–294). Johannesburg, South Africa: IEEE.

    Google Scholar 

  • Kumar, P., Gupta, D. K., Mishra, V. N., & Prasad, R. (2015b). Comparison of support vector machine, artificial neural network, and spectral angle mapper algorithms for crop classification using LISS IV data. International Journal of Remote Sensing, 36(6), 1604–1617.

    Article  Google Scholar 

  • Kumar, P., Prasad, R., Choudhary, A., Mishra, V. N., Gupta, D. K., & Srivastava, P. K. (2016). A statistical significance of differences in classification accuracy of crop types using different classification algorithms. Geocarto International, 6049, 1–19.

    Article  Google Scholar 

  • Kumar, B., Patra, K. C., & Lakshmi, V. (2017). Error in digital network and basin area delineation using D8 method: A case study in a sub-basin of the Ganga. Journal of Geological Society of India, 89, 65–70.

    Google Scholar 

  • Lagacherie, P., Legros, J. P., & Burfough, P. A. (1995). A soil survey procedure using the knowledge of soil pattern established on a previously mapped reference area. Geoderma, 65(3–4), 283–301.

    Article  Google Scholar 

  • Lakshmi, V. (2013). Remote sensing of soil moisture. ISRN Soil Science, 1–33.

    Article  Google Scholar 

  • Liang, X., Lettenmaier, D. P., Wood, E. F., & Burges, S. J. (1994). A simple hydrologically based model of land surface water and energy fluxes for general circulation models. Journal of Geophysical Research, 99(D7), 14415.

    Article  Google Scholar 

  • Liu, H., Xie, D., & Wu, W. (2008). Soil water content forecasting by ANN and SVM hybrid architecture. Environmental Monitoring and Assessment, 143(1–3), 187–193.

    Article  Google Scholar 

  • Liu, D., Yu, Z., & Lü, H. (2010). Data assimilation using support vector machines and ensemble Kalman filter for multi-layer soil moisture prediction. Water Science and Engineering, 3(4), 361–377.

    Google Scholar 

  • Loew, A. (2008). Impact of surface heterogeneity on surface soil moisture retrievals from passive microwave data at the regional scale: The Upper Danube case. Remote Sensing of Environment, 112(1), 231–248.

    Article  Google Scholar 

  • Lohani, B., & Singh, R. (2008). Effect of data density, scan angle, and flying height on the accuracy of building extraction using LiDAR data. Geocarto International, 23(2), 81–94.

    Article  Google Scholar 

  • Lohani, B., Mason, D. C., Scott, T. R., & Sreenivas, B. (2006). Extraction of tidal channel networks from aerial photographs alone and combined with laser altimetry. International Journal of Remote Sensing, 27(1), 5–25.

    Article  Google Scholar 

  • Lunt, I. A., Hubbard, S. S., & Rubin, Y. (2005). Soil moisture content estimation using ground-penetrating radar reflection data. Journal of Hydrology, 307(1–4), 254–269.

    Article  Google Scholar 

  • Mallick, K., Bhattacharya, B. K., & Patel, N. K. (2009). Estimating volumetric surface moisture content for cropped soils using a soil wetness index based on surface temperature and NDVI. Agricultural and Forest Meteorology, 149(8), 1327–1342.

    Article  Google Scholar 

  • Marchetti, A., Piccini, C., Santucci, S., Chiuchiarelli, I., & Francaviglia, R. (2011). Simulation of soil types in Teramo province (Central Italy) with terrain parameters and remote sensing data. CATENA, 85(3), 267–273.

    Article  Google Scholar 

  • Mathur, A., & Foody, G. M. (2008). Crop classification by support vector machine with intelligently selected training data for an operational application. International Journal of Remote Sensing, 29(8), 2227–2240.

    Article  Google Scholar 

  • McBratney, A. B., Mendonça Santos, M. L., & Minasny, B. (2003). On digital soil mapping. Geoderma, 117(1–2), 3–52.

    Article  Google Scholar 

  • McKenzie, N. J., & Ryan, P. J. (1999). Spatial prediction of soil properties using environmental correlation. Geoderma, 89(1–2), 67–94.

    Article  Google Scholar 

  • Meesters, A. G. C. A., DeJeu, R. A. M., & Owe, M. (2005). Analytical derivation of the vegetation optical depth from the microwave polarization difference index. IEEE Geoscience and Remote Sensing Letters, 2(2), 121–123.

    Article  Google Scholar 

  • Mishra, M. D., Patel, P., Srivastava, H. S., Patel, P. R., Shukla, A., & Shukla, A. K. (2014). Absolute radiometric calibration of FRS-1 and MRS mode of RISAT-1 synthetic aperture radar (SAR) data using corner reflectors. International Journal of Advanced Engineering Research and Science, 1(6), 78–89.

    Google Scholar 

  • Mladenova, I., Lakshmi, V., Walker, J. P., Panciera, R., Wagner, W., & Doubkova, M. (2010). Validation of the ASAR global monitoring mode soil moisture product using the NAFE ’ 05 data set. IEEE Transactions on Geoscience and Remote Sensing, 48(6), 2498–2508.

    Google Scholar 

  • Mondal, M. S., Sharma, N., Garg, P. K., & Kappas, M. (2016). Statistical independence test and validation of CA Markov land use land cover (LULC) prediction results. Egyptian Journal of Remote Sensing and Space Science, 19(2), 259–272.

    Article  Google Scholar 

  • Moonjun, R., Farshad, A., Shrestha, D. P., & Vaiphasa, C. (2010). Artificial neural network and decision tree in predictive soil mapping of Hoi Num Rin sub-watershed, Thailand. In Digital soil mapping (pp. 151–164). Dordrecht: Springer Netherlands.

    Google Scholar 

  • Moran, C. J., & Bui, E. N. (2002). Spatial data mining for enhanced soil map modelling. International Journal of Geographical Information Science, 16(6), 533–549.

    Article  Google Scholar 

  • Morris, S. J., & Boerner, R. E. J. (1998). Landscape patterns of nitrogen mineralization and nitrification in southern Ohio hardwood forests. Landscape Ecology, 13(4), 215–224.

    Article  Google Scholar 

  • Muñoz-Carpena, R. (2015). Field devices for monitoring soil water content [online]. EDIS Publication BUL343. Retrieved November 21, 2015 from https://edis.ifas.ufl.edu/ae266.

  • Murthy, C. S., Raju, P. V., & Badrinath, K. V. S. (2003). Classification of wheat crop with multi-temporal images: Performance of maximum likelihood and artificial neural networks. International Journal of Remote Sensing, 24(23), 4871–4890.

    Article  Google Scholar 

  • Noi, P., Kappas, M., & Degener, J. (2016). Estimating daily maximum and minimum land air surface temperature using MODIS land surface temperature data and ground truth data in Northern Vietnam. Remote Sensing, 8(12), 1002.

    Article  Google Scholar 

  • Odeh, I. O. A., & McBratney, A. B. (2000). Using AVHRR images for spatial prediction of clay content in the lower Namoi Valley of eastern Australia. Geoderma, 97(3–4), 237–254.

    Google Scholar 

  • Ohlmacher, G. C., & Davis, J. C. (2003). Using multiple logistic regression and GIS technology to predict landslide hazard in northeast Kansas, USA. Engineering Geology, 69(3–4), 331–343.

    Article  Google Scholar 

  • Owe, M., De Jeu, R., & Walker, J. (2001). A methodology for surface soil moisture and vegetation optical depth retrieval using the microwave polarization difference index. IEEE Transactions on Geoscience and Remote Sensing, 39(8), 1643–1654.

    Article  Google Scholar 

  • Pahlavan Rad, M. R., Toomanian, N., Khormali, F., Brungard, C. W., Komaki, C. B., & Bogaert, P. (2014). Updating soil survey maps using random forest and conditioned Latin hypercube sampling in the loess derived soils of northern Iran. Geoderma, 232–234, 97–106.

    Article  Google Scholar 

  • Pal, M. (2008). Ensemble of support vector machines for land cover classification. International Journal of Remote Sensing, 29(10), 3043–3049.

    Article  Google Scholar 

  • Pal, M., & Mather, P. M. (2003a). Support vector classifiers for land cover classification. In Map India Conference (pp. 1–11). Aligarh, Uttar Pradesh.

    Google Scholar 

  • Pal, M., & Mather, P. M. (2003b). An assessment of the effectiveness of decision tree methods for land cover classification. Remote Sensing of Environment, 86(4), 554–565.

    Article  Google Scholar 

  • Pal, M., & Mather, P. M. (2005). Support vector machines for classification in remote sensing. International Journal of Remote Sensing, 26(5), 1007–1011.

    Article  Google Scholar 

  • Palacios-Orueta, A., Khanna, S., & Litago, J. (2005). Assessment of NDVI and NDWI spectral indices using MODIS time series analysis and development of a new spectral index based on MODIS shortwave infrared bands. In 1st International Conference of Remote Sensing and Geoinformation Processing. Trier, Germany.

    Google Scholar 

  • Paloscia, S., Pampaloni, P., Pettinato, S., & Santi, E. (2008). A comparison of algorithms for retrieving soil moisture from ENVIS AT/AS AR images. IEEE Transactions on Geoscience and Remote Sensing, 46(10), 3274–3284.

    Article  Google Scholar 

  • Panagos, P., Jones, A., Bosco, C., & Senthil Kumar, P. S. (2011). European digital archive on soil maps (EuDASM): preserving important soil data for public free access. International Journal of Digital Earth, 4(5), 434–443.

    Google Scholar 

  • Pandey, J., Kumar, D., Mishra, R. K., Mohalik, N. K., Khalkho, A., & Singh, V. K. (2013). Application of thermography technique for assessment and monitoring of coal mine fire: A special reference to Jharia Coal Field, Jharkhand, India. International Journal of Advanced Remote Sensing and GIS, 2(1), 138–147.

    Google Scholar 

  • Pandey, J., Mohalik, N. K., Mishra, R. K., Khalkho, A., Kumar, D., & Singh, V. K. (2015). Investigation of the role of fire retardants in preventing spontaneous heating of coal and controlling coal mine fires. Fire Technology, 51(2), 227–245.

    Article  Google Scholar 

  • Pandey, J., Kumar, D., Singh, V. K., & Mohalik, N. K. (2016). Environmental and socio-economic impacts of fire in Jharia coalfield, Jharkhand, India: An appraisal. Current Science, 110(9), 19–23.

    Article  Google Scholar 

  • Parinussa, R., Lakshmi, V., Johnson, F., & Sharma, A. (2016a). Comparing and combining remotely sensed land surface temperature products for improved hydrological applications. Remote Sensing, 8(2), 162.

    Article  Google Scholar 

  • Parinussa, R. M., Lakshmi, V., Johnson, F. M., & Sharma, A. (2016b). A new framework for monitoring flood inundation using readily available satellite data. Geophysical Research Letters, 43(6), 2599–2605.

    Article  Google Scholar 

  • Pásztor, L., Szabó, J., Bakacsi, Z., Matus, J., & Laborczi, A. (2012). Compilation of 1:50,000 scale digital soil maps for Hungary based on the digital Kreybig soil information system. Journal of Maps, 8(3), 215–219.

    Google Scholar 

  • Patel, P., Srivastava, H. S., Panigrahy, S., & Parihar, J. S. (2006). Comparative evaluation of the sensitivity of multi-polarized multi-frequency SAR backscatter to plant density. International Journal of Remote Sensing, 27(2), 293–305.

    Article  Google Scholar 

  • Pires, L. F., Bacchi, O. O. S., & Reichardt, K. (2005). Soil water retention curve determined by gamma-ray beam attenuation. Soil and Tillage Research, 82(1), 89–97.

    Google Scholar 

  • Poggio, L., Gimona, A., & Brewer, M. J. (2013). Regional scale mapping of soil properties and their uncertainty with a large number of satellite-derived covariates. Geoderma, 209–210, 1–14.

    Article  Google Scholar 

  • Prasad, A. M., Iverson, L. R., & Liaw, A. (2006). Newer classification and regression tree techniques: Bagging and random forests for ecological prediction. Ecosystems, 9(2), 181–199.

    Article  Google Scholar 

  • Punera, K., & Ghosh, J. (2008). Consensus-based ensembles of soft clusterings. Applied Artificial Intelligence, 22(7–8), 780–810.

    Article  Google Scholar 

  • Ranjan, V., Sen, P., Kumar, D., & Sarsawat, A. (2015). A review on dump slope stabilization by revegetation with reference to indigenous plant. Ecological Processes, 4(1), 14.

    Article  Google Scholar 

  • Rätsch, G., Onoda, T., & Müller, K. R. (2001). Soft margins for AdaBoost. Machine Learning, 42(3), 287–320.

    Article  MATH  Google Scholar 

  • Ravan, S., & Roy, P. S. (1997). Satellite remote sensing for the ecological analysis of peatbog areas in Lower Saxony. Plant Ecology, 131, 129–141.

    Article  Google Scholar 

  • Ravan, S., Roy, P. S., & Sharma, C. M. (1995). Space remote-sensing for spatial vegetation characterization. Journal of Biosciences, 20(3), 427–438.

    Article  Google Scholar 

  • Ravan, S., Kale, M., & Roy, P. S. (2004). Identification of potential sites for in situ conservation of landraces associated with forest ecosystem—Geomatics approach. Current Science, 87(8), 1115–1122.

    Google Scholar 

  • Reddy, C. S. S., Bhattacharya, A., & Srivastav, S. K. (1993a). Night-time TM short wavelength infrared data analysis of Barren Island volcano, South Andaman, India. International Journal of Remote Sensing, 14(4), 783–787.

    Article  Google Scholar 

  • Reddy, C. S. S., Srivastav, S. K., & Bhattacharya, A. (1993b). Application of thematic mapper short wavelength infrared data for the detection and monitoring of high temperature related geoenvironmental features. International Journal of Remote Sensing, 14(17), 3125–3132.

    Article  Google Scholar 

  • Reddy, C. S., Singh, S., Dadhwal, V. K., Jha, C. S., Rao, N. R., & Dwakar, P. G. (2017). Predictive modelling of the spatial pattern of past and future forest cover changes in India. Journal of Earth System Science, 126(1), 8.

    Article  Google Scholar 

  • Richardson, M. D., Meisner, C. A., Hoveland, C. S., & Karnok, K. J. (1992). Time domain reflectometry in closed container studies. Agronomy Journal, 84(6), 1061–1063.

    Google Scholar 

  • Rodriguez-galiano, V. F., Ghimire, B., Rogan, J., Chica-olmo, M., & Rigol-sanchez, J. P. (2012). An assessment of the effectiveness of a random forest classifier for land-cover classification. ISPRS Journal of Photogrammetry and Remote Sensing, 67, 93–104.

    Article  Google Scholar 

  • Rodriguez-Galiano, V. F., & Chica-Rivas, M. (2014). Evaluation of different machine learning methods for land cover mapping of a Mediterranean area using multi-seasonal Landsat images and Digital Terrain Models. International Journal of Digital Earth, 7(6), 492–509.

    Article  Google Scholar 

  • Roy, P. S., & Ravan, S. A. (1996). Biomass estimation using satellite remote sensing data—An investigation on possible approaches for natural forest. Journal of Biosciences, 21(4), 535–561.

    Article  Google Scholar 

  • Said, S., Kothyari, U. C., & Arora, M. K. (2008). ANN-based soil moisture retrieval over bare and vegetated areas using ERS-2 SAR data. Journal of Hydrologic Engineering, 13(6), 461–475.

    Article  Google Scholar 

  • Sarkar, A., Majumdar, A., Chatterjee, S., Chatterjee, D., Ray, S. S., & Kartikeyan, B. (2008). Study of the potential of alternative crops by integration of multisource data using a neuro-fuzzy technique. International Journal of Remote Sensing, 29(795405157), 5479–5493.

    Article  Google Scholar 

  • Schrott, L., & Sass, O. (2008). Application of field geophysics in geomorphology: Advances and limitations exemplified by case studies. Geomorphology, 93(1–2), 55–73.

    Article  Google Scholar 

  • Scull, P., Franklin, J., & Chadwick, O. A. (2005). The application of classification tree analysis to soil type prediction in a desert landscape. Ecological Modelling, 181(1), 1–15.

    Article  Google Scholar 

  • Seneviratne, S. I., Corti, T., Davin, E. L., Hirschi, M., Jaeger, E. B., Lehner, I., et al. (2010). Investigating soil moisture-climate interactions in a changing climate: A review. Earth-Science Reviews, 99(3–4), 125–161.

    Article  Google Scholar 

  • Shirong, Z. (2002). GIS-based simulation of regional soil water and nitrogen behavior and analysis of agricultural management. Beijing: China Agriculture University.

    Google Scholar 

  • Shukla, G., Garg, R. D., Srivastava, H. S., & Garg, P. K. (2018). Performance analysis of different predictive models for crop classification across an aridic to ustic area of Indian states. Geocarto International, 33(3), 240–259.

    Article  Google Scholar 

  • Singh, R. P., Kumar, V., & Srivastav, S. K. (1990). Technical note Use of microwave remote sensing in salinity estimation. International Journal of Remote Sensing, 11(2), 321–330.

    Article  Google Scholar 

  • Sommer, M., Wehrhan, M., Zipprich, M., Weller, U., Zu Castell, W., Ehrich, S., et al. (2003). Hierarchical data fusion for mapping soil units at field scale. Geoderma, 112(3–4), 179–196.

    Article  Google Scholar 

  • Song, X., Zhang, G., Liu, F., Li, D., Zhao, Y., & Yang, J. (2016). Modeling spatio-temporal distribution of soil moisture by deep learning-based cellular automata model. Journal of Arid Land, 8(5), 734–748.

    Google Scholar 

  • Sonobe, R., Tani, H., Wang, X., Kobayashi, N., & Shimamura, H. (2014a). Random Forest classification of crop type using multi-temporal TerraSAR-X dual-polarimetric data. Remote Sensing Letters, 5(2), 157–164.

    Article  Google Scholar 

  • Sonobe, R., Tani, H., Wang, X., Kobayashi, N., & Shimamura, H. (2014b). Parameter tuning in the Support Vector Machine and Random Forest and their performances in cross- and same-year crop classification using TerraSAR-X. International Journal of Remote Sensing, 35(23), 7898–7909.

    Article  Google Scholar 

  • Sonobe, R., Tani, H., & Wang, X. (2017). An experimental comparison between KELM and CART for crop classification using Landsat-8 OLI data. Geocarto International, 32(2), 128–138.

    Google Scholar 

  • Srivastava, H. S., Patel, P., Navalgund, R. R., & Sharma, Y. (2008). Retrieval of surface roughness using multi-polarized Envisat-1 ASAR data. Geocarto International, 23(1), 67–77.

    Article  Google Scholar 

  • Srivastava, P. K., Han, D., Ramirez, M. R., & Islam, T. (2013). Machine learning techniques for downscaling SMOS satellite soil moisture using MODIS land surface temperature for hydrological application. Water Resources Management, 27(8), 3127–3144.

    Article  Google Scholar 

  • Stisen, S., Sandholt, I., Nørgaard, A., Fensholt, R., & Jensen, K. H. (2008). Combining the triangle method with thermal inertia to estimate regional evapotranspiration—Applied to MSG-SEVIRI data in the Senegal River basin. Remote Sensing of Environment, 112(3), 1242–1255.

    Article  Google Scholar 

  • Stum, A. K. (2010). Random Forests Applied as a Soil Spatial Predictive Model in Arid Utah. Utah State University.

    Google Scholar 

  • Sun, L., Sun, R., Li, X., Liang, S., & Zhang, R. (2012). Monitoring surface soil moisture status based on remotely sensed surface temperature and vegetation index information. Agricultural and Forest Meteorology, 166–167, 175–187.

    Article  Google Scholar 

  • Sutton, C. D. (2004). Classification and regression trees, bagging, and boosting. Handbook of Statistics, 24(04), 303–329.

    Google Scholar 

  • Sutton, J. R. P., & Lakshmi, V. (2017). From space to the rocky intertidal: Using NASA MODIS sea surface temperature and NOAA water temperature to predict intertidal logger temperature. Remote Sensing, 9(162), 1–14.

    Google Scholar 

  • Taghizadeh-Mehrjardi, R. (2015). Digital mapping of cation exchange capacity using genetic programming and soil depth functions in Baneh region, Iran. Archives of Agronomy and Soil Science, 62(1), 109–126.

    Article  Google Scholar 

  • Taghizadeh-Mehrjardi, R., Sarmadian, F., Minasny, B., Triantafilis, J., & Omid, M. (2014). Digital mapping of soil classes using decision tree and auxiliary data in the Ardakan Region, Iran. Arid Land Research and Management, 28(2), 147–168.

    Article  Google Scholar 

  • Tan, C. P., Ewe, H. T., & Chuah, H. T. (2011). Agricultural crop-type classification of multi-polarization SAR images using a hybrid entropy decomposition and support vector machine technique. International Journal of Remote Sensing, 32(22), 7057–7071.

    Article  Google Scholar 

  • Trenberth, K. E., Fasullo, J. T., & Kiehl, J. (2009). Earth’s global energy budget. Bulletin of the American Meteorological Society, 90(3), 311–323.

    Article  Google Scholar 

  • Triantafilis, J., Earl, N., & Gibbs, I. (2012). Digital soil-class mapping across the Edgeroi district using numerical clustering and gamma-ray spectrometry data. In A. B. McBratney (Ed.), Digital soil assessments and beyond (pp. 187–191). Sydney: CRC Press.

    Chapter  Google Scholar 

  • Tumer, K., & Oza, N. C. (2003). Input decimated ensembles. Pattern Analysis and Applications, 6(1), 65–77.

    Article  MathSciNet  MATH  Google Scholar 

  • Ulaby, F. T., Bradley, G. A., & Obson, M. C. (1979). Microwave backscatter dependence on surface roughness, soil moisture, and soil texture: Part II-vegetation covered soil. IEEE Transactions on Geoscience Electronics, 17(2), 33–40.

    Article  Google Scholar 

  • Ulaby, F. T., Razani, M., & Dobson, M. C. (1983). Effects of vegetation cover on the microwave radiometric sensitivity to soil moisture. IEEE Transactions on Geoscience and Remote Sensing, GE-21(1), 51–61.

    Google Scholar 

  • Vapnik, V. (1998). Statistical learning theory. New York: Wiley-Interscience.

    Google Scholar 

  • Vapnik, V. N. (2000). The nature of statistical learning theory. In M. Jordan, S. L. Lauritzen, J. F. Lawless, & V. Nair (Eds.), Statistics for engineering and information science (pp. 1564–1564). New York: Springer.

    Google Scholar 

  • Vaysse, K., & Lagacherie, P. (2015). Evaluating digital soil mapping approaches for mapping GlobalSoilMap soil properties from legacy data in Languedoc-Roussillon (France). Geoderma Regional, 4, 20–30.

    Article  Google Scholar 

  • Verhoest, N. E. C., Lievens, H., Wagner, W., Álvarez-Mozos, J., Moran, M. S., & Mattia, F. (2008). On the soil roughness parameterization problem in soil moisture retrieval of bare surfaces from synthetic aperture radar. Sensors, 8(7), 4213–4248.

    Article  Google Scholar 

  • Wagner, W., Lemoine, G., & Rott, H. (1999). A method for estimating soil moisture from ERS scatterometer and soil data. Remote Sensing of Environment, 70(2), 191–207.

    Article  Google Scholar 

  • Wang, L., & Qu, J. J. (2009). Satellite remote sensing applications for surface soil moisture monitoring: A review. Frontiers of Earth Science in China, 3(2), 237–247.

    Article  Google Scholar 

  • Wang, L., Young, S. S., Wang, W., Ren, G., Xiao, W., Long, Y., et al. (2016) Conservation priorities of forest ecosystems with evaluations of connectivity and future threats: Implications in the Eastern Himalaya of China. Biological Conservation, 195, 128–135.

    Article  Google Scholar 

  • Watham, T., Patel, N. R., Kushwaha, S. P. S., Dadhwal, V. K., & Kumar, A. S. (2017). Evaluation of remote-sensing-based models of gross primary productivity over Indian sal forest using flux tower and MODIS satellite data. International Journal of Remote Sensing, 38(18), 5069–5090.

    Article  Google Scholar 

  • Weigend, A. S., Mangeas, M., & Srivastava, A. N. (1995). Nonlinear gated experts for time series: discovering regimes and avoiding overfitting. International Journal of Neural Systems, 6(4), 373–399.

    Article  Google Scholar 

  • Weihermüller, L., Huisman, J. A., Lambot, S., Herbst, M., & Vereecken, H. (2007). Mapping the spatial variation of soil water content at the field scale with different ground penetrating radar techniques. Journal of Hydrology, 340(3–4), 205–216.

    Article  Google Scholar 

  • Wigneron, J. P., Calvet, J. C., Pellarin, T., Van De Griend, A. A., Berger, M., & Ferrazzoli, P. (2003). Retrieving near-surface soil moisture from microwave radiometric observations: Current status and future plans. Remote Sensing of Environment, 85(4), 489–506.

    Article  Google Scholar 

  • Wirth, L., Rosenberger, A., Prakash, A., Gens, R., Margraf, J. F., & Hamazak, T. (2012). A remote-sensing, GIS-based approach to identify, characterize, and model spawning habitat for fall-run chum salmon in a sub-arctic, glacially fed river. Transactions of the American Fisheries Society, 141(5), 1349–1363.

    Article  Google Scholar 

  • Xin, Q., Broich, M., Zhu, P., & Gong, P. (2015). Modeling grassland spring onset across the Western United States using climate variables and MODIS-derived phenology metrics. Remote Sensing of Environment, 161, 63–77.

    Article  Google Scholar 

  • Yang, S., & Huang, Y. (2002). Application of support vector machine based on time series for soil moisture and Nitrate Nitrogen Content prediction. In D. Li & Z. Chunjiang (Eds.), IFIP advances in information and communication technology (pp. 2037–2045). Boston: Springer.

    Google Scholar 

  • Young, S. S. (2003). Satellite detected broad-scale vegetation change in China, 1982–1999. Asian Geographer, 22(1–2), 123–142.

    Article  Google Scholar 

  • Young, S. S., & Harris, R. (2005). Changing patterns of global-scale vegetation photosynthesis, 1982–1999. International Journal of Remote Sensing, 26(20), 4537–4563.

    Article  Google Scholar 

  • Zaman, B., McKee, M., & Neale, C. M. U. (2012). Fusion of remotely sensed data for soil moisture estimation using relevance vector and support vector machines. International Journal of Remote Sensing, 33(20), 6516–6552.

    Article  Google Scholar 

  • Zhang, R., Tian, J., Su, H., Sun, X., Chen, S., & Xia, J. (2008). Two improvements of an operational two-layer model for terrestrial surface heat flux retrieval. Sensors, 8(10), 6165–6187.

    Article  Google Scholar 

  • Zhang, D., Zhang, W., Huang, W., Hong, Z., & Meng, L. (2017). Upscaling of surface soil moisture using a deep learning model with VIIRS RDR. ISPRS International Journal of Geo-Information, 6(5), 130.

    Article  Google Scholar 

  • Zhao, T. J., Zhang, L. X., Shi, J. C., & Jiang, L. M. (2011). A physically based statistical methodology for surface soil moisture retrieval in the Tibet Plateau using microwave vegetation indices. Journal of Geophysical Research, 116(D8), D08116.

    Article  Google Scholar 

  • Zhu, A. X. (2000). Mapping soil landscape as spatial continua: The neural network approach. Water Resources Research, 36(3), 663–677.

    Article  Google Scholar 

  • Zhu, A. X., Hudson, B., Burt, J., Lubich, K., & Simonson, D. (2001). Soil mapping using GIS, expert knowledge, and fuzzy logic. Soil Science Society of America Journal, 65(5), 1463.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2020 The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Garg, P.K., Garg, R.D., Shukla, G., Srivastava, H.S. (2020). Different Approaches on Digital Mapping of Soil-Landscape Parameters. In: Digital Mapping of Soil Landscape Parameters. Studies in Big Data, vol 72. Springer, Singapore. https://doi.org/10.1007/978-981-15-3238-2_2

Download citation

Publish with us

Policies and ethics