Advertisement

Concept of Digital Mapping

Chapter
  • 170 Downloads
Part of the Studies in Big Data book series (SBD, volume 72)

Abstract

Managing the land is the biggest and most important challenging issue being faced in today’s rapidly evolving world. It is necessary to plan smartly with Earth’s limited land to grow enough food, produce enough energy, and still preserve some of the species (both plant and animal) on the planet. The United Nation’s latest estimates state that there are 7.6 billion people jostling for space on Earth at present and that number will rise to 9.8 billion by 2050.

References

  1. Ahmad, S., Kalra, A., & Stephen, H. (2010). Estimating soil moisture using remote sensing data: A machine learning approach. Advances in Water Resources, 33(1), 69–80.CrossRefGoogle Scholar
  2. Aiello, A., Adamo, M., & Canora, F. (2015). Remote sensing and GIS to assess soil erosion with RUSLE3D and USPED at river basin scale in southern Italy. CATENA, 131, 174–185.CrossRefGoogle Scholar
  3. Ali, I., Greifeneder, F., Stamenkovic, J., Neumann, M., & Notarnicola, C. (2015). Review of machine learning approaches for biomass and soil moisture retrievals from remote sensing data. Remote Sensing, 7(12), 16398–16421.CrossRefGoogle Scholar
  4. Andrieu, B. (1997). Evaluation of an improved version of SAIL model for simulating bidirectional reflectance of sugar beet canopies. Remote Sensing of Environment, 60(3), 247–257.CrossRefGoogle Scholar
  5. Bell, F. G., Cripps, J. C., & Culshaw, M. G. (1986). A review of the engineering behaviour of soils and rocks with respect to groundwater. Geological Society, London, Engineering Geology Special Publications, 3(1), 1–23.CrossRefGoogle Scholar
  6. Breiman, L. (2001). Random forest. Machine Learning, 45(1), 5–32.zbMATHCrossRefGoogle Scholar
  7. Bui, E. N., & Moran, C. J. (2003). A strategy to fill gaps in soil survey over large spatial extents: An example from the Murray-Darling basin of Australia. Geoderma, 111(1–2), 21–44.CrossRefGoogle Scholar
  8. Carre, F., McBratney, A. B., Mayr, T., & Montanarella, L. (2007). Digital soil assessments: Beyond DSM. Geoderma, 142(1–2), 69–79.CrossRefGoogle Scholar
  9. Chanasyk, D. S., & Naeth, M. A. (1996). Field measurement of soil moisture using neutron probes. Canadian Journal of Soil Science, 76(3), 317–323.CrossRefGoogle Scholar
  10. Chen, J. M., & Leblanc, S. G. (1997). A four-scale bidirectional reflectance model based on canopy architecture. IEEE Transactions on Geoscience and Remote Sensing, 35(5), 1316–1337.CrossRefGoogle Scholar
  11. Coopersmith, E. J., Cosh, M. H., Bell, J. E., & Boyles, R. (2016). Using machine learning to produce near surface soil moisture estimates from deeper in situ records at U.S. Climate Reference Network (USCRN) locations: Analysis and applications to AMSR-E satellite validation. Advances in Water Resources, 98, 122–131.CrossRefGoogle Scholar
  12. Cui, Y., Long, D., Hong, Y., Zeng, C., Zhou, J., Han, Z., et al. (2016). Validation and reconstruction of FY-3B/MWRI soil moisture using an artificial neural network based on reconstructed MODIS optical products over the Tibetan Plateau. Journal of Hydrology, 543, 242–254.CrossRefGoogle Scholar
  13. Dobson, M. C., & Ulaby, F. T. (1981). Microwave backscatter dependence on surface roughness, soil moisture and soil texture: Part III—Soil tension. IEEE Transactions on Geoscience and Remote Sensing, 19(1), 51–61.CrossRefGoogle Scholar
  14. Dobson, M. C., Ulaby, F. T., Hallikainen, M. T., & El-Rayes, M. A. (1985). Microwave dielectric behavior of wet soil-part II: Dielectric mixing models. IEEE Transactions on Geoscience and Remote Sensing, GE-23(1), 35–46.Google Scholar
  15. Dong, L. (2011). Operational retrieval of surface soil moisture using synthetic aperture radar imagery in a semi-arid environment. Ludwig Maximilian University of Munich.Google Scholar
  16. Du, Y., Ulaby, F. T., & Dobson, M. C. (2000). Sensitivity to soil moisture by active and passive microwave sensors. IEEE Transactions on Geoscience and Remote Sensing, 38(1), 105–114.CrossRefGoogle Scholar
  17. Ganasri, B. P., & Ramesh, H. (2016). Assessment of soil erosion by RUSLE model using remote sensing and GIS—A case study of Nethravathi Basin. Geoscience Frontiers, 7(6), 953–961.CrossRefGoogle Scholar
  18. Giasson, E., Clarke, R. T., Inda Junior, A. V., Merten, G. H., & Tornquist, C. G. (2006). Digital soil mapping using multiple logistic regression on terrain parameters in southern Brazil. Scientia Agricola, 63(3), 262–268.CrossRefGoogle Scholar
  19. Giraldo, M. A., Bosch, D., Madden, M., Usery, L., & Kvien, C. (2008). Landscape complexity and soil moisture variation in south Georgia, USA, for remote sensing applications. Journal of Hydrology, 357(3–4), 405–420.CrossRefGoogle Scholar
  20. Goel, A., & Pal, M. (2009). Application of support vector machines in scour prediction on grade-control structures. Engineering Applications of Artificial Intelligence, 22(2), 216–223.CrossRefGoogle Scholar
  21. Gomi, T., Sidle, R. C., Miyata, S., Kosugi, K., & Onda, Y. (2008). Dynamic runoff connectivity of overland flow on steep forested hillslopes: Scale effects and runoff transfer. Water Resources Research, 44(8), 1–16.CrossRefGoogle Scholar
  22. Gorthi, S. (2011). Prediction models for estimation of moisture content. Logan, Utah: Utah State University.CrossRefGoogle Scholar
  23. Gray, R. (2017, June 29). How can we manage the Earth’s land. BBC News.Google Scholar
  24. Haboudane, D., Miller, J. R., Pattey, E., Zarco-Tejada, P. J., & Strachan, I. B. (2004). Hyperspectral vegetation indices and novel algorithms for predicting green LAI of crop canopies: Modeling and validation in the context of precision agriculture. Remote Sensing of Environment, 90(3), 337–352.CrossRefGoogle Scholar
  25. Hadjimitsis, D. G., Clayton, C. R. I., & Hope, V. S. (2004). An assessment of the effectiveness of atmospheric correction algorithms through the remote sensing of some reservoirs. International Journal of Remote Sensing, 25(18), 3651–3674.CrossRefGoogle Scholar
  26. Hallikainen, M. T., Ulaby, F. T., Dobson, M. C., El-Rayes, M. A, & Wu, L.-K. (1985). Microwave dielectric behavior of wet soil-part I: Empirical models and experimental observations. IEEE Transactions on Geoscience and Remote Sensing, GE-23(1), 25–34.Google Scholar
  27. Holah, N., Baghdadi, N., Zribi, M., Bruand, A., & King, C. (2005). Potential of ASAR/ENVISAT for the characterisation of soil surface parameters over bare agricultural fields. Remote Sensing of Environment, 96, 78–86.CrossRefGoogle Scholar
  28. Jackson, T. J., & Schmugge, T. J. (1991). Vegetation effects on the microwave emission of soils. Remote Sensing of Environment, 36(3), 203–212.CrossRefGoogle Scholar
  29. Jafari, A., Ayoubi, S., Khademi, H., Finke, P. A., & Toomanian, N. (2013). Selection of a taxonomic level for soil mapping using diversity and map purity indices: A case study from an Iranian arid region. Geomorphology, 201, 86–97.CrossRefGoogle Scholar
  30. Khanna, S., Palacios-Orueta, A., Whiting, M. L., Ustin, S. L., Riaño, D., & Litago, J. (2007). Development of angle indexes for soil moisture estimation, dry matter detection and land-cover discrimination. Remote Sensing of Environment, 109(2), 154–165.CrossRefGoogle Scholar
  31. Körschens, M. (2002). Importance of soil organic matter (SOM) for biomass production and environment (a review). Archives of Agronomy and Soil Science, 48(2), 89–94.CrossRefGoogle Scholar
  32. Kravchenko, A. N. (2008). Mapping of soil drainage classes using topographical data and soil electrical conductivity. Handbook of Agricultural Geophysics, 1, 255–261.Google Scholar
  33. Kuusk, A. (1995). A fast, invertible canopy reflectance model. Remote Sensing of Environment, 51(3), 342–350.CrossRefGoogle Scholar
  34. Li, X., & Strahler, A. H. (1985). Geometric-optical modeling of a conifer forest canopy. IEEE Transactions on Geoscience and Remote Sensing, GE-23(5), 705–721.Google Scholar
  35. Li, X., & Strahler, A. H. (1992). Geometric-optical bidirectional reflectance modeling of the discrete crown vegetation canopy: Effect of crown shape and mutual shadowing. IEEE Transactions on Geoscience and Remote Sensing, 30(2), 276–292.CrossRefGoogle Scholar
  36. Little, K. M., Metelerkamp, B., & Smith, C. W. (1998). A comparison of three methods of soil water content determination. South African Journal of Plant and Soil, 15(2), 80–89.CrossRefGoogle Scholar
  37. Long, J., Lawrence, R., Greenwood, M. C., Marshall, L., & Miller, P. R. (2013). Object-oriented crop classification using multitemporal ETM+ SLC-off imagery and random forest. GIScience & Remote Sensing, 50(4), 418–436.CrossRefGoogle Scholar
  38. Lu, H., Koike, T., Fujii, H., Ohta, T., & Tamagawa, K. (2009). Development of a physically-based soil moisture retrieval algorithm for spaceborne passive microwave radiometers and its application to AMSR-E. Journal of The Remote Sensing Society of Japan, 29(1), 253–262.Google Scholar
  39. MathWorks. (2017). Introducing machine learning. In Machine learning with MATLAB (pp. 1–10).Google Scholar
  40. McBratney, A. B., Mendonça Santos, M. L., & Minasny, B. (2003). On digital soil mapping. Geoderma, 117(1–2), 3–52.CrossRefGoogle Scholar
  41. Mohler, C. L., & Johnson, S. E. (2009). Crop rotation on organic farms. Natural Resource, Agriculture and Engineering Service (NRAES).Google Scholar
  42. Oltra-Carrió, R., Baup, F., Fabre, S., Fieuzal, R., & Briottet, X. (2015). Improvement of soil moisture retrieval from hyperspectral VNIR-SWIR data using clay content information: From laboratory to field experiments. Remote Sensing.Google Scholar
  43. Palacios-Orueta, A., Khanna, S., & Litago, J. (2005). Assessment of NDVI and NDWI spectral indices using MODIS time series analysis and development of a new spectral index based on MODIS shortwave infrared bands. In 1st International Conference of Remote Sensing and Geoinformation Processing. Trier, Germany.Google Scholar
  44. Poggio, L., Gimona, A., & Brewer, M. J. (2013). Regional scale mapping of soil properties and their uncertainty with a large number of satellite-derived covariates. Geoderma, 209–210, 1–14.CrossRefGoogle Scholar
  45. Prasannakumar, V., Vijith, H., Abinod, S., & Geetha, N. (2012). Estimation of soil erosion risk within a small mountainous sub-watershed in Kerala, India, using Revised Universal Soil Loss Equation (RUSLE) and geo-information technology. Geoscience Frontiers, 3(2), 209–215.CrossRefGoogle Scholar
  46. Schoonover, J. E., & Crim, J. F. (2015). An introduction to soil concepts and the role of soils in watershed management. Journal of Contemporary Water Research & Education, 154(1), 21–47.CrossRefGoogle Scholar
  47. Schrott, L., & Sass, O. (2008). Application of field geophysics in geomorphology: Advances and limitations exemplified by case studies. Geomorphology, 93(1–2), 55–73.CrossRefGoogle Scholar
  48. Seneviratne, S. I., Corti, T., Davin, E. L., Hirschi, M., Jaeger, E. B., Lehner, I., Orlowsky, B., & Teuling, A. J. (2010). Investigating soil moisture-climate interactions in a changing climate: A review. Earth-Science Reviews, 99 (3–4), 125–161.Google Scholar
  49. Shi, J., Wang, J., Hsu, A. Y., O’Neill, P. E., & Engman, E. T. (1997). Estimation of bare surface soil moisture and surface roughness parameter using L-band SAR image data. IEEE Transactions on Geoscience and Remote Sensing, 35(5), 1254–1266.CrossRefGoogle Scholar
  50. Sonobe, R., Tani, H., & Wang, X. (2017). An experimental comparison between KELM and CART for crop classification using Landsat-8 OLI data. Geocarto International, 32(2), 128–138.Google Scholar
  51. Sutton, C. D. (2004). Classification and regression trees, bagging, and boosting. Handbook of Statistics, 24(4), 303–329.Google Scholar
  52. Taghizadeh-Mehrjardi, R., Sarmadian, F., Minasny, B., Triantafilis, J., & Omid, M. (2014). Digital mapping of soil classes using decision tree and auxiliary data in the Ardakan region Iran. Arid Land Research and Management, 28(2), 147–168.CrossRefGoogle Scholar
  53. Ulaby, F., & Batlivala, P. (1976). Optimum radar parameters for mapping soil moisture. IEEE Transactions on Geoscience Electronics, 14(2), 81–93.CrossRefGoogle Scholar
  54. Ulaby, F. T., Razani, M., & Dobson, M. C. (1983). Effects of vegetation cover on the microwave radiometric sensitivity to soil moisture. IEEE Transactions on Geoscience and Remote Sensing, GE-21(1), 51–61.Google Scholar
  55. Vaysse, K., & Lagacherie, P. (2015). Evaluating digital soil mapping approaches for mapping GlobalSoilMap soil properties from legacy data in Languedoc-Roussillon (France). Geoderma Regional, 4, 20–30.CrossRefGoogle Scholar
  56. Vishwanath, V., Sulyok, M., Weingart, G., Kluger, B., Täubel, M., Mayer, S., et al. (2011). Evaluation of settled floor dust for the presence of microbial metabolites and volatile anthropogenic chemicals in indoor environments by LC–MS/MS and GC–MS methods. Talanta, 85(4), 2027–2038.CrossRefGoogle Scholar
  57. Wang, A. P. (1987). Correction of atmospheric effects on remote sensing (new mathematical models and approximation solutions). Mathematical Modelling, 9(2), 117–124.CrossRefGoogle Scholar
  58. Wang, L., & Qu, J. J. (2009). Satellite remote sensing applications for surface soil moisture monitoring: A review. Frontiers of Earth Science in China, 3(2), 237–247.CrossRefGoogle Scholar
  59. Whiting, M. L., Ustin, S. L., Zarco-Tejada, P., Palacios-Orueta, A., & Vanderbilt, V. C. (2006). Hyperspectral mapping of crop and soils for precision agriculture. In Remote Sensing and Modeling of Ecosystems for Sustainability III, Proceedings of SPIE (Vol. 6298), 62980B-62980B–15.Google Scholar
  60. Witten, I. H., & Frank, E. (2005). Data mining: Practical machine learning tools and techniques (Google eBook) (2nd ed.). Complementary literature None. San Francisco: Elsevier.Google Scholar
  61. Yemefack, M. (2005). Modelling and monitoring soil and land use dynamics within shifting agricultural landscape mosaic systems in southern cameroon. The Netherlands: Utrecht University.Google Scholar
  62. Zhang, Q., Sun, Z.-X., & Wang, S. (2011). Analysis of variation egularity of land-surface physical quantities over the Dingxi region of the Loess Plateau. Chinese Journal of Geophysics, 54(4), 436–447.CrossRefGoogle Scholar
  63. Zhang, R., Tian, J., Su, H., Sun, X., Chen, S., & Xia, J. (2008). Two improvements of an operational two-layer model for terrestrial surface heat flux retrieval. Sensors, 8(10), 6165–6187.CrossRefGoogle Scholar

Copyright information

© The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2020

Authors and Affiliations

  1. 1.Geomatics Section, Civil Engineering DepartmentIndian Institute of Technology RoorkeeRoorkeeIndia
  2. 2.Surveying and Geomatics Section, Civil Engineering DepartmentMaharishi Markandeshwar UniversityAmbalaIndia
  3. 3.Indian Institute of Remote Sensing (IIRS)DehradunIndia

Personalised recommendations