Skip to main content

Atomic Chains, Clusters, and Nanocrystals

  • Chapter
  • First Online:
Electron and Phonon Spectrometrics
  • 466 Accesses

Abstract

Like adatoms, monoatomic chain ends, and atomic clusters with even less-coordinated atoms demonstrate extraordinary properties due to dominance of stronger quantum entrapment and polarization. Consistency between quantum calculations and XPS/STS observations resolves the origin of the unusual performance of such even undercoordinated atoms. A combination of the XPS and AES, called APECS, refines the energy shifts of both the core band and the valence band with derived information of the screening effect and charge transport during reaction.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. C. Bittencourt, A. Felten, B. Douhard, J. Ghijsen, R.L. Johnson, W. Drube, J.J. Pireaux, Photoemission studies of gold clusters thermally evaporated on multiwall carbon nanotubes. Chem. Phys. 328(1–3), 385–391 (2006)

    Article  Google Scholar 

  2. S.P. Suprun, E.V. Fedosenko, Low-temperature recrystallization of Ge nanolayers on ZnSe. Semiconductors 41(5), 590–595 (2007)

    Article  ADS  Google Scholar 

  3. J.G. Tao, J.S. Pan, C.H.A. Huan, Z. Zhang, J.W. Chai, S.J. Wang, Origin of XPS binding energy shifts in Ni clusters and atoms on rutile TiO2 surfaces. Surf. Sci. 602(16), 2769–2773 (2008)

    Article  ADS  Google Scholar 

  4. I. Aruna, B.R. Mehta, L.K. Malhotra, S.M. Shivaprasad, Size dependence of core and valence binding energies in Pd nanoparticles: interplay of quantum confinement and coordination reduction. J. Appl. Phys. 104(6), 064308 (2008)

    Article  ADS  Google Scholar 

  5. C.Q. Sun, Surface and nanosolid core-level shift: Impact of atomic coordination-number imperfection. Phys. Rev. B 69(4), 045105 (2004)

    Article  ADS  Google Scholar 

  6. B. Balamurugan, T. Maruyama, Size-modified d bands and associated interband absorption of Ag nanoparticies. J. Appl. Phys. 102(3), 034306 (2007)

    Article  ADS  Google Scholar 

  7. M. Reif, L. Glaser, M. Martins, W. Wurth, Size-dependent properties of small deposited chromium clusters by X-ray absorption spectroscopy. Phys. Rev. B 72(15), 155405 (2005)

    Article  ADS  Google Scholar 

  8. B. Balamurugan, T. Maruyama, Inhomogeneous effect of particle size on core-level and valence-band electrons: size-dependent electronic structure of Cu3N nanoparticles. Appl. Phys. Lett. 89, 033112 (2006)

    Article  ADS  Google Scholar 

  9. S. Kim, M.C. Kim, S.H. Choi, K.J. Kim, H.N. Hwang, and C.C. Hwang, Size dependence of Si 2p core-level shift at Si nanocrystal/SiO2 interfaces. Appl. Phys. Lett. 91(10), 103113 (2007)

    Google Scholar 

  10. X. Zhang, J.L. Kuo, M.X. Gu, X.F. Fan, P. Bai, Q.G. Song, C.Q. Sun, Local structure relaxation, quantum trap depression, and valence charge polarization induced by the shorter-and-stronger bonds between under-coordinated atoms in gold nanostructures. Nanoscale 2(3), 412–417 (2010)

    Article  ADS  Google Scholar 

  11. S. Ahmadi, X. Zhang, Y. Gong, C.H. Chia, C.Q. Sun, Skin-resolved local bond contraction, core electron entrapment, and valence charge polarization of Ag and Cu nanoclusters. Phys. Chem. Chem. Phys. 16(19), 8940–8948 (2014)

    Article  Google Scholar 

  12. T. Ohgi, D. Fujita, Consistent size dependency of core-level binding energy shifts and single-electron tunneling effects in supported gold nanoclusters. Phys. Rev. B 66(11), 115410 (2002)

    Article  ADS  Google Scholar 

  13. A. Kara, T.S. Rahman, Vibrational properties of metallic nanocrystals. Phys. Rev. Lett. 81(7), 1453–1456 (1998)

    Article  ADS  Google Scholar 

  14. P.J. Feibelman, Relaxation of hcp(0001) surfaces: A chemical view. Phys. Rev. B 53(20), 13740–13746 (1996)

    Article  ADS  Google Scholar 

  15. B. Richter, H. Kuhlenbeck, H.J. Freund, P.S. Bagus, Cluster core-level binding-energy shifts: the role of lattice strain. Phys. Rev. Lett. 93(2), 026805 (2004)

    Article  ADS  Google Scholar 

  16. J. Nanda, D.D. Sarma, Photoemission spectroscopy of size selected zinc sulfide nanocrystallites. J. Appl. Phys. 90(5), 2504–2510 (2001)

    Article  ADS  Google Scholar 

  17. E. Grüneisen, The state of a body, in Handbook of Physics, vol. 10, 1–52 (NASA translation RE2-18-59W)

    Google Scholar 

  18. W. Qin, Y. Wang, Y.L. Huang, Z.F. Zhou, C. Yang, C.Q. Sun, Bond order resolved 3d(5/2) and valence band chemical shifts of Ag surfaces and nanoclusters. J. Phys. Chem. A 116(30), 7892–7897 (2012)

    Article  Google Scholar 

  19. C.Q. Sun, L.K. Pan, H.L. Bai, Z.Q. Li, P. Wu, E.Y. Jiang, Effects of surface passivation and interfacial reaction on the size-dependent 2p-level shift of supported copper nanosolids. Acta Mater. 51(15), 4631–4636 (2003)

    Article  Google Scholar 

  20. J.N. Crain, D.T. Pierce, End states in one-dimensional atom chains. Science 307(5710), 703–706 (2005)

    Article  ADS  Google Scholar 

  21. K. Schouteden, E. Lijnen, D.A. Muzychenko, A. Ceulemans, L.F. Chibotaru, P. Lievens, C.V. Haesendonck, A study of the electronic properties of Au nanowires and Au nanoislands on Au(111) surfaces. Nanotechnology 20(39), 395401 (2009)

    Article  Google Scholar 

  22. W.J. Huang, R. Sun, J. Tao, L.D. Menard, R.G. Nuzzo, J.M. Zuo, Coordination-dependent surface atomic contraction in nanocrystals revealed by coherent diffraction. Nat. Mater. 7(4), 308–313 (2008)

    Article  ADS  Google Scholar 

  23. W.H. Qi, B.Y. Huang, M.P. Wang, Bond-Length and -Energy Variation of Small Gold Nanoparticles. J. Comput. Theor. Nanosci. 6(3), 635–639 (2009)

    Article  Google Scholar 

  24. C.Q. Sun, C.M. Li, S. Li, B.K. Tay, Breaking limit of atomic distance in an impurity-free monatomic chain. Phys. Rev. B 69(24), 245402 (2004)

    Article  ADS  Google Scholar 

  25. J.T. Miller, A.J. Kropf, Y. Zha, J.R. Regalbuto, L. Delannoy, C. Louis, E. Bus, J.A. van Bokhoven, The effect of gold particle size on Au-Au bond length and reactivity toward oxygen in supported catalysts. J. Catal. 240(2), 222–234 (2006)

    Article  Google Scholar 

  26. C.Q. Sun, Size dependence of nanostructures: Impact of bond order deficiency. Prog. Solid State Chem. 35(1), 1–159 (2007)

    Article  Google Scholar 

  27. C.Q. Sun, Y. Sun, Y.G. Ni, X. Zhang, J.S. Pan, X.H. Wang, J. Zhou, L.T. Li, W.T. Zheng, S.S. Yu, L.K. Pan, Z. Sun, Coulomb repulsion at the nanometer-sized contact: a force driving superhydrophobicity, superfluidity, superlubricity, and supersolidity. J. Phys. Chem. C 113(46), 20009–20019 (2009)

    Article  Google Scholar 

  28. X. Zhang, C.Q. Sun, H. Hirao, Guanine binding to gold nanoparticles through nonbonding interactions. PCCP 15(44), 19284–19292 (2013)

    Article  ADS  Google Scholar 

  29. A. Visikovskiy, H. Matsumoto, K. Mitsuhara, T. Nakada, T. Akita, Y. Kido, Electronic d-band properties of gold nanoclusters grown on amorphous carbon. Phys. Rev. B 83(16), 165428 (2011)

    Article  ADS  Google Scholar 

  30. P. Zhang, T. Sham, X-ray studies of the structure and electronic behavior of alkanethiolate-capped gold nanoparticles: the interplay of size and surface effects. Phys. Rev. Lett. 90(24), 245502 (2003)

    Article  ADS  Google Scholar 

  31. A. Howard, D.N.S. Clark, C.E.J. Mitchell, R.G. Egdell, V.R. Dhanak, Initial and final state effects in photoemission from Au nanoclusters on TiO2(110). Surf. Sci. 518(3), 210–224 (2002)

    Article  ADS  Google Scholar 

  32. M. Salmeron, S. Ferrer, M. Jazzar, G.A. Somorjai, Core-band and valence-band energy-level shifts in small two-dimensional islands of gold deposited on Pt(100)—the effect of step edge, surface, and bulk atoms. Phys. Rev. B 28(2), 1158–1160 (1983)

    Google Scholar 

  33. A. Felten, C. Bittencourt, J.J. Pireaux, Gold clusters on oxygen plasma functionalized carbon nanotubes: XPS and TEM studies. Nanotechnology 17(8), 1954–1959 (2006)

    Article  ADS  Google Scholar 

  34. A. Tanaka, Y. Takeda, T. Nagasawa, K. Takahashi, Chemical states of dodecanethiolate-passivated Au nanoparticles: synchrotron-radiation photoelectron spectroscopy. Solid State Commun. 126(4), 191–196 (2003)

    Article  ADS  Google Scholar 

  35. D.C. Lim, R. Dietsche, M. Bubek, T. Ketterer, G. Gantefor, Y.D. Kim, Chemistry of mass-selected Au clusters deposited on sputter-damaged HOPG surfaces: the unique properties of Au-8 clusters. Chem. Phys. Lett. 439(4–6), 364–368 (2007)

    Article  ADS  Google Scholar 

  36. H.G. Boyen, A. Ethirajan, G. Kastle, F. Weigl, P. Ziemann, G. Schmid, M.G. Garnier, M. Buttner, P. Oelhafen, Alloy formation of supported gold nanoparticles at their transition from clusters to solids: does size matter? Phys. Rev. Lett. 94(1), 016804 (2005)

    Article  ADS  Google Scholar 

  37. S.B. DiCenzo, S.D. Berry, E.H. Hartford, Photoelectron spectroscopy of single-size Au clusters collected on a substrate. Phys. Rev. B 38(12), 8465 (1988)

    Article  ADS  Google Scholar 

  38. H. Yasuda, H. Mori, Spontaneous alloying of zinc atoms into gold clusters and formation of compound clusters. Phys. Rev. Lett. 69(26), 3747–3750 (1992)

    Article  ADS  Google Scholar 

  39. D.C. Lim, I. Lopez-Salido, R. Dietsche, M. Bubek, Y.D. Kim, Electronic and chemical properties of supported Au nanoparticles. Chem. Phys. 330(3), 441–448 (2006)

    Article  Google Scholar 

  40. C.W. Zou, B. Sun, G.D. Wang, W.H. Zhang, P.S. Xu, H.B. Pan, F.Q. Xu, Initial interface study of Au deposition on GaN(0001). Physica B-Condens. Matter 370(1–4), 287–293 (2005)

    Article  ADS  Google Scholar 

  41. A. Barinov, L. Casalis, L. Gregoratti, M. Kiskinova, Au/GaN interface: initial stages of formation and temperature-induced effects. Phys. Rev. B 63(8), 085308 (2001)

    Article  ADS  Google Scholar 

  42. T. Okazawa, M. Fujiwara, T. Nishimura, T. Akita, M. Kohyama, Y. Kido, Growth mode and electronic structure of Au nano-clusters on NiO(001) and TiO2(110). Surf. Sci. 600(6), 1331–1338 (2006)

    Article  ADS  Google Scholar 

  43. P. Buffat, J.P. Borel, Size effect on melting temperature of gold particles. Phys. Rev. A 13(6), 2287–2298 (1976)

    Article  ADS  Google Scholar 

  44. P. Donnadieu, S. Lazar, G.A. Botton, I. Pignot-Paintrand, M. Reynolds, S. Perez, Seeing structures and measuring properties with transmission electron microscopy images: a simple combination to study size effects in nanoparticle systems. Appl. Phys. Lett. 94(26), 263116 (2009)

    Article  ADS  Google Scholar 

  45. C.Q. Sun, H.L. Bai, S. Li, B.K. Tay, C. Li, T.P. Chen, E.Y. Jiang, Length, strength, extensibility, and thermal stability of a Au-Au bond in the gold monatomic chain. J. Phys. Chem. B 108(7), 2162–2167 (2004)

    Article  Google Scholar 

  46. A. Sperl, J. Kroger, N. Neel, H. Jensen, R. Berndt, A. Franke, E. Pehlke, Unoccupied states of individual silver clusters and chains on Ag(111). Phys. Rev. B (Condens. Matter Mater. Phys.) 77(8), 085422–085427 (2008)

    Article  ADS  Google Scholar 

  47. A. Sperl, J. Kroger, R. Berndt, A. Franke, E. Pehlke, Evolution of unoccupied resonance during the synthesis of a silver dimer on Ag(111). New J. Phys. 11(6), 063020 (2009)

    Article  ADS  Google Scholar 

  48. D. Roy, Z. Barber, T. Clyne, Ag nanoparticle induced surface enhanced Raman spectroscopy of chemical vapor deposition diamond thin films prepared by hot filament chemical vapor deposition. J. Appl. Phys. 91(9), 6085–6088 (2002)

    Article  ADS  Google Scholar 

  49. S. Pal, Y.K. Tak, J.M. Song, Does the antibacterial activity of silver nanoparticles depend on the shape of the nanoparticle? A study of the gram-negative bacterium Escherichia coli. Appl. Environ. Microbiol. 73(6), 1712–1720 (2007)

    Article  Google Scholar 

  50. P. Luches, F. Pagliuca, S. Valeri, F. Illas, G. Preda, G. Pacchioni, Nature of Ag islands and nanoparticles on the CeO2(111) surface. J. Phys. Chem. C 116, 1122–1132 (2011)

    Article  Google Scholar 

  51. D.D. Kong, G.D. Wang, Y.H. Pan, S.W. Hu, J.B. Hou, H.B. Pan, C.T. Campbell, J.F. Zhu, Growth, structure, and stability of Ag on CeO(2)(111): synchrotron radiation photoemission studies. J. Phys. Chem. C 115(14), 6715–6725 (2011)

    Article  Google Scholar 

  52. J.A. Farmer, J.H. Baricuatro, C.T. Campbell, Ag adsorption on reduced CeO2(111) Thin Films†. J. Phys. Chem. C 114(40), 17166–17172 (2010)

    Article  Google Scholar 

  53. M.A.M. Branda, N.C. Hernández, J.F. Sanz, F. Illas, Density functional theory study of the interaction of Cu, Ag, and Au atoms with the regular CeO2 (111) surface. J. Phys. Chem. C 114(4), 1934–1941 (2010)

    Google Scholar 

  54. K. Luo, X. Lai, C.W. Yi, K.A. Davis, K.K. Gath, D.W. Goodman, The growth of silver on an ordered alumina surface. J. Phys. Chem. B 109(9), 4064–4068 (2005)

    Article  Google Scholar 

  55. G. Moretti, Auger parameter and Wagner plot in the characterization of chemical states by X-ray photoelectron spectroscopy: a review. J. Electron Spectrosc. Relat. Phenom. 95(2–3), 95–144 (1998)

    Article  Google Scholar 

  56. M. Ohno, Many-electron effects in the Auger-photoelectron coincidence spectroscopy spectra of the late 3d-transition metals. J. Electron Spectrosc. Relat. Phenom. 136(3), 229–234 (2004)

    Article  MathSciNet  Google Scholar 

  57. N.C. Hernández, J. Graciani, A. Márquez, J.F. Sanz, Cu, Ag and Au atoms deposited on the α-Al2O3(0001) surface: a comparative density functional study. Surf. Sci. 575(1–2), 189–196 (2005)

    Article  ADS  Google Scholar 

  58. I. Lopez-Salido, D.C. Lim, Y.D. Kim, Ag nanoparticles on highly ordered pyrolytic graphite (HOPG) surfaces studied using STM and XPS. Surf. Sci. 588(1–3), 6–18 (2005)

    Article  ADS  Google Scholar 

  59. K. Luo, T.P. St Clair, X. Lai, D.W. Goodman, Silver growth on TiO2(110)(1 × 1) and (1 × 2). J. Phys. Chem. B 104(14), 3050–3057 (2000)

    Google Scholar 

  60. M. Rocca, L. Savio, L. Vattuone, U. Burghaus, V. Palomba, N. Novelli, F.B. de Mongeot, U. Valbusa, R. Gunnella, G. Comelli, A. Baraldi, S. Lizzit, G. Paolucci, Phase transition of dissociatively adsorbed oxygen on Ag(001). Phys. Rev. B 61(1), 213–227 (2000)

    Article  ADS  Google Scholar 

  61. J.N. Andersen, D. Hennig, E. Lundgren, M. Methfessel, R. Nyholm, M. Scheffler, Surface core-level shifts of some 4d-metal single-crystal surfaces: experiments and ab initio calculations. Phys. Rev. B 50(23), 17525–17533 (1994)

    Article  ADS  Google Scholar 

  62. S. Folsch, P. Hyldgaard, R. Koch, K.H. Ploog, Quantum confinement in monatomic Cu chains on Cu(111). Phys. Rev. Lett. 92(5), 056803 (2004)

    Article  ADS  Google Scholar 

  63. O. Cheshnovsky, K.J. Taylor, J. Conceicao, R.E. Smalley, Ultraviolet photoelectron-spectra of mass-selected copper clusters—evolution of the 3d band. Phys. Rev. Lett. 64(15), 1785–1788 (1990)

    Article  ADS  Google Scholar 

  64. D.-W. Shin, C. Dong, M. Mattesini, A. Augustsson, S. Mao, C. Chang, C. Persson, R. Ahuja, J. Nordgren, S.X. Wang, Size dependence of the electronic structure of copper nanoclusters in SiC matrix. Chem. Phys. Lett. 422(4), 543–546 (2006)

    Article  ADS  Google Scholar 

  65. D.Q. Yang, E. Sacher, Initial- and final-state effects on metal cluster/substrate interactions, as determined by XPS: copper clusters on Dow Cyclotene and highly oriented pyrolytic graphite. Appl. Surf. Sci. 195(1–4), 187–195 (2002)

    Article  ADS  Google Scholar 

  66. D.Q. Yang, L. Martinu, E. Sacher, A. Sadough-Vanini, M. Grp Couches, Nitrogen plasma treatment of the dow Cyclotene 3022 surface and its reaction with evaporated copper. Appl. Surf. Sci. 177(1–2), 85–95 (2001)

    Google Scholar 

  67. D.Q. Yang, E. Sacher, Argon ion treatment of the dow cyclotene 3022 surface and its effect on the adhesion of evaporated copper. Appl. Surf. Sci. 173(1–2), 30–39 (2001)

    Article  ADS  Google Scholar 

  68. Y.T. Wu, E. Garfunkel, T.E. Madey, Initial stages of Cu growth on ordered Al2O3 ultrathin films. J. Vacuum Sci. Technol. A 14(3), 1662–1667 (1996)

    Article  ADS  Google Scholar 

  69. J. Bearden, A. Burr, Reevaluation of X-ray atomic energy levels. Rev. Mod. Phys. 39(1), 125 (1967)

    Article  ADS  Google Scholar 

  70. C.Q. Sun, L.K. Pan, T.P. Chen, X.W. Sun, S. Li, C.M. Li, Distinguishing the effect of crystal-field screening from the effect of valence recharging on the 2P3/2 and 3d5/2 level energies of nanostructured copper. Appl. Surf. Sci. 252(6), 2101–2107 (2006)

    Article  ADS  Google Scholar 

  71. C.Q. Sun, in Relaxation of the Chemical Bond. The Springer Series in Chemical Physics, vol. 108 (Springer, Heidelberg, 2014), 807pp

    Google Scholar 

  72. R. DiDio, D. Zehner, E. Plummer, An angle-resolved UPS study of the oxygen-induced reconstruction of Cu (110). J. Vaccum Sci. Technol. A 2(2), 852–855 (1984)

    Article  ADS  Google Scholar 

  73. C.Q. Sun, Oxidation electronics: bond-band-barrier correlation and its applications. Prog. Mater Sci. 48(6), 521–685 (2003)

    Article  Google Scholar 

  74. W.F. Egelhoff Jr., G.G. Tibbetts, Growth of copper, nickel, and palladium films on graphite and amorphous carbon. Phys. Rev. B 19(10), 5028 (1979)

    Article  ADS  Google Scholar 

  75. J.M. Burkstrand, Substrate effects on the electronic structure of metal overlayers—an XPS study of polymer-metal interfaces. Phys. Rev. B 20(12), 4853 (1979)

    Article  ADS  Google Scholar 

  76. M. Chtaib, J. Ghijsen, J. Pireaux, R. Caudano, R. Johnson, E. Orti, J. Bredas, Photoemission study of the copper/poly (ethylene terephthalate) interface. Phys. Rev. B 44(19), 10815 (1991)

    Article  ADS  Google Scholar 

  77. C.Q. Sun, A model of bonding and band-forming for oxides and nitrides. Appl. Phys. Lett. 72(14), 1706–1708 (1998)

    Article  ADS  Google Scholar 

  78. K. Borgohain, J.B. Singh, M.V.R. Rao, T. Shripathi, S. Mahamuni, Quantum size effects in CuO nanoparticles. Phys. Rev. B 61(16), 11093–11096 (2000)

    Article  ADS  Google Scholar 

  79. F. Matsui, T. Matsushita, Y. Kato, M. Hashimoto, K. Inaji, F.Z. Guo, H. Daimon, Atomic-layer resolved magnetic and electronic structure analysis of Ni thin film on a Cu(001) surface by diffraction spectroscopy. Phys. Rev. Lett. 100(20), 207201 (2008)

    Article  ADS  Google Scholar 

  80. M.L. Xu, S.Y. Tong, The structure of overlayer adsorption on Ni(001) by high-resolution electron-energy loss spectroscopy. J. Vacuum Sci. Technol. A 4(3), 1302–1303 (1986)

    Article  ADS  Google Scholar 

  81. Y.G. Nie, J.S. Pan, Z. Zhang, J.W. Chai, S.J. Wang, C.S. Yang, D. Li, C.Q. Sun, Size dependent 2p(3/2) binding-energy shift of Ni nanoclusters on SiO2 support: skin-depth local strain and quantum trapping. Appl. Surf. Sci. 256(14), 4667–4671 (2010)

    Article  ADS  Google Scholar 

  82. Y. Sun, J.S. Pan, J.G. Tao, Y.G. Nie, C.H.A. Huan, Z. Zhang, J.W. Chai, D. Li, S.J. Wang, C.Q. Sun, Size dependence of the 2p(3/2) and 3d(5/2) binding energy shift of Ni nanostructures: skin-depth charge and energy trapping. J. Phys. Chem. C 113(25), 10939–10946 (2009)

    Article  Google Scholar 

  83. T. Zhang, M. Bo, Y. Guo, Y. Huang, H. Chen, C. Li, C.Q. Sun, Coordination-resolved atomistic local bonding and 3p electronic energetics of K(110) skin and atomic clusters. Appl. Surf. Sci. 325, 33–38 (2015)

    Article  ADS  Google Scholar 

  84. M. Bo, Y. Wang, Y. Huang, Y. Liu, C. Li, C.Q. Sun, Atomistic spectrometrics of local bond-electron-energy pertaining to Na and K clusters. Appl. Surf. Sci. 325, 33–38 (2015)

    Article  ADS  Google Scholar 

  85. M. Bo, Y. Guo, Y. Huang, Y. Liu, Y. Wang, C. Li, C.Q. Sun, Coordination-resolved bonding and electronic dynamics of Na atomic clusters and solid skins. RSC Adv. 5(44), 35274–35281 (2015)

    Article  Google Scholar 

  86. G. Wertheim, D.M. Riffe, N. Smith, P. Citrin, Electron mean free paths in the alkali metals. Phys. Rev. B 46(4), 1955 (1992)

    Article  ADS  Google Scholar 

  87. D.M. Riffe, G. Wertheim, P. Citrin, Enhanced vibrational broadening of core-level photoemission from the surface of Na (110). Phys. Rev. Lett. 67(1), 116–119 (1991)

    Article  ADS  Google Scholar 

  88. G. Wertheim, D.M. Riffe, Evidence for crystal-field splitting in surface-atom photoemission from potassium. Phys. Rev. B 52(20), 14906 (1995)

    Article  ADS  Google Scholar 

  89. J. Woltersdorf, A. Nepijko, E. Pippel, Dependence of lattice parameters of small particles on the size of the nuclei. Surf. Sci. 106(1), 64–69 (1981)

    Article  ADS  Google Scholar 

  90. R. Lamber, S. Wetjen, N.I. Jaeger, Size dependence of the lattice parameter of small palladium particles. Phys. Rev. B 51(16), 10968 (1995)

    Article  ADS  Google Scholar 

  91. M. Zhao, X. Zhou, Q. Jiang, Comparison of different models for melting point change of metallic nanocrystals. J. Mater. Res. 16(11), 3304–3308 (2001)

    Article  ADS  Google Scholar 

  92. S. Peredkov, G. Öhrwall, J. Schulz, M. Lundwall, T. Rander, A. Lindblad, H. Bergersen, A. Rosso, W. Pokapanich, N. Mårtensson, S. Svensson, S. Sorensen, O. Björneholm, M. Tchaplyguine, Free nanoscale sodium clusters studied by core-level photoelectron spectroscopy. Phys. Rev. B 75(23), 235407 (2007)

    Article  ADS  Google Scholar 

  93. A. Rosso, G. Öhrwall, I.L. Bradeanu, S. Svensson, O. Björneholm, M. Tchaplyguine, Photoelectron spectroscopy study of free potassium clusters: core-level lines and plasmon satellites. Phys. Rev. A: At. Mol. Opt. Phys. 77, 043202 (2008)

    Article  ADS  Google Scholar 

  94. M.-H. Mikkelä, M. Tchaplyguine, K. Jänkälä, T. Andersson, C. Zhang, O. Björneholm, M. Huttula, Size-dependent study of Rb and K clusters using core and valence level photoelectron spectroscopy. Eur. Phys. J. D—Atomic Mol. Opt. Plasma Phys. 64(2), 347–352 (2011)

    Google Scholar 

  95. G. Wertheim, D. Buchanan, Conduction-electron screening and surface properties of Cs metal. Phys. Rev. B 43(17), 13815 (1991)

    Article  ADS  Google Scholar 

  96. M. Vogel, C. Kasigkeit, K. Hirsch, A. Langenberg, J. Rittmann, V. Zamudio-Bayer, A. Kulesza, R. Mitrić, T. Möller, B. v. Issendorff, J. Lau, 2p core-level binding energies of size-selected free silicon clusters: Chemical shifts and cluster structure. Phys. Rev. B 85(19), 195454 (2012)

    Google Scholar 

  97. L.K. Pan, Y.K. Ee, C.Q. Sun, G.Q. Yu, Q.Y. Zhang, B.K. Tay, Band-gap expansion, core-level shift, and dielectric suppression of porous silicon passivated by plasma fluorination. J. Vac. Sci. Technol. B 22(2), 583–587 (2004)

    Article  Google Scholar 

  98. M. Bo, Y. Wang, Y. Huang, X. Yang, Y. Yang, C. Li, C.Q. Sun, Coordination-resolved local bond relaxation, electron binding-energy shift, and Debye temperature of Ir solid skins. Appl. Surf. Sci. 320, 509–513 (2014)

    Article  ADS  Google Scholar 

  99. L. Pan, S. Xu, X. Liu, W. Qin, Z. Sun, W. Zheng, C.Q. Sun, Skin dominance of the dielectric electronic-phononic-photonic attribute of nanoscaled silicon. Surf. Sci. Rep. 68(3–4), 418–445 (2013)

    Article  Google Scholar 

  100. J. Dalmas, H. Oughaddou, G. Le Lay, B. Aufray, G. Tréglia, C. Girardeaux, J. Bernardini, J. Fujii, G. Panaccione, Photoelectron spectroscopy study of Pb/Ag (111) in the submonolayer range. Surf. Sci. 600(6), 1227–1230 (2006)

    Article  ADS  Google Scholar 

  101. G. Le Lay, K. Hricovini, J. Bonnet, Ultraviolet photoemission study of the initial adsorption of Pb on Si (100) 2 × 1. Phys. Rev. B 39(6), 3927 (1989)

    Article  ADS  Google Scholar 

  102. S. Peredkov, S. Sorensen, A. Rosso, G. Öhrwall, M. Lundwall, T. Rander, A. Lindblad, H. Bergersen, W. Pokapanich, S. Svensson, O. Björneholm, N. Mårtensson, M. Tchaplyguine, Size determination of free metal clusters by core-level photoemission from different initial charge states. Phys. Rev. B 76(8), 081402 (2007)

    Article  ADS  Google Scholar 

  103. M. Bo, Y. Wang, Y. Huang, W. Zhou, C. Li, C.Q. Sun, Coordination-resolved local bond relaxation and electron binding-energy shift of Pb solid skins and atomic clusters. J. Mater. Chem. C 2(30), 6090–6096 (2014)

    Article  Google Scholar 

  104. O. Mironets, H.L. Meyerheim, C. Tusche, V.S. Stepanyuk, E. Soyka, H. Hong, P. Zschack, N. Jeutter, R. Felici, J. Kirschner, Bond length contraction in cobalt nanoislands on Cu(001) analyzed by surface X-ray diffraction. Phys. Rev. B 79, 035406 (2009)

    Article  ADS  Google Scholar 

  105. O. Mironets, H.L. Meyerheim, C. Tusche, V.S. Stepanyuk, E. Soyka, P. Zschack, H. Hong, N. Jeutter, R. Felici, J. Kirschner, Direct evidence for mesoscopic relaxations in cobalt nanoislands on Cu(001). Phys. Rev. Lett. 100, 096103 (2008)

    Article  ADS  Google Scholar 

  106. L. Bianchettin, A. Baraldi, S. de Gironcoli, E. Vesselli, S. Lizzit, L. Petaccia, G. Comelli, R. Rosei, Core level shifts of undercoordinated Pt atoms. J. Chem. Phys. 128(11), 114706 (2008)

    Article  ADS  Google Scholar 

  107. M.V. Rastei, B. Heinrich, L. Limot, P.A. Ignatiev, V.S. Stepanyuk, P. Bruno, J.P. Bucher, Size-dependent surface states of strained cobalt nanoislands on Cu(111). Phys. Rev. Lett. 99(24), 246102–246104 (2007)

    Article  ADS  Google Scholar 

  108. I. Leontyev, A. Kuriganova, N. Leontyev, L. Hennet, A. Rakhmatullin, N. Smirnova, V. Dmitriev, Size dependence of the lattice parameters of carbon supported platinum nanoparticles: X-ray diffraction analysis and theoretical considerations. RSC Adv. 4(68), 35959–35965 (2014)

    Article  Google Scholar 

  109. S. Ahmadi, X. Zhang, Y. Gong, C.Q. Sun, Atomic under-coordination fascinated catalytic and magnetic behavior of Pt and Rh nanoclusters. Phys. Chem. Chem. Phys. 16(38), 20537–20547 (2014)

    Article  Google Scholar 

  110. C.Q. Sun, Atomic-coordination-imperfection-enhanced Pd-3d(5/2) crystal binding energy. Surf. Rev. Lett. 10(6), 1009–1013 (2003)

    Article  ADS  Google Scholar 

  111. Y. Sun, Y. Wang, J.S. Pan, L.L. Wang, C.Q. Sun, Elucidating the 4f binding energy of an isolated Pt atom and its bulk shift from the measured surface- and size-induced Pt 4f core level shift. J. Phys. Chem. C 113(33), 14696–14701 (2009)

    Article  Google Scholar 

  112. D.-Q. Yang, E. Sacher, Characterization and oxidation of Fe nanoparticles deposited onto highly oriented pyrolytic graphite, using X-ray photoelectron spectroscopy. J. Phys. Chem. C 113(16), 6418–6425 (2009)

    Article  Google Scholar 

  113. V. Di Castro, S. Ciampi, XPS study of the growth and reactivity of FeMnO thin films. Surf. Sci. 331, 294–299 (1995)

    Article  ADS  Google Scholar 

  114. A. Berkó, I. Ulrych, K. Prince, Encapsulation of Rh nanoparticles supported on TiO2 (110)-(1 × 1) surface: XPS and STM studies. J. Phys. Chem. B 102(18), 3379–3386 (1998)

    Article  Google Scholar 

  115. H.R. Sadeghi, V.E. Henrich, Rh on TiO2: model catalyst studies of the strong metal-support interaction. Appl. Surf. Sci. 19(1), 330–340 (1984)

    Article  ADS  Google Scholar 

  116. L. Óvári, J. Kiss, Growth of Rh nanoclusters on TiO2(110): XPS and LEIS studies. Appl. Surf. Sci. 252(24), 8624–8629 (2006)

    Article  ADS  Google Scholar 

  117. Y. Wang, Y.G. Nie, J.S. Pan, L.K. Pan, Z. Sun, L.L. Wang, C.Q. Sun, Orientation-resolved 3d(5/2) binding energy shift of Rh and Pd surfaces: anisotropy of the skin-depth lattice strain and quantum trapping. Phys. Chem. Chem. Phys. 12(9), 2177–2182 (2010)

    Article  Google Scholar 

  118. C.Q. Sun, Y. Wang, Y.G. Nie, Y. Sun, J.S. Pan, L.K. Pan, Z. Sun, Adatoms-induced local bond contraction, quantum trap depression, and charge polarization at Pt and Rh surfaces. J. Phys. Chem. C 113(52), 21889–21894 (2009)

    Article  Google Scholar 

  119. H.N. Aiyer, V. Vijayakrishnan, G.N. Subbanna, C.N.R. Rao, Investigations of Pd clusters by the combined use of HREM, STM, high-energy spectroscopies and tunneling conductance measurements. Surf. Sci. 313(3), 392–398 (1994)

    Article  ADS  Google Scholar 

  120. P. Marcus, C. Hinnen, XPS study of the early stages of deposition of Ni, Cu and Pt on HOPG. Surf. Sci. 392(1–3), 134–142 (1997)

    Article  ADS  Google Scholar 

  121. D.Q. Yang, E. Sacher, Platinum nanoparticle interaction with chemically modified highly oriented pyrolytic graphite surfaces. Chem. Mater. 18(7), 1811–1816 (2006)

    Article  Google Scholar 

  122. D.Q. Yang, E. Sacher, Strongly enhanced interaction between evaporated Pt nanoparticles and functionalized multiwalled carbon nanotubes via plasma surface modifications: effects of physical and chemical defects. J. Phys. Chem. C 112(11), 4075–4082 (2008)

    Article  Google Scholar 

  123. C. Bittencourt, M. Hecq, A. Felten, J.J. Pireaux, J. Ghijsen, M.P. Felicissimo, P. Rudolf, W. Drube, X. Ke, G. Van Tendeloo, Platinum-carbon nanotube interaction. Chem. Phys. Lett. 462(4–6), 260–264 (2008)

    Article  ADS  Google Scholar 

  124. Y. Wang, L.L. Wang, C.Q. Sun, The 2p3/2 binding energy shift of Fe surface and Fe nanoparticles. Chem. Phys. Lett. 480(4–6), 243–246 (2009)

    Article  ADS  Google Scholar 

  125. D.D.D. Ma, C.S. Lee, F.C.K. Au, S.Y. Tong, S.T. Lee, Small-diameter silicon nanowire surfaces. Science 299(5614), 1874–1877 (2003)

    Article  ADS  Google Scholar 

  126. E. Roduner, Size matters: why nanomaterials are different. Chem. Soc. Rev. 35(7), 583–592 (2006)

    Article  Google Scholar 

  127. B. Wang, X.D. Xiao, X.X. Huang, P. Sheng, J.G. Hou, Single-electron tunneling study of two-dimensional gold clusters. Appl. Phys. Lett. 77(8), 1179–1181 (2000)

    Article  ADS  Google Scholar 

  128. B. Wang, K.D. Wang, W. Lu, J.L. Yang, J.G. Hou, Size-dependent tunneling differential conductance spectra of crystalline Pd nanoparticles. Phys. Rev. B 70(20), 205411 (2004)

    Article  ADS  Google Scholar 

  129. L.K. Pan, C.Q. Sun, Coordination imperfection enhanced electron-phonon interaction. J. Appl. Phys. 95(7), 3819–3821 (2004)

    Article  ADS  Google Scholar 

  130. L.K. Pan, Z. Sun, C.Q. Sun, Coordination imperfection enhanced electron-phonon interaction and band-gap expansion in Si and Ge nanocrystals. Scripta Mater. 60(12), 1105–1108 (2009)

    Article  Google Scholar 

  131. S. Suzer, XPS investigation of a Si-diode in operation. Anal. Methods 4(11), 3527–3530 (2012)

    Article  Google Scholar 

  132. S. Suzer, H. Sezen, A. Dana, Two-dimensional X-ray photoelectron spectroscopy for composite surface analysis. Anal. Chem. 80(10), 3931–3936 (2008)

    Article  Google Scholar 

  133. S. Suzer, H. Sezen, G. Ertas, A. Dana, XPS measurements for probing dynamics of charging. J. Electron Spectrosc. Relat. Phenom. 176(1–3), 52–57 (2010)

    Article  Google Scholar 

  134. S. Suzer, E. Abelev, S.L. Bernasek, Impedance-type measurements using XPS. Appl. Surf. Sci. 256(5), 1296–1298 (2009)

    Article  ADS  Google Scholar 

  135. H. Sezen, S. Suzer, Communication: enhancement of dopant dependent X-ray photoelectron spectroscopy peak shifts of Si by surface photovoltage. J. Chem. Phys. 135(14), 141102 (2011)

    Article  ADS  Google Scholar 

  136. Y. Guo, M. Bo, Y. Wang, Y. Liu, Y. Huang, C. Q. Sun, Atomistic bond relaxation, energy entrapment, and electron polarization of the Rb and Cs clusters (N ≤ 58). Phys. Chem. Chem. Phys. 17(45), 30389–30397 (2015)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chang Q Sun .

Rights and permissions

Reprints and permissions

Copyright information

© 2020 The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Sun, C. (2020). Atomic Chains, Clusters, and Nanocrystals. In: Electron and Phonon Spectrometrics. Springer, Singapore. https://doi.org/10.1007/978-981-15-3176-7_6

Download citation

Publish with us

Policies and ethics