Skip to main content

Adatoms, Defects, and Kink Edges

  • Chapter
  • First Online:
Electron and Phonon Spectrometrics
  • 470 Accesses

Abstract

Atoms with even fewer neighbors perform both atomic like and bulk like associated with shorter and stronger interatomic bonds. The bond contraction raises the local charge and energy density and the bond strength gain deepens the local potential well and entraps the core electrons. The locally and densely entrapped core electrons in turn polarize the valence electrons. The subjective valence electron polarization occurs to those atoms with unpaired lone electrons in the s orbitals such as Rh, Au, Ag, Cu and the unpaired 4f145d46s2 (5d56s1 seems to be stable) electrons of the W adatoms and Mo(4d55s1) as well. However, the Co(3d74s2) with fully-occupied s electrons and the Re(5d56s2) with semi-occupied d electrons exhibit entrapment dominance. The undercoordination resolved valence electron entrapment or polarization laid foundations for the extraordinary catalytic ability of the excessively undercoordinated atoms and the dispersed single atom.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. J.S. Garitaonandia, M. Insausti, E. Goikolea, M. Suzuki, J.D. Cashion, N. Kawamura, H. Ohsawa, I. Gil de Muro, K. Suzuki, F. Plazaola, Chemically induced permanent magnetism in Au, Ag, and Cu nanoparticles: localization of the magnetism by element selective techniques. Nano Lett. 8(2), 661–667 (2008)

    Article  ADS  Google Scholar 

  2. Y. Yamamoto, T. Miura, M. Suzuki, N. Kawamura, H. Miyagawa, T. Nakamura, K. Kobayashi, T. Teranishi, H. Hori, Direct observation of ferromagnetic spin polarization in gold nanoparticles. Phys. Rev. Lett. 93(11), 116801 (2004)

    Article  ADS  Google Scholar 

  3. R. Magyar, V. Mujica, M. Marquez, C. Gonzalez, Density-functional study of magnetism in bare Au nanoclusters: evidence of permanent size-dependent spin polarization without geometry relaxation. Phys. Rev. B 75(14), 144421 (2007)

    Article  ADS  Google Scholar 

  4. B. Wang, X.D. Xiao, X.X. Huang, P. Sheng, J.G. Hou, Single-electron tunneling study of two-dimensional gold clusters. Appl. Phys. Lett. 77(8), 1179–1181 (2000)

    Article  ADS  Google Scholar 

  5. O.A. Yeshchenko, I.M. Dmitruk, A.A. Alexeenko, M.Y. Losytskyy, A.V. Kotko, A.O. Pinchuk, Size-dependent surface-plasmon-enhanced photoluminescence from silver nanoparticles embedded in silica. Phys. Rev. B 79(23), 235438 (2009)

    Article  ADS  Google Scholar 

  6. J. Sancho-Parramon, Surface plasmon resonance broadening of metallic particles in the quasi-static approximation: a numerical study of size confinement and interparticle interaction effects. Nanotechnology 20(23), 235706 (2009)

    Article  ADS  Google Scholar 

  7. M. Turner, V.B. Golovko, O.P. Vaughan, P. Abdulkin, A. Berenguer-Murcia, M.S. Tikhov, B.F. Johnson, R.M. Lambert, Selective oxidation with dioxygen by gold nanoparticle catalysts derived from 55-atom clusters. Nature 454(7207), 981–983 (2008)

    Article  ADS  Google Scholar 

  8. M. Valden, X. Lai, D.W. Goodman, Onset of catalytic activity of gold clusters on titania with the appearance of nonmetallic properties. Science 281(5383), 1647–1650 (1998)

    Article  ADS  Google Scholar 

  9. A. Wittstock, B.R. Neumann, A. Schaefer, K. Dumbuya, C. Kübel, M.M. Biener, V. Zielasek, H.-P. Steinrück, J.M. Gottfried, J.R. Biener, Nanoporous Au: an unsupported pure gold catalyst? J. Phys. Chem. C, 113(14), 5593–5600 (2009)

    Google Scholar 

  10. Y.B. Zheng, L. Jensen, W. Yan, T.R. Walker, B.K. Juluri, L. Jensen, T.J. Huang, Chemically tuning the localized surface plasmon resonances of gold nanostructure arrays. J. Phys. Chem. C 113(17), 7019–7024 (2009)

    Article  Google Scholar 

  11. A. Elbakry, A. Zaky, R. Liebl, R. Rachel, A. Goepferich, M. Breunig, Layer-by-layer assembled gold nanoparticles for siRNA delivery. Nano Lett. 9(5), 2059–2064 (2009)

    Article  ADS  Google Scholar 

  12. V. Pustovalov, V. Babenko, Optical properties of gold nanoparticles at laser radiation wavelengths for laser applications in nanotechnology and medicine. Laser Phys. Lett. 1(10), 516–520 (2004)

    Article  ADS  Google Scholar 

  13. M.X. Gu, C.Q. Sun, C.M. Tan, S.Z. Wang, Local bond average for the size and temperature dependence of elastic and vibronic properties of nanostructures. Int. J. Nanotechnol. 6(7–8), 640–652 (2009)

    Article  ADS  Google Scholar 

  14. K.P. McKenna, Gold nanoparticles under gas pressure. Phys. Chem. Chem. Phys. 11(21), 4145–4151 (2009)

    Article  Google Scholar 

  15. P.D. Jadzinsky, G. Calero, C.J. Ackerson, D.A. Bushnell, R.D. Kornberg, Structure of a thiol monolayer-protected gold nanoparticle at 1.1 angstrom resolution. Science, 318(5849), 430–433 (2007)

    Google Scholar 

  16. W.H. Qi, B.Y. Huang, M.P. Wang, Bond-length and -energy variation of small gold nanoparticles. J. Comput. Theor. Nanosci. 6(3), 635–639 (2009)

    Article  Google Scholar 

  17. C.Q. Sun, Thermo-mechanical behavior of low-dimensional systems: the local bond average approach. Prog. Mater Sci. 54(2), 179–307 (2009)

    Article  Google Scholar 

  18. B. Wang, K.D. Wang, W. Lu, J.L. Yang, J.G. Hou, Size-dependent tunneling differential conductance spectra of crystalline Pd nanoparticles. Phys. Rev. B 70(20), 205411 (2004)

    Article  ADS  Google Scholar 

  19. J.N. Crain, D.T. Pierce, End states in one-dimensional atom chains. Science 307(5710), 703–706 (2005)

    Article  ADS  Google Scholar 

  20. N. Nilius, T.M. Wallis, W. Ho, Development of one-dimensional band structure in artificial gold chains. Science 297(5588), 1853–1856 (2002)

    Article  ADS  Google Scholar 

  21. K. Schouteden, E. Lijnen, D.A. Muzychenko, A. Ceulemans, L.F. Chibotaru, P. Lievens, C.V. Haesendonck, A study of the electronic properties of Au nanowires and Au nanoislands on Au(111) surfaces. Nanotechnology 20(39), 395401 (2009)

    Article  Google Scholar 

  22. B.G. Briner, P. Hofmann, M. Doering, H.P. Rust, E.W. Plummer, A.M. Bradshaw, Charge-density oscillations on Be(10-10): screening in a non-free two-dimensional electron gas. Phys. Rev. B 58(20), 13931–13943 (1998)

    Article  ADS  Google Scholar 

  23. A. Baraldi, L. Bianchettin, E. Vesselli, S. de Gironcoli, S. Lizzit, L. Petaccia, G. Zampieri, G. Comelli, R. Rosei, Highly under-coordinated atoms at Rh surfaces: interplay of strain and coordination effects on core level shift. New J. Phys. 9, 143 (2007)

    Article  ADS  Google Scholar 

  24. L. Bianchettin, A. Baraldi, S. de Gironcoli, E. Vesselli, S. Lizzit, L. Petaccia, G. Comelli, R. Rosei, Core level shifts of undercoordinated Pt atoms. J. Chem. Phys. 128(11), 114706 (2008)

    Article  ADS  Google Scholar 

  25. X.B. Zhou, J.L. Erskine, Surface core-level shifts at vicinal tungsten surfaces. Phys. Rev. B 79(15), 155422 (2009)

    Article  ADS  Google Scholar 

  26. N. Martensson, H.B. Saalfeld, H. Kuhlenbeck, M. Neumann, Structural dependence of the 5d-metal surface energies as deduced from surface core-level shift measurements. Phys. Rev. B 39(12), 8181–8186 (1989)

    Article  ADS  Google Scholar 

  27. A.S.Y. Chan, G.K. Wertheim, H. Wang, M.D. Ulrich, J.E. Rowe, T.E. Madey, Surface atom core-level shifts of clean and oxygen-covered Re(1231). Phys. Rev. B 72(3), 035442 (2005)

    Article  ADS  Google Scholar 

  28. J. Gustafson, M. Borg, A. Mikkelsen, S. Gorovikov, E. Lundgren, J.N. Andersen, Identification of step atoms by high resolution core level spectroscopy. Phys. Rev. Lett. 91(5), 056102 (2003)

    Article  ADS  Google Scholar 

  29. A. Baraldi, S. Lizzit, F. Bondino, G. Comelli, R. Rosei, C. Sbraccia, N. Bonini, S. Baroni, A. Mikkelsen, J.N. Andersen, Thermal stability of the Rh(110) missing-row reconstruction: Combination of real-time core-level spectroscopy and ab initio modeling. Phys. Rev. B 72(7), 075417 (2005)

    Article  ADS  Google Scholar 

  30. J. Sánchez-Royo, J. Pellicer-Porres, A. Segura, S. Gilliland, J. Avila, M. Asensio, O. Safonova, M. Izquierdo, A. Chevy, Buildup and structure of the In Se∕Pt interface studied by angle-resolved photoemission and x-ray absorption spectroscopy. Phys. Rev. B 73(15), 155308 (2006)

    Article  ADS  Google Scholar 

  31. X.J. Liu, M.L. Bo, X. Zhang, L. Li, Y.G. Nie, H. Tian, Y. Sun, S. Xu, Y. Wang, W. Zheng, C.Q. Sun, Coordination-resolved electron spectrometrics. Chem. Rev. 115(14), 6746–6810 (2015)

    Article  Google Scholar 

  32. A. Mellor, D. Humphrey, C.M. Yim, C.L. Pang, H. Idriss, G. Thornton, Direct visualization of Au Atoms Bound to TiO2 (110) O-Vacancies. J. Phys. Chem. C 121(44), 24721–24725 (2017)

    Article  Google Scholar 

  33. Y. Pan, Y. Cui, C. Stiehler, N. Nilius, H.-J. Freund, Gold Adsorption on CeO2 Thin Films Grown on Ru(0001). J. Phys. Chem. C 117(42), 21879–21885 (2013)

    Article  Google Scholar 

  34. T.-Y. Chang, Y. Tanaka, R. Ishikawa, K. Toyoura, K. Matsunaga, Y. Ikuhara, N. Shibata, Direct imaging of pt single atoms adsorbed on TiO2 (110) surfaces. Nano Lett. 14(1), 134–138 (2013)

    Article  ADS  Google Scholar 

  35. L.L. Patera, F. Bianchini, C. Africh, C. Dri, G. Soldano, M.M. Mariscal, M. Peressi, G. Comelli, Real-time imaging of adatom-promoted graphene growth on nickel. Science 359(6381), 1243–1246 (2018)

    Article  ADS  Google Scholar 

  36. M. Haruta, Size-and support-dependency in the catalysis of gold. Catal. Today 36(1), 153–166 (1997)

    Article  Google Scholar 

  37. D. Matthey, J. Wang, S. Wendt, J. Matthiesen, R. Schaub, E. Lægsgaard, B. Hammer, F. Besenbacher, Enhanced bonding of gold nanoparticles on oxidized TiO2 (110). Science 315(5819), 1692–1696 (2007)

    Article  ADS  Google Scholar 

  38. S. Chrétien, H. Metiu, Density functional study of the interaction between small Au clusters, Au n (n = 1–7) and the rutile TiO2 surface. II. Adsorption on a partially reduced surface. J. Chem. Phys. 127(24), 244708 (2007)

    Google Scholar 

  39. A. Baraldi, E. Vesselli, L. Bianchettin, G. Comelli, S. Lizzit, L. Petaccia, S. de Gironcoli, A. Locatelli, T.O. Mentes, L. Aballe, J. Weissenrieder, J.N. Andersen, The (1x1)-> hexagonal structural transition on Pt(100) studied by high-energy resolution core level photoemission. J. Chem. Phys. 127(16), 164702 (2007)

    Article  ADS  Google Scholar 

  40. C.Q. Sun, Y. Wang, Y.G. Nie, Y. Sun, J.S. Pan, L.K. Pan, Z. Sun, Adatoms-induced local bond contraction, quantum trap depression, and charge polarization at Pt and Rh surfaces. J. Phys. Chem. C 113(52), 21889–21894 (2009)

    Article  Google Scholar 

  41. C.Q. Sun, Size dependence of nanostructures: Impact of bond order deficiency. Prog. Solid State Chem. 35(1), 1–159 (2007)

    Article  Google Scholar 

  42. A.J. Cox, J.G. Louderback, S.E. Apsel, L.A. Bloomfield, Magnetic in 4d-transition metal-clusters. Phys. Rev. B 49(17), 12295–12298 (1994)

    Article  ADS  Google Scholar 

  43. E. Roduner, Size matters: why nanomaterials are different. Chem. Soc. Rev. 35(7), 583–592 (2006)

    Article  Google Scholar 

  44. C.Q. Sun, Dominance of broken bonds and nonbonding electrons at the nanoscale. Nanoscale 2(10), 1930–1961 (2010)

    Article  ADS  Google Scholar 

  45. W. Zheng, J. Zhou, C.Q. Sun, Purified rhodium edge states: undercoordination-induced quantum entrapment and polarization. Phys. Chem. Chem. Phys. 12(39), 12494–12498 (2010)

    Article  Google Scholar 

  46. Y.G. Nie, X. Zhang, S.Z. Ma, Y. Wang, J.S. Pan, C.Q. Sun, XPS revelation of tungsten edges as a potential donor-type catalyst. Phys. Chem. Chem. Phys. 13(27), 12640–12645 (2011)

    Article  Google Scholar 

  47. D.M. Riffe, B. Kim, J.L. Erskine, Surface core-level shifts and atomic coordination at a stepped W(110) surface. Phys. Rev. B 50(19), 14481–14488 (1994)

    Article  ADS  Google Scholar 

  48. Y. Wang, X. Zhang, Y.G. Nie, C.Q. Sun, Under-coordinated atoms induced local strain, quantum trap depression and valence charge polarization at W stepped surfaces. Phys. B-Condensed Matter 407(1), 49–53 (2012)

    Article  ADS  Google Scholar 

  49. X. Zhang, Y.G. Nie, W.T. Zheng, J.L. Kuo, C.Q. Sun, Discriminative generation and hydrogen modulation of the Dirac-Fermi polarons at graphene edges and atomic vacancies. Carbon 49(11), 3615–3621 (2011)

    Article  Google Scholar 

  50. W. Zhou, M. Bo, Y. Wang, Y. Huang, C. Li, C.Q. Sun, Local bond-electron-energy relaxation of Mo atomic clusters and solid skins RSC. Advances 5, 29663–29668 (2015)

    Google Scholar 

  51. M. Asscher, J. Carrazza, M. Khan, K. Lewis, G. Somorjai, The ammonia synthesis over rhenium single-crystal catalysts: kinetics, structure sensitivity, and effect of potassium and oxygen. J. Catal. 98(2), 277–287 (1986)

    Article  Google Scholar 

  52. A.S.Y. Chan, W. Chen, H. Wang, J.E. Rowe, T.E. Madey, Methanol reactions over oxygen-modified re surfaces: influence of surface structure and oxidation. J. Phys. Chem. B 108(38), 14643–14651 (2004)

    Article  Google Scholar 

  53. R. Ducros, J. Fusy, Core level binding energy shifts of rhenium surface atoms for a clean and oxygenated surface. J. Electron Spectrosc. Relat. Phenom. 42(4), 305–312 (1987)

    Article  Google Scholar 

  54. B. Johansson, N. Martensson, Core-level binding-energy shifts for the metallic elements. Phys. Rev. B 21(10), 4427–4457 (1980)

    Article  ADS  Google Scholar 

  55. D. Spanjaard, C. Guillot, M.-C. Desjonquères, G. Tréglia, J. Lecante, Surface core level spectroscopy of transition metals: a new tool for the determination of their surface structure. Surf. Sci. Rep. 5(1–2), 1–85 (1985)

    Article  ADS  Google Scholar 

  56. H. Wang, A.S.Y. Chan, W. Chen, P. Kaghazchi, T. Jacob, T.E. Madey, Facet stability in oxygen-induced nanofaceting of Re(123̅1). ACS Nano 1(5), 449–455 (2007)

    Article  Google Scholar 

  57. Y.G. Nie, J.S. Pan, W.T. Zheng, J. Zhou, C.Q. Sun, Atomic scale purification of Re surface kink states with and without oxygen chemisorption. J. Phys. Chem. C 115(15), 7450–7455 (2011)

    Article  Google Scholar 

  58. C.Q. Sun, Oxidation electronics: bond-band-barrier correlation and its applications. Prog. Mater Sci. 48(6), 521–685 (2003)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chang Q Sun .

Rights and permissions

Reprints and permissions

Copyright information

© 2020 The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Sun, C. (2020). Adatoms, Defects, and Kink Edges. In: Electron and Phonon Spectrometrics. Springer, Singapore. https://doi.org/10.1007/978-981-15-3176-7_5

Download citation

Publish with us

Policies and ethics