Skip to main content

Probing Methods: STM/S, PES, APECS, XAS, ZPS

  • Chapter
  • First Online:
Electron and Phonon Spectrometrics
  • 482 Accesses

Abstract

A set of analytical strategies has enabled atomistic, local, dynamic, and quantitative information on the bonding and electronic energetics induced by atomic under- and hetero-coordination. With the aids of the ZPS, one can purify the energy states with high precision without needing decomposition of the spectral peaks. APECS and NEXAS probe simultaneously the shifts of a core and the valence energy bands with provision of the screening and recharging information. Quantitative information includes the bond length, bond energy, core level shift, core charge entrapment and valence electron polarization, atomic cohesive energy, and binding energy density. Such a collection of information is fundamentally crucial to designing and synthesizing functional materials.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. C.Q. Sun, Relaxation of the Chemical Bond (Springer Ser. Chem. Phys.), vol 108 (Springer, Heidelberg, 2014), 807pp

    Google Scholar 

  2. C.Q. Sun, Surface and nanosolid core-level shift: Impact of atomic coordination-number imperfection. Phys. Rev. B 69(4), 045105 (2004)

    Article  ADS  Google Scholar 

  3. E. Abrahams, P.W. Anderson, D.C. Licciardello, T.V. Ramakrishnan, Scaling theory of localization: absence of quantum diffusion in two dimensions. Phys. Rev. Lett. 42(10), 673–676 (1979)

    Article  ADS  Google Scholar 

  4. R.A. Street, Hydrogenated Amorphous Silicon (Cambridge University Press, 1991)

    Google Scholar 

  5. C.Q. Sun, Dominance of broken bonds and nonbonding electrons at the nanoscale. Nanoscale 2(10), 1930–1961 (2010)

    Article  ADS  Google Scholar 

  6. F.M. Chua, Y. Kuk, P.J. Silverman, Oxygen chemisorption on Cu(110): an atomic view by scanning tunneling microscopy. Phys. Rev. Lett. 63(4), 386–389 (1989)

    Article  ADS  Google Scholar 

  7. C.Q. Sun, Oxidation electronics: bond-band-barrier correlation and its applications. Prog. Mater Sci. 48(6), 521–685 (2003)

    Article  Google Scholar 

  8. W. Jacob, V. Dose, A. Goldmann, Atomic adsorption of oxygen on Cu (111) and Cu (110). Appl. Phys. A 41(2), 145–150 (1986)

    Article  ADS  Google Scholar 

  9. D.-L. Feng, Photoemission spectroscopy: deep into the bulk. Nat. Mater. 10(10), 729–730 (2011)

    Article  ADS  Google Scholar 

  10. A. Damascelli, Z. Hussain, Z.-X. Shen, Angle-resolved photoemission studies of the cuprate superconductors. Rev. Mod. Phys. 75(2), 473 (2003)

    Article  ADS  Google Scholar 

  11. M.A. Omar, Elementary Solid State Physics: Principles and Applications (Addison-Wesley, New York, 1993)

    Google Scholar 

  12. D. Petrovykh, J. Sullivan, L. Whitman, Quantification of Discrete Oxide and Sulfur Layers on Sulfur-Passivated InAs by XPS. DTIC Document (2005)

    Google Scholar 

  13. X.J. Liu, M.L. Bo, X. Zhang, L. Li, Y.G. Nie, H. Tian, Y. Sun, S. Xu, Y. Wang, W. Zheng, C.Q. Sun, Coordination-resolved electron spectrometrics. Chem. Rev. 115(14), 6746–6810 (2015)

    Article  Google Scholar 

  14. W. Qin, Y. Wang, Y.L. Huang, Z.F. Zhou, C. Yang, C.Q. Sun, Bond order resolved 3d(5/2) and valence band chemical shifts of Ag surfaces and nanoclusters. J. Phys. Chem. A 116(30), 7892–7897 (2012)

    Article  Google Scholar 

  15. C.Q. Sun, L.K. Pan, H.L. Bai, Z.Q. Li, P. Wu, E.Y. Jiang, Effects of surface passivation and interfacial reaction on the size-dependent 2p-level shift of supported copper nanosolids. Acta Mater. 51(15), 4631–4636 (2003)

    Article  Google Scholar 

  16. G. Moretti, Auger parameter and Wagner plot in the characterization of chemical states by X-ray photoelectron spectroscopy: a review. J. Electron Spectrosc. Relat. Phenom. 95(2–3), 95–144 (1998)

    Article  Google Scholar 

  17. G. Moretti, The Wagner plot and the Auger parameter as tools to separate initial-and final-state contributions in X-ray photoemission spectroscopy. Surf. Sci. 618, 3–11 (2013)

    Article  ADS  Google Scholar 

  18. M. Satta, G. Moretti, Auger parameters and Wagner plots. J. Electron Spectrosc. Relat. Phenom. 178, 123–127 (2010)

    Article  Google Scholar 

  19. C.D. Wagner (eds.), Practical Surface Analysis by Auger and X-Ray Photoelectron Spectroscopy, 2nd edn, ed. by D. Briggs, M.P. Seah (Wiley, Chichester, 1990)

    Google Scholar 

  20. K. McEleney, C.M. Crudden, J.H. Horton, X-ray photoelectron spectroscopy and the Auger parameter as tools for characterization of Silica-supported Pd catalysts for the Suzuki-Miyaura reaction. J. Phys. Chem. C 113(5), 1901–1907 (2009)

    Article  Google Scholar 

  21. C.Q. Sun, L.K. Pan, T.P. Chen, X.W. Sun, S. Li, C.M. Li, Distinguishing the effect of crystal-field screening from the effect of valence recharging on the 2P3/2 and 3d5/2 level energies of nanostructured copper. Appl. Surf. Sci. 252(6), 2101–2107 (2006)

    Article  ADS  Google Scholar 

  22. M. Chergui, Emerging photon technologies for chemical dynamics. Faraday Discuss. 171, 11–40 (2014)

    Article  ADS  Google Scholar 

  23. M. Nagasaka, H. Yuzawa, N. Kosugi, Interaction between water and alkali metal ions and its temperature dependence revealed by oxygen K-edge X-ray absorption spectroscopy. J. Phys. Chem. B 121(48), 10957–10964 (2017)

    Article  Google Scholar 

  24. M. Nagasaka, H. Yuzawa, N. Kosugi, Development and application of in situ/operando soft X-ray transmission cells to aqueous solutions and catalytic and electrochemical reactions. J. Electron Spectrosc. Relat. Phenom. 200, 293–310 (2015)

    Article  Google Scholar 

  25. T. Balasubramanian, J.N. Andersen, L. Wallden, Surface-bulk core-level splitting in graphite. Phys. Rev. B 64, 205420 (2001)

    Article  ADS  Google Scholar 

  26. C.J. Nelin, F. Uhl, V. Staemmler, P.S. Bagus, Y. Fujimori, M. Sterrer, H. Kuhlenbeck, H.-J. Freund, Surface core-level binding energy shifts for MgO (100). Phys. Chem. Chem. Phys. 16(40), 21953–21956 (2014)

    Article  Google Scholar 

  27. D. Wallin, I. Shorubalko, H. Xu, A. Cappy, Nonlinear electrical properties of three-terminal junctions. Appl. Phys. Lett. 89(9), 092124 (2006)

    Article  ADS  Google Scholar 

  28. S. Hajati, S. Coultas, C. Blomfield, S. Tougaard, XPS imaging of depth profiles and amount of substance based on Tougaard’s algorithm. Surf. Sci. 600(15), 3015–3021 (2006)

    Article  ADS  Google Scholar 

  29. M.P. Seah, I.S. Gilmore, S.J. Spencer, Background subtraction -II. General behaviour of REELS and the Tougaard universal cross section in the removal of backgrounds in AES and XPS. Surf. Sci. 461(1–3), 1–15 (2000)

    Google Scholar 

  30. X.B. Zhou, J.L. Erskine, Surface core-level shifts at vicinal tungsten surfaces. Phys. Rev. B 79(15), 155422 (2009)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chang Q Sun .

Rights and permissions

Reprints and permissions

Copyright information

© 2020 The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Sun, C. (2020). Probing Methods: STM/S, PES, APECS, XAS, ZPS. In: Electron and Phonon Spectrometrics. Springer, Singapore. https://doi.org/10.1007/978-981-15-3176-7_3

Download citation

Publish with us

Policies and ethics