Skip to main content

Principles: Bond-Band-Barrier Correlation

  • Chapter
  • First Online:
Electron and Phonon Spectrometrics
  • 449 Accesses

Abstract

Oxide tetrahedral bond formation with orbital occupation by the shared bonding and nonbonding electron pairs determine uniquely the bond geometry, valence density of states, and the surface potential barrier. Parameterization of all involved parameters as a function of the bond angle and length and the origin of the SPB not only simplified the calculations but also importantly ensured the solution approaching true situations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. R. Jones, P.J. Jennings, O. Jepsen, Surface barrier in metals: a new model with application to W (001). Phys. Rev. B 29(12), 6474 (1984)

    Article  ADS  Google Scholar 

  2. G. Hitchen, S. Thurgate, P. Jennings, Determination of the surface-potential barrier of Cu(001) from low-energy-electron-diffraction fine structure. Phys. Rev. B 44(8), 3939 (1991)

    Article  ADS  Google Scholar 

  3. S.M. Thurgate, C. Sun, Very-low-energy electron-diffraction analysis of oxygen on Cu(001). Phys. Rev. B 51(4), 2410–2417 (1995)

    Article  ADS  Google Scholar 

  4. P. Jennings, S. Thurgate, G. Price, The analysis of LEED fine structure. Appl. Surf. Sci. 13(1), 180–189 (1982)

    Article  ADS  Google Scholar 

  5. A. Ermakov, E. Ciftlikli, S. Syssoev, I. Shuttleworth, B. Hinch, A surface work function measurement technique utilizing constant deflected grazing electron trajectories: Oxygen uptake on Cu(001). Rev. Sci. Instrum. 81(10), 105109 (2010)

    Article  ADS  Google Scholar 

  6. N.V. Smith, Phase analysis of image states and surface states associated with nearly-free-electron band gaps. Phys. Rev. B 32(6), 3549 (1985)

    Article  ADS  Google Scholar 

  7. J. Inkson, The effective exchange and correlation potential for metal surfaces. J. Phys. F: Met. Phys. 3(12), 2143 (1973)

    Article  ADS  Google Scholar 

  8. G. Malmström, J. Rundgren, A program for calculation of the reflection and transmission of electrons through a surface potential barrier. Comput. Phys. Commun. 19(2), 263–270 (1980)

    Article  ADS  Google Scholar 

  9. M. Lindroos, H. Pfnür, D. Menzel, Theoretical and experimental study of the unoccupied electronic band structure of Ru (001) by electron reflection. Phys. Rev. B 33(10), 6684 (1986)

    Article  ADS  Google Scholar 

  10. C. Bai, Scanning tunneling microscopy and its application. vol. 32 (Springer, 2000)

    Google Scholar 

  11. H. Rotermund, Investigation of dynamic processes in adsorbed layers by photoemission electron microscopy (PEEM). Surf. Sci. 283(1), 87–100 (1993)

    Article  ADS  Google Scholar 

  12. U. Döbler, K. Baberschke, J. Stöhr, D. Outka, Structure of c (2 × 2) oxygen on Cu(100): A surface extended X-ray absorption fine-structure study. Phys. Rev. B 31(4), 2532 (1985)

    Article  ADS  Google Scholar 

  13. G. Ertl, Reactions at well-defined surfaces. Surf. Sci. 299, 742–754 (1994)

    Article  ADS  Google Scholar 

  14. W. Jacob, V. Dose, A. Goldmann, Atomic adsorption of oxygen on Cu(111) and Cu(110). Appl. Phys. A 41(2), 145–150 (1986)

    Article  ADS  Google Scholar 

  15. Y. Kuk, F. Chua, P. Silverman, J. Meyer, O chemisorption on Cu(110) by scanning tunneling microscopy. Phys. Rev. B 41(18), 12393 (1990)

    Article  ADS  Google Scholar 

  16. J. Nørskov, Theory of adsorption and adsorbate-induced reconstruction. Surf. Sci. 299, 690–705 (1994)

    Article  ADS  Google Scholar 

  17. K.W. Jacobsen, Theory of the oxygen-induced restructuring of Cu(110) and Cu(100) surfaces. Phys. Rev. Lett. 65(14), 1788 (1990)

    Article  ADS  Google Scholar 

  18. H. Zeng, K. Mitchell, Further LEED investigations of missing row models for the Cu(100) − (22 × 2) R45°-O surface structure. Surf. Sci. 239(3), L571–L578 (1990)

    Article  ADS  Google Scholar 

  19. N. Lang, Vacuum tunneling current from an adsorbed atom. Phys. Rev. Lett. 55(2), 230 (1985)

    Article  ADS  Google Scholar 

  20. T.N. Rhodin, G. Ertl, The nature of the surface chemical bond (North-Holland Publishing Company: Sole Distributor for the USA and Canada Elsevier, North-Holland, 1979)

    Google Scholar 

  21. F. Besenbacher, J.K. Nørskov, Oxygen chemisorption on metal surfaces: general trends for Cu, Ni and Ag. Prog. Surf. Sci. 44(1), 5–66 (1993)

    Article  ADS  Google Scholar 

  22. M. Van Hove, G. Somorjai, Adsorption and adsorbate-induced restructuring: a LEED perspective. Surf. Sci. 299, 487–501 (1994)

    Article  ADS  Google Scholar 

  23. C.Q. Sun, O–Cu(001): II. VLEED quantification of the four-stage Cu3O2 bonding kinetics. Surf. Rev. Lett. 8(6): 703–734 (2001)

    Google Scholar 

  24. C.Q. Sun, O–Cu(001): I. Binding the signatures of LEED, STM and PES in a bond-forming way. Surf. Rev. Lett. 8(3–4): 367-402 (2001)

    Google Scholar 

  25. L. Pauling, The Nature of the Chemical Bond. 3rd edn. (Cornell University Press, Ithaca, NY, 1960)

    Google Scholar 

  26. C.Q. Sun, C.L. Bai, A model of bonding between oxygen and metal surfaces. J. Phys. Chem. Solids 58(6), 903–912 (1997)

    Article  ADS  Google Scholar 

  27. X. Zhang, Y. Huang, Z. Ma, Y. Zhou, W. Zheng, J. Zhou, C.Q. Sun, A common supersolid skin covering both water and ice. Phys. Chem. Chem. Phys. 16(42), 22987–22994 (2014)

    Article  Google Scholar 

  28. C.Q. Sun, Relaxation of the Chemical Bond. Springer Series in Chemical Physics, vol. 108 (Springer, Heidelberg, 2014), 807p

    Google Scholar 

  29. C.Q. Sun, Y. Sun, The Attribute of Water: Single Notion, Multiple Myths. Springer Series in Chemical Physics, vol. 113 (Springer, Heidelberg, 2016). 494 pp

    Google Scholar 

  30. C.Q. Sun, Oxidation electronics: bond-band-barrier correlation and its applications. Prog. Mater Sci. 48(6), 521–685 (2003)

    Article  Google Scholar 

  31. C.Q. Sun, Size dependence of nanostructures: impact of bond order deficiency. Prog. Solid State Chem. 35(1), 1–159 (2007)

    Article  Google Scholar 

  32. J.D. Jorgensen, Defects and superconductivity in the copper oxides. Phys. Today 44, 34–40 (1991)

    Article  Google Scholar 

  33. H. Kamimura, Y. Suwa, New theoretical view for high temperature superconductivity. J. Phys. Soc. Jpn. 62(10), 3368–3371 (1993)

    Article  ADS  Google Scholar 

  34. V.M. Goldschmidt, Crystal structure and chemical correlation. Berichte Der Deutschen Chemischen Gesellschaft 60, 1263–1296 (1927)

    Article  Google Scholar 

  35. D. Adams, H. Nielsen, J. Andersen, I. Stensgaard, R. Feidenhans, J. Sørensen, Oscillatory relaxation of the Cu(110) surface. Phys. Rev. Lett. 49(9), 669 (1982)

    Article  ADS  Google Scholar 

  36. P. Jennings, C.Q. Sun, Low-energy electron diffraction, in Smart Surface Analysis Methods in Materials Science, vol. 23, ed. by J. O’Connor, B. Sexton, R.S. Smart (Springer, 2013)

    Google Scholar 

  37. N. Lang, Theory of single-atom imaging in the scanning tunneling microscope, in Scanning Tunneling Microscopy (Springer, 1986), pp. 75–78

    Google Scholar 

  38. C.Q. Sun, A model of bonding and band-forming for oxides and nitrides. Appl. Phys. Lett. 72(14), 1706–1708 (1998)

    Article  ADS  Google Scholar 

  39. A.P. Cole, D.E. Root, P. Mukherjee, E.I. Solomon, T. Stack, A trinuclear intermediate in the copper-mediated reduction of O2: four electrons from three coppers. Science 273(5283), 1848 (1996)

    Article  ADS  Google Scholar 

  40. F.M. Chua, Y. Kuk, P.J. Silverman, Oxygen chemisorption on Cu(110): An atomic view by scanning tunneling microscopy. Phys. Rev. Lett. 63(4), 386–389 (1989)

    Article  ADS  Google Scholar 

  41. F. Jensen, F. Besenbacher, E. Laegsgaard, I. Stensgaard, Dynamics of oxygen-induced reconstruction on Cu(100) studied by scanning tunneling microscopy. Phys. Rev. B 42(14), 9206–9209 (1990)

    Article  ADS  Google Scholar 

  42. C.Q. Sun, C.L. Bai, Modelling of non-uniform electrical potential barriers for metal surfaces with chemisorbed oxygen. J. Phys. Condens. Matter 9(27), 5823–5836 (1997)

    Article  ADS  Google Scholar 

  43. H. Rotermund, J. Lauterbach, G. Haas, The formation of subsurface oxygen on Pt(100). Appl. Phys. A 57(6), 507–511 (1993)

    Article  ADS  Google Scholar 

  44. J. Lauterbach, K. Asakura, H. Rotermund, Subsurface oxygen on Pt(100): kinetics of the transition from chemisorbed to subsurface state and its reaction with CO, H2 and O2. Surf. Sci. 313(1–2), 52–63 (1994)

    Article  ADS  Google Scholar 

  45. J. Lauterbach, H. Rotermund, Spatio-temporal pattern formation during the catalytic CO-oxidation on Pt(100). Surf. Sci. 311(1), 231–246 (1994)

    Article  ADS  Google Scholar 

  46. J. Boulliard, M. Sotto, On the relations between surface structures and morphology of crystals. J. Cryst. Growth 110(4), 878–888 (1991)

    Article  ADS  Google Scholar 

  47. R. Dietz, E. McRae, R. Campbell, Saturation of the image potential observed in low-energy electron reflection at Cu(001) surface. Phys. Rev. Lett. 45(15), 1280 (1980)

    Article  ADS  Google Scholar 

  48. M. Read, A. Christopoulos, Resonant electron surface-barrier scattering on W(001). Phys. Rev. B 37(17), 10407 (1988)

    Article  ADS  Google Scholar 

  49. A. Adnot, J. Carette, High-resolution study of low-energy-electron-diffraction threshold effects on W(001) surface. Phys. Rev. Lett. 38(19), 1084 (1977)

    Article  ADS  Google Scholar 

  50. H. Pfnür, M. Lindroos, D. Menzel, Investigation of adsorbates with low energy electron diffraction at very low energies (VLEED). Surf. Sci. 248(1–2), 1–10 (1991)

    Article  ADS  Google Scholar 

  51. J. Demuth, D. Jepsen, P. Marcus, Comments regarding the determination of the structure of c (2 × 2) sulfur overlayers on Ni(001). Surf. Sci. 45(2), 733–739 (1974)

    Article  ADS  Google Scholar 

  52. T. Fujita, Y. Okawa, Y. Matsumoto, K.-I. Tanaka, Phase boundaries of nanometer scale c (2 × 2)-O domains on the Cu(100) surface. Phys. Rev. B 54(3), 2167 (1996)

    Article  ADS  Google Scholar 

  53. E. McRae, Electron diffraction at crystal surfaces: I. Generalization of Darwin’s dynamical theory. Surf. Sci. 11(3): 479–491 (1968)

    Google Scholar 

  54. R.O. Jones, P.J. Jennings, LEED fine structure: origins and applications. Surf. Sci. Rep. 9(4), 165–196 (1988)

    Article  ADS  Google Scholar 

  55. J. Pendry, G.P. Alldredge, Low energy electron diffraction: the theory and its application to determination of surface structure. Phys. Today 30, 57 (1977)

    Article  Google Scholar 

  56. M. Nishijima, M. Jo, Y. Kuwahara, M. Onchi, Electron energy loss spectra of a Pd(110) clean surface. Solid State Commun. 58(1), 75–77 (1986)

    Article  ADS  Google Scholar 

  57. E. McRae, C. Caldwell, Absorptive potential in nickel from very low energy electron reflection at Ni(001) surface. Surf. Sci. 57(2), 766–770 (1976)

    Article  ADS  Google Scholar 

  58. C.Q. Sun, Spectral sensitivity of the VLEED to the bonding geometry and the potential barrier of the O–Cu(001) surface. Vacuum 48(5), 491–498 (1997)

    Article  ADS  Google Scholar 

  59. C. Hitchen, S. Thurgate, P. Jennings, A LEED fine structure study of oxygen adsorption on Cu(001) and Cu(111). Aust. J. Phys. 43(5), 519–534 (1990)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chang Q Sun .

Rights and permissions

Reprints and permissions

Copyright information

© 2020 The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Sun, C. (2020). Principles: Bond-Band-Barrier Correlation. In: Electron and Phonon Spectrometrics. Springer, Singapore. https://doi.org/10.1007/978-981-15-3176-7_14

Download citation

Publish with us

Policies and ethics