Skip to main content

Biomechanics of Skeletal Muscle and Tendon

  • Chapter
  • First Online:
Frontiers in Orthopaedic Biomechanics
  • 1446 Accesses

Abstract

Skeletal muscle is the biological tissue able to transform chemical energy to mechanical energy. Skeletal muscle has three basic performance parameters that describe its function: structure and composition, force production, and movement production. From a mechanical perspective, the musculotendinous unit behaves as an elastic-contractile component (muscle fibers) in series with another elastic component (tendons) to move human body. Due to their unique hierarchical structure and composition, tendons possess characteristic biomechanical properties, including high mechanical strength and viscoelasticity, which enable them to carry and transmit mechanical loads (muscular forces) effectively. Tendons are also mechano-responsive by adaptively changing their structure and function in response to altered mechanical loading conditions. The production of movement and force is the mechanical outcome of skeletal muscle contraction. The focus of this chapter is on the biomechanical behavior of skeletal muscle and tendon as they contribute to function of the musculoskeletal system.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Kjaer M. Role of extracellular matrix in adaptation of tendon and skeletal muscle to mechanical loading. Physiol Rev. 2004;84(2):649–98.

    Article  Google Scholar 

  2. McCormick RJ. The flexibility of the collagen compartment of muscle. Meat Sci. 1994;36(1–2):79–91.

    Article  Google Scholar 

  3. Purslow PP. The structure and functional significance of variations in the connective tissue within muscle. Comp Biochem Physiol A Mol Integr Physiol. 2002;133(4):947–66.

    Article  Google Scholar 

  4. Turrina A, Martinez-Gonzalez MA, Stecco C. The muscular force transmission system: role of the intramuscular connective tissue. J Bodyw Mov Ther. 2013;17(1):95–102.

    Article  Google Scholar 

  5. Archile-Contreras AC, Mandell IB, Purslow PP. Phenotypic differences in matrix metalloproteinase 2 activity between fibroblasts from 3 bovine muscles. J Anim Sci. 2010;88(12):4006–15.

    Article  Google Scholar 

  6. Chiquet M, Gelman L, Lutz R, Maier S. From mechanotransduction to extracellular matrix gene expression in fibroblasts. Biochim Biophys Acta. 2009;1793(5):911–20.

    Article  Google Scholar 

  7. Guerin CW, Holland PC. Synthesis and secretion of matrix-degrading metalloproteases by human skeletal muscle satellite cells. Dev Dyn. 1995;202(1):91–9.

    Article  Google Scholar 

  8. Hoedt A, Christensen B, Nellemann B, Mikkelsen UR, Hansen M, Schjerling P, et al. Satellite cell response to erythropoietin treatment and endurance training in healthy young men. J Physiol. 2016;594(3):727–43.

    Article  Google Scholar 

  9. Crameri RM, Langberg H, Magnusson P, Jensen CH, Schroder HD, Olesen JL, et al. Changes in satellite cells in human skeletal muscle after a single bout of high intensity exercise. J Physiol. 2004;558(Pt 1):333–40.

    Article  Google Scholar 

  10. Light N, Champion AE. Characterization of muscle epimysium, perimysium and endomysium collagens. Biochem J. 1984;219(3):1017–26.

    Article  Google Scholar 

  11. Fitch JM, Gross J, Mayne R, Johnson-Wint B, Linsenmayer TF. Organization of collagen types I and V in the embryonic chicken cornea: monoclonal antibody studies. Proc Natl Acad Sci U S A. 1984;81(9):2791–5.

    Article  Google Scholar 

  12. Listrat A, Lethias C, Hocquette JF, Renand G, Menissier F, Geay Y, et al. Age-related changes and location of types I, III, XII and XIV collagen during development of skeletal muscles from genetically different animals. Histochem J. 2000;32(6):349–56.

    Article  Google Scholar 

  13. Gillies AR, Lieber RL. Structure and function of the skeletal muscle extracellular matrix. Muscle Nerve. 2011;44(3):318–31.

    Article  Google Scholar 

  14. Eklund L, Piuhola J, Komulainen J, Sormunen R, Ongvarrasopone C, Fassler R, et al. Lack of type XV collagen causes a skeletal myopathy and cardiovascular defects in mice. Proc Natl Acad Sci U S A. 2001;98(3):1194–9.

    Article  Google Scholar 

  15. Grounds MD, Sorokin L, White J. Strength at the extracellular matrix-muscle interface. Scand J Med Sci Sports. 2005;15(6):381–91.

    Article  Google Scholar 

  16. Whitelock JM, Murdoch AD, Iozzo RV, Underwood PA. The degradation of human endothelial cell-derived perlecan and release of bound basic fibroblast growth factor by stromelysin, collagenase, plasmin, and heparanases. J Biol Chem. 1996;271(17):10079–86.

    Article  Google Scholar 

  17. Hedbom E, Heinegard D. Binding of fibromodulin and decorin to separate sites on fibrillar collagens. J Biol Chem. 1993;268(36):27307–12.

    Article  Google Scholar 

  18. Ameye L, Young MF. Mice deficient in small leucine-rich proteoglycans: novel in vivo models for osteoporosis, osteoarthritis, Ehlers-Danlos syndrome, muscular dystrophy, and corneal diseases. Glycobiology. 2002;12(9):107R–16R.

    Article  Google Scholar 

  19. Sanes JR. The basement membrane/basal lamina of skeletal muscle. J Biol Chem. 2003;278(15):12601–4.

    Article  Google Scholar 

  20. Uaesoontrachoon K, Yoo HJ, Tudor EM, Pike RN, Mackie EJ, Pagel CN. Osteopontin and skeletal muscle myoblasts: association with muscle regeneration and regulation of myoblast function in vitro. Int J Biochem Cell Biol. 2008;40(10):2303–14.

    Article  Google Scholar 

  21. Bradshaw AD. The role of SPARC in extracellular matrix assembly. J Cell Commun Signal. 2009;3(3–4):239–46.

    Article  Google Scholar 

  22. Malek MH, Olfert IM. Global deletion of thrombospondin-1 increases cardiac and skeletal muscle capillarity and exercise capacity in mice. Exp Physiol. 2009;94(6):749–60.

    Article  Google Scholar 

  23. Cotman SL, Halfter W, Cole GJ. Identification of extracellular matrix ligands for the heparan sulfate proteoglycan agrin. Exp Cell Res. 1999;249(1):54–64.

    Article  Google Scholar 

  24. Meyer GA, Lieber RL. Elucidation of extracellular matrix mechanics from muscle fibers and fiber bundles. J Biomech. 2011;44(4):771–3.

    Article  Google Scholar 

  25. Herbert R. The passive mechanical properties of muscle and their adaptations to altered patterns of use. Aust J Physiother. 1988;34(3):141–9.

    Article  Google Scholar 

  26. Magnusson SP. Passive properties of human skeletal muscle during stretch maneuvers. A review. Scand J Med Sci Sports. 1998;8(2):65–77.

    Article  Google Scholar 

  27. Nordez A, Gennisson JL, Casari P, Catheline S, Cornu C. Characterization of muscle belly elastic properties during passive stretching using transient elastography. J Biomech. 2008;41(10):2305–11.

    Article  Google Scholar 

  28. Gajdosik RL. Passive extensibility of skeletal muscle: review of the literature with clinical implications. Clin Biomech (Bristol, Avon). 2001;16(2):87–101.

    Article  Google Scholar 

  29. Lieber RL, Ward SR. Skeletal muscle design to meet functional demands. Philos Trans R Soc Lond B Biol Sci. 2011;366(1570):1466–76.

    Article  Google Scholar 

  30. Herbert RD, Moseley AM, Butler JE, Gandevia SC. Change in length of relaxed muscle fascicles and tendons with knee and ankle movement in humans. J Physiol. 2002;539(Pt 2):637–45.

    Article  Google Scholar 

  31. Zatsiorsky VM, Prilutsky BI. Biomechanics of skeletal muscles. Champaign, IL: Human Kinetics; 2012.

    Book  Google Scholar 

  32. Wang K, McCarter R, Wright J, Beverly J, Ramirez-Mitchell R. Viscoelasticity of the sarcomere matrix of skeletal muscles. The titin-myosin composite filament is a dual-stage molecular spring. Biophys J. 1993;64(4):1161–77.

    Article  Google Scholar 

  33. Toursel T, Stevens L, Granzier H, Mounier Y. Passive tension of rat skeletal soleus muscle fibers: effects of unloading conditions. J Appl Physiol (Bethesda, MD: 1985). 2002;92(4):1465–72.

    Article  Google Scholar 

  34. Rehorn MR, Schroer AK, Blemker SS. The passive properties of muscle fibers are velocity dependent. J Biomech. 2014;47(3):687–93.

    Article  Google Scholar 

  35. Ramos J, Lynch S, Jones D, Degens H. Hysteresis in muscle. Int J Bifurc Chaos. 2017;27(1):1730003.

    Article  Google Scholar 

  36. Gervasi M, Sisti D, Amatori S, Andreazza M, Benelli P, Sestili P, et al. Muscular viscoelastic characteristics of athletes participating in the European Master Indoor Athletics Championship. Eur J Appl Physiol. 2017;117(8):1739–46.

    Article  Google Scholar 

  37. Ryan ED, Herda TJ, Costa PB, Walter AA, Hoge KM, Stout JR, et al. Viscoelastic creep in the human skeletal muscle–tendon unit. Eur J Appl Physiol. 2010;108(1):207–11.

    Article  Google Scholar 

  38. Knudson D. Fundamentals of biomechanics. J Sports Sci Med. 2007;6(3):384.

    Google Scholar 

  39. Proske U, Morgan DL, Gregory JE. Thixotropy in skeletal muscle and in muscle spindles: a review. Prog Neurobiol. 1993;41(6):705–21.

    Article  Google Scholar 

  40. Proske U, Tsay A, Allen T. Muscle thixotropy as a tool in the study of proprioception. Exp Brain Res. 2014;232(11):3397–412.

    Article  Google Scholar 

  41. Sakanaka TE, Lakie M, Reynolds RF. Sway-dependent changes in standing ankle stiffness caused by muscle thixotropy. J Physiol. 2016;594(3):781–93.

    Article  Google Scholar 

  42. Silva MET, Brandao S, Parente MPL, Mascarenhas T, Natal Jorge RM. Biomechanical properties of the pelvic floor muscles of continent and incontinent women using an inverse finite element analysis. Comput Methods Biomech Biomed Eng. 2017;20(8):842–52.

    Article  Google Scholar 

  43. Hill AV. The heat of shortening and the dynamic constants of muscle. Proc R Soc Lond B Biol Sci. 1938;126(843):136–95.

    Article  Google Scholar 

  44. Biewener AA, Wakeling JM, Lee SS, Arnold AS. Validation of Hill-type muscle models in relation to neuromuscular recruitment and force-velocity properties: predicting patterns of in vivo muscle force. Integr Comp Biol. 2014;54(6):1072–83.

    Article  Google Scholar 

  45. Harry JD, Ward AW, Heglund NC, Morgan DL, McMahon TA. Cross-bridge cycling theories cannot explain high-speed lengthening behavior in frog muscle. Biophys J. 1990;57(2):201–8.

    Article  Google Scholar 

  46. Westing SH, Seger JY, Thorstensson A. Effects of electrical stimulation on eccentric and concentric torque-velocity relationships during knee extension in man. Acta Physiol Scand. 1990;140(1):17–22.

    Article  Google Scholar 

  47. Voukelatos D, Kirkland M, Pain MTG. Training induced changes in quadriceps activation during maximal eccentric contractions. J Biomech. 2018;73:66–72.

    Article  Google Scholar 

  48. Haeufle DF, Gunther M, Bayer A, Schmitt S. Hill-type muscle model with serial damping and eccentric force-velocity relation. J Biomech. 2014;47(6):1531–6.

    Article  Google Scholar 

  49. Jones DA. Changes in the force-velocity relationship of fatigued muscle: implications for power production and possible causes. J Physiol. 2010;588(Pt 16):2977–86.

    Article  Google Scholar 

  50. Allen DG, Lamb GD, Westerblad H. Skeletal muscle fatigue: cellular mechanisms. Physiol Rev. 2008;88(1):287–332.

    Article  Google Scholar 

  51. Ruiter CJ, Didden WJ, Jones DA, Haan AD. The force-velocity relationship of human adductor pollicis muscle during stretch and the effects of fatigue. J Physiol. 2000;526(Pt 3):671–81.

    Article  Google Scholar 

  52. Pearson AM. Muscle growth and exercise. Crit Rev Food Sci Nutr. 1990;29(3):167–96.

    Article  Google Scholar 

  53. Tonson A, Ratel S, Le Fur Y, Cozzone P, Bendahan D. Effect of maturation on the relationship between muscle size and force production. Med Sci Sports Exerc. 2008;40(5):918–25.

    Article  Google Scholar 

  54. Krivickas LS, Dorer DJ, Ochala J, Frontera WR. Relationship between force and size in human single muscle fibres. Exp Physiol. 2011;96(5):539–47.

    Article  Google Scholar 

  55. Arnold EM, Hamner SR, Seth A, Millard M, Delp SL. How muscle fiber lengths and velocities affect muscle force generation as humans walk and run at different speeds. J Exp Biol. 2013;216(Pt 11):2150–60.

    Google Scholar 

  56. Kawakami Y, Akima H, Kubo K, Muraoka Y, Hasegawa H, Kouzaki M, et al. Changes in muscle size, architecture, and neural activation after 20 days of bed rest with and without resistance exercise. Eur J Appl Physiol. 2001;84(1–2):7–12.

    Article  Google Scholar 

  57. Buchthal F, Schmalbruch H. Motor unit of mammalian muscle. Physiol Rev. 1980;60(1):90–142.

    Article  Google Scholar 

  58. Fuglevand AJ. Mechanical properties and neural control of human hand motor units. J Physiol. 2011;589(Pt 23):5595–602.

    Article  Google Scholar 

  59. Feinstein B, Lindegard B, Nyman E, Wohlfart G. Morphologic studies of motor units in normal human muscles. Acta Anat (Basel). 1955;23(2):127–42.

    Article  Google Scholar 

  60. McComas AJ, Fawcett PR, Campbell MJ, Sica RE. Electrophysiological estimation of the number of motor units within a human muscle. J Neurol Neurosurg Psychiatry. 1971;34(2):121–31.

    Article  Google Scholar 

  61. De Luca CJ, Erim Z. Common drive of motor units in regulation of muscle force. Trends Neurosci. 1994;17(7):299–305.

    Article  Google Scholar 

  62. Akataki K, Mita K, Watakabe M, Ito K. Age-related change in motor unit activation strategy in force production: a mechanomyographic investigation. Muscle Nerve. 2002;25(4):505–12.

    Article  Google Scholar 

  63. Henneman E, Somjen G, Carpenter DO. Functional significance of cell size in spinal motoneurons. J Neurophysiol. 1965;28:560–80.

    Article  Google Scholar 

  64. De Luca CJ, LeFever RS, McCue MP, Xenakis AP. Control scheme governing concurrently active human motor units during voluntary contractions. J Physiol. 1982;329:129–42.

    Article  Google Scholar 

  65. De Luca CJ, Contessa P. Hierarchical control of motor units in voluntary contractions. J Neurophysiol. 2012;107(1):178–95.

    Article  Google Scholar 

  66. De Luca CJ, Hostage EC. Relationship between firing rate and recruitment threshold of motoneurons in voluntary isometric contractions. J Neurophysiol. 2010;104(2):1034–46.

    Article  Google Scholar 

  67. De Luca CJ. Control properties of motor units. J Exp Biol. 1985;115:125–36.

    Article  Google Scholar 

  68. Sosnoff JJ, Vaillancourt DE, Larsson L, Newell KM. Coherence of EMG activity and single motor unit discharge patterns in human rhythmical force production. Behav Brain Res. 2005;158(2):301–10.

    Article  Google Scholar 

  69. Elble RJ, Randall JE. Motor-unit activity responsible for 8- to 12-Hz component of human physiological finger tremor. J Neurophysiol. 1976;39(2):370–83.

    Article  Google Scholar 

  70. Farmer SF, Bremner FD, Halliday DM, Rosenberg JR, Stephens JA. The frequency content of common synaptic inputs to motoneurones studied during voluntary isometric contraction in man. J Physiol. 1993;470:127–55.

    Article  Google Scholar 

  71. Scott W, Stevens J, Binder-Macleod SA. Human skeletal muscle fiber type classifications. Phys Ther. 2001;81(11):1810–6.

    Article  Google Scholar 

  72. Roy RR, Talmadge RJ, Hodgson JA, Oishi Y, Baldwin KM, Edgerton VR. Differential response of fast hindlimb extensor and flexor muscles to exercise in adult spinalized cats. Muscle Nerve. 1999;22(2):230–41.

    Article  Google Scholar 

  73. Andersen JL, Terzis G, Kryger A. Increase in the degree of coexpression of myosin heavy chain isoforms in skeletal muscle fibers of the very old. Muscle Nerve. 1999;22(4):449–54.

    Article  Google Scholar 

  74. Staron RS. Human skeletal muscle fiber types: delineation, development, and distribution. Can J Appl Physiol. 1997;22(4):307–27.

    Article  Google Scholar 

  75. Nickisch F. Anatomy of the achilles tendon. In: Nunley JA, editor. The achilles tendon: treatment and rehabilitation. New York: Springer New York; 2009. p. 2–16.

    Google Scholar 

  76. Thorpe CT, Birch HL, Clegg PD, Screen HRC. Chapter 1—Tendon physiology and mechanical behavior: structure–function relationships. Tendon regeneration. Boston, MA: Academic Press; 2015. p. 3–39.

    Google Scholar 

  77. Liu W, Wang B, Cao Y. Chapter 14—Engineered tendon repair and regeneration. Tendon regeneration. Boston, MA: Academic Press; 2015. p. 381–412.

    Google Scholar 

  78. Benjamin M, Ralphs JR. Fibrocartilage in tendons and ligaments—an adaptation to compressive load. J Anat. 1998;193(Pt 4):481–94.

    Article  Google Scholar 

  79. Smith RKW, Goodship AE. Chapter 2.3—Tendon and ligament physiology: responses to exercise and training A2—Hinchcliff, Kenneth W. In: Geor RJ, Kaneps AJ, editors. Equine exercise physiology. Edinburgh: W.B. Saunders; 2008. p. 106–31.

    Chapter  Google Scholar 

  80. Banes AJ, Donlon K, Link GW, Gillespie Y, Bevin AG, Peterson HD, et al. Cell populations of tendon: a simplified method for isolation of synovial cells and internal fibroblasts: confirmation of origin and biologic properties. J Orthop Res. 1988;6(1):83–94.

    Article  Google Scholar 

  81. Goodship AE, Birch HL, Wilson AM. The pathobiology and repair of tendon and ligament injury. Vet Clin North Am Equine Pract. 1994;10(2):323–49.

    Article  Google Scholar 

  82. Russell JE, Manske PR. Collagen synthesis during primate flexor tendon repair in vitro. J Orthop Res. 1990;8(1):13–20.

    Article  Google Scholar 

  83. Gelberman RH, Manske PR, Vande Berg JS, Lesker PA, Akeson WH. Flexor tendon repair in vitro: a comparative histologic study of the rabbit, chicken, dog, and monkey. J Orthop Res. 1984;2(1):39–48.

    Article  Google Scholar 

  84. Cadby JA, Buehler E, Godbout C, van Weeren PR, Snedeker JG. Differences between the cell populations from the peritenon and the tendon core with regard to their potential implication in tendon repair. PLoS One. 2014;9(3):e92474.

    Article  Google Scholar 

  85. Bi Y, Ehirchiou D, Kilts TM, Inkson CA, Embree MC, Sonoyama W, et al. Identification of tendon stem/progenitor cells and the role of the extracellular matrix in their niche. Nat Med. 2007;13(10):1219–27.

    Article  Google Scholar 

  86. Mienaltowski MJ, Adams SM, Birk DE. Regional differences in stem cell/progenitor cell populations from the mouse achilles tendon. Tissue Eng A. 2013;19(1–2):199–210.

    Article  Google Scholar 

  87. Tan Q, Lui PP, Rui YF. Effect of in vitro passaging on the stem cell-related properties of tendon-derived stem cells-implications in tissue engineering. Stem Cells Dev. 2012;21(5):790–800.

    Article  Google Scholar 

  88. Gaspar D, Spanoudes K, Holladay C, Pandit A, Zeugolis D. Progress in cell-based therapies for tendon repair. Adv Drug Deliv Rev. 2015;84:240–56.

    Article  Google Scholar 

  89. Humphrey JD, Dufresne ER, Schwartz MA. Mechanotransduction and extracellular matrix homeostasis. Nat Rev Mol Cell Biol. 2014;15(12):802–12.

    Article  Google Scholar 

  90. Kastelic J, Galeski A, Baer E. The multicomposite structure of tendon. Connect Tissue Res. 1978;6(1):11–23.

    Article  Google Scholar 

  91. Banos CC, Thomas AH, Kuo CK. Collagen fibrillogenesis in tendon development: current models and regulation of fibril assembly. Birth Defects Res C Embryo Today Rev. 2008;84(3):228–44.

    Article  Google Scholar 

  92. Ahmed AS, Schizas N, Li J, Ahmed M, Ostenson CG, Salo P, et al. Type 2 diabetes impairs tendon repair after injury in a rat model. J Appl Physiol (Bethesda, MD: 1985). 2012;113(11):1784–91.

    Article  Google Scholar 

  93. Eriksen HA, Pajala A, Leppilahti J, Risteli J. Increased content of type III collagen at the rupture site of human Achilles tendon. J Orthop Res. 2002;20(6):1352–7.

    Article  Google Scholar 

  94. Halper J. Proteoglycans and diseases of soft tissues. Adv Exp Med Biol. 2014;802:49–58.

    Article  Google Scholar 

  95. Reed CC, Iozzo RV. The role of decorin in collagen fibrillogenesis and skin homeostasis. Glycoconj J. 2002;19(4–5):249–55.

    Article  Google Scholar 

  96. Thorpe CT, Birch HL, Clegg PD, Screen HR. The role of the non-collagenous matrix in tendon function. Int J Exp Pathol. 2013;94(4):248–59.

    Article  Google Scholar 

  97. Docheva D, Hunziker EB, Fassler R, Brandau O. Tenomodulin is necessary for tenocyte proliferation and tendon maturation. Mol Cell Biol. 2005;25(2):699–705.

    Article  Google Scholar 

  98. Alberton P, Dex S, Popov C, Shukunami C, Schieker M, Docheva D. Loss of tenomodulin results in reduced self-renewal and augmented senescence of tendon stem/progenitor cells. Stem Cells Dev. 2015;24(5):597–609.

    Article  Google Scholar 

  99. Kardon G. Muscle and tendon morphogenesis in the avian hind limb. Development (Cambridge, England). 1998;125(20):4019–32.

    Article  Google Scholar 

  100. Jarvinen TA, Kannus P, Jarvinen TL, Jozsa L, Kalimo H, Jarvinen M. Tenascin-C in the pathobiology and healing process of musculoskeletal tissue injury. Scand J Med Sci Sports. 2000;10(6):376–82.

    Article  Google Scholar 

  101. Forsberg E, Hirsch E, Frohlich L, Meyer M, Ekblom P, Aszodi A, et al. Skin wounds and severed nerves heal normally in mice lacking tenascin-C. Proc Natl Acad Sci U S A. 1996;93(13):6594–9.

    Article  Google Scholar 

  102. Erickson HP. A tenascin knockout with a phenotype. Nat Genet. 1997;17(1):5–7.

    Article  Google Scholar 

  103. Kannus P, Jozsa L, Jarvinen TA, Jarvinen TL, Kvist M, Natri A, et al. Location and distribution of non-collagenous matrix proteins in musculoskeletal tissues of rat. Histochem J. 1998;30(11):799–810.

    Article  Google Scholar 

  104. Riley GP, Harrall RL, Cawston TE, Hazleman BL, Mackie EJ. Tenascin-C and human tendon degeneration. Am J Pathol. 1996;149(3):933–43.

    Google Scholar 

  105. Sigrist RMS, Liau J, Kaffas AE, Chammas MC, Willmann JK. Ultrasound elastography: review of techniques and clinical applications. Theranostics. 2017;7(5):1303–29.

    Article  Google Scholar 

  106. Proske U, Morgan DL. Tendon stiffness: methods of measurement and significance for the control of movement. A review. J Biomech. 1987;20(1):75–82.

    Article  Google Scholar 

  107. Kubo K, Kanehisa H, Fukunaga T. Effects of different duration isometric contractions on tendon elasticity in human quadriceps muscles. J Physiol. 2001;536(Pt 2):649–55.

    Article  Google Scholar 

  108. Sarvazyan AP, Rudenko OV, Swanson SD, Fowlkes JB, Emelianov SY. Shear wave elasticity imaging: a new ultrasonic technology of medical diagnostics. Ultrasound Med Biol. 1998;24(9):1419–35.

    Article  Google Scholar 

  109. Eby SF, Song P, Chen S, Chen Q, Greenleaf JF, An KN. Validation of shear wave elastography in skeletal muscle. J Biomech. 2013;46(14):2381–7.

    Article  Google Scholar 

  110. Grasa J, Calvo B, Delgado-Andrade C, Navarro MP. Variations in tendon stiffness due to diets with different glycotoxins affect mechanical properties in the muscle-tendon unit. Ann Biomed Eng. 2013;41(3):488–96.

    Article  Google Scholar 

  111. Fukutani A, Misaki J, Isaka T. Relationship between joint torque and muscle fascicle shortening at various joint angles and intensities in the plantar flexors. Sci Rep. 2017;7(1):290.

    Article  Google Scholar 

  112. Konow N, Azizi E, Roberts TJ. Muscle power attenuation by tendon during energy dissipation. Proc Biol Sci. 2012;279(1731):1108–13.

    Google Scholar 

  113. Farris DJ, Raiteri BJ. Elastic ankle muscle-tendon interactions are adjusted to produce acceleration during walking in humans. J Exp Biol. 2017;220(Pt 22):4252–60.

    Google Scholar 

  114. Waugh CM, Korff T, Blazevich AJ. Developmental differences in dynamic muscle-tendon behaviour: implications for movement efficiency. J Exp Biol. 2017;220(Pt 7):1287–94.

    Google Scholar 

  115. Kubo K, Kanehisa H, Kawakami Y, Fukunaga T. Influence of static stretching on viscoelastic properties of human tendon structures in vivo. J Appl Physiol (1985). 2001;90(2):520–7.

    Article  Google Scholar 

  116. Seynnes OR, Bojsen-Moller J, Albracht K, Arndt A, Cronin NJ, Finni T, et al. Ultrasound-based testing of tendon mechanical properties: a critical evaluation. J Appl Physiol (1985). 2015;118(2):133–41.

    Article  Google Scholar 

  117. Cortes DH, Suydam SM, Silbernagel KG, Buchanan TS, Elliott DM. Continuous shear wave elastography: a new method to measure viscoelastic properties of tendons in vivo. Ultrasound Med Biol. 2015;41(6):1518–29.

    Article  Google Scholar 

  118. Graf BK, Vanderby R Jr, Ulm MJ, Rogalski RP, Thielke RJ. Effect of preconditioning on the viscoelastic response of primate patellar tendon. Arthroscopy. 1994;10(1):90–6.

    Article  Google Scholar 

  119. Shepherd JH, Legerlotz K, Demirci T, Klemt C, Riley GP, Screen HR. Functionally distinct tendon fascicles exhibit different creep and stress relaxation behaviour. Proc Inst Mech Eng H. 2014;228(1):49–59.

    Article  Google Scholar 

  120. Wren TAL, Lindsey DP, Beaupré GS, Carter DR. Effects of creep and cyclic loading on the mechanical properties and failure of human achilles tendons. Ann Biomed Eng. 2003;31(6):710–7.

    Article  Google Scholar 

  121. Suydam SM, Soulas EM, Elliott DM, Silbernagel KG, Buchanan TS, Cortes DH. Viscoelastic properties of healthy achilles tendon are independent of isometric plantar flexion strength and cross-sectional area. J Orthop Res. 2015;33(6):926–31.

    Article  Google Scholar 

  122. Neviaser A, Andarawis-Puri N, Flatow E. Basic mechanisms of tendon fatigue damage. J Shoulder Elbow Surg. 2012;21(2):158–63.

    Article  Google Scholar 

  123. Peltonen J, Cronin NJ, Stenroth L, Finni T, Avela J. Viscoelastic properties of the Achilles tendon in vivo. Springerplus. 2013;2(1):212.

    Article  Google Scholar 

  124. Kubo K, Akima H, Ushiyama J, Tabata I, Fukuoka H, Kanehisa H, et al. Effects of 20 days of bed rest on the viscoelastic properties of tendon structures in lower limb muscles. Br J Sports Med. 2004;38(3):324–30.

    Article  Google Scholar 

  125. Johnson GA, Tramaglini DM, Levine RE, Ohno K, Choi NY, Woo SL. Tensile and viscoelastic properties of human patellar tendon. J Orthop Res. 1994;12(6):796–803.

    Article  Google Scholar 

  126. Heinemeier KM, Skovgaard D, Bayer ML, Qvortrup K, Kjaer A, Kjaer M, et al. Uphill running improves rat Achilles tendon tissue mechanical properties and alters gene expression without inducing pathological changes. J Appl Physiol (Bethesda, MD: 1985). 2012;113(5):827–36.

    Article  Google Scholar 

  127. Bezerra MA, Santos de Lira KD, Coutinho MP, de Mesquita GN, Novaes KA, da Silva RT, et al. Biomechanical and structural parameters of tendons in rats subjected to swimming exercise. Int J Sports Med. 2013;34(12):1070–3.

    Article  Google Scholar 

  128. Heinemeier KM, Kjaer M. In vivo investigation of tendon responses to mechanical loading. J Musculoskel Neuronal Interact. 2011;11(2):115–23.

    Google Scholar 

  129. Enwemeka CS, Maxwell LC, Fernandes G. Ultrastructural morphometry of matrical changes induced by exercise and food restriction in the rat calcaneal tendon. Tissue Cell. 1992;24(4):499–510.

    Article  Google Scholar 

  130. Vilarta R, Vidal Bde C. Anisotropic and biomechanical properties of tendons modified by exercise and denervation: aggregation and macromolecular order in collagen bundles. Matrix (Stuttgart, Germany). 1989;9(1):55–61.

    Google Scholar 

  131. Buchanan CI, Marsh RL. Effects of exercise on the biomechanical, biochemical and structural properties of tendons. Comp Biochem Physiol A Mol Integr Physiol. 2002;133(4):1101–7.

    Article  Google Scholar 

  132. Curwin SL, Vailas AC, Wood J. Immature tendon adaptation to strenuous exercise. J Appl Physiol (Bethesda, MD: 1985). 1988;65(5):2297–301.

    Article  Google Scholar 

  133. Lapiere CM, Nusgens B, Pierard GE. Interaction between collagen type I and type III in conditioning bundles organization. Connect Tissue Res. 1977;5(1):21–9.

    Article  Google Scholar 

  134. Pajala A, Melkko J, Leppilahti J, Ohtonen P, Soini Y, Risteli J. Tenascin-C and type I and III collagen expression in total Achilles tendon rupture. An immunohistochemical study. Histol Histopathol. 2009;24(10):1207–11.

    Google Scholar 

  135. Abrahamsson SO, Lundborg G, Lohmander LS. Recombinant human insulin-like growth factor-I stimulates in vitro matrix synthesis and cell proliferation in rabbit flexor tendon. J Orthop Res. 1991;9(4):495–502.

    Article  Google Scholar 

  136. Simmons JG, Pucilowska JB, Keku TO, Lund PK. IGF-I and TGF-beta1 have distinct effects on phenotype and proliferation of intestinal fibroblasts. Am J Physiol Gastrointest Liver Physiol. 2002;283(3):G809–18.

    Article  Google Scholar 

  137. Maeda E, Hagiwara Y, Wang JH, Ohashi T. A new experimental system for simultaneous application of cyclic tensile strain and fluid shear stress to tenocytes in vitro. Biomed Microdevices. 2013;15(6):1067–75.

    Article  Google Scholar 

  138. Fong KD, Trindade MC, Wang Z, Nacamuli RP, Pham H, Fang TD, et al. Microarray analysis of mechanical shear effects on flexor tendon cells. Plast Reconstr Surg. 2005;116(5):1393–404; discussion 405–6.

    Article  Google Scholar 

  139. Yang G, Crawford RC, Wang JH. Proliferation and collagen production of human patellar tendon fibroblasts in response to cyclic uniaxial stretching in serum-free conditions. J Biomech. 2004;37(10):1543–50.

    Article  Google Scholar 

  140. Zhang J, Wang JH. Moderate exercise mitigates the detrimental effects of aging on tendon stem cells. PLoS One. 2015;10(6):e0130454.

    Article  Google Scholar 

  141. Zhang J, Wang JH. The effects of mechanical loading on tendons—an in vivo and in vitro model study. PLoS One. 2013;8(8):e71740.

    Article  Google Scholar 

  142. Kubo K, Ikebukuro T, Maki A, Yata H, Tsunoda N. Time course of changes in the human Achilles tendon properties and metabolism during training and detraining in vivo. Eur J Appl Physiol. 2012;112(7):2679–91.

    Article  Google Scholar 

  143. Meyer D, Snedeker J, Weinert-Aplin R, Farshad M. Viscoelastic adaptation of tendon graft material to compression: biomechanical quantification of graft preconditioning. Arch Orthop Trauma Surg. 2012;132(9):1315–20.

    Article  Google Scholar 

  144. Kannus P, Jozsa L. Histopathological changes preceding spontaneous rupture of a tendon. A controlled study of 891 patients. J Bone Joint Surg Am. 1991;73(10):1507–25.

    Article  Google Scholar 

  145. Li HY, Hua YH. Achilles tendinopathy: current concepts about the basic science and clinical treatments. Biomed Res Int. 2016;2016:6492597.

    Article  Google Scholar 

  146. Wang JH, Guo Q, Li B. Tendon biomechanics and mechanobiology—a minireview of basic concepts and recent advancements. J Hand Ther. 2012;25(2):133–40; quiz 41.

    Article  Google Scholar 

  147. Uchihashi K, Tsuruta T, Mine H, Aoki S, Nishijima-Matsunobu A, Yamamoto M, et al. Histopathology of tenosynovium in trigger fingers. Pathol Int. 2014;64(6):276–82.

    Article  Google Scholar 

  148. Schwartz A, Watson JN, Hutchinson MR. Patellar tendinopathy. Sports Health. 2015;7(5):415–20.

    Article  Google Scholar 

  149. Kader D, Saxena A, Movin T, Maffulli N. Achilles tendinopathy: some aspects of basic science and clinical management. Br J Sports Med. 2002;36(4):239–49.

    Article  Google Scholar 

  150. Li Z, Yang G, Khan M, Stone D, Woo S, Wang J. Inflammatory response of human tendon fibroblasts to cyclic mechanical stretching. Am J Sports Med. 2004;32(2):435–40.

    Article  Google Scholar 

  151. Wang J, Jia F, Yang G, Yang S, Campbell B, Stone D, et al. Cyclic mechanical stretching of human tendon fibroblasts increases the production of prostaglandin E 2 and levels of cyclooxygenase expression: a novel in vitro model study. Connect Tissue Res. 2003;44(3–4):128–33.

    Article  Google Scholar 

  152. Wang JH, Jia F, Yang G, Yang S, Campbell BH, Stone D, et al. Cyclic mechanical stretching of human tendon fibroblasts increases the production of prostaglandin E2 and levels of cyclooxygenase expression: a novel in vitro model study. Connect Tissue Res. 2003;44(3–4):128–33.

    Article  Google Scholar 

  153. Yang G, Im HJ, Wang JH. Repetitive mechanical stretching modulates IL-1beta induced COX-2, MMP-1 expression, and PGE2 production in human patellar tendon fibroblasts. Gene. 2005;363:166–72.

    Article  Google Scholar 

  154. Wang JH. Mechanobiology of tendon. J Biomech. 2006;39(9):1563–82.

    Article  Google Scholar 

  155. Reeves ND, Maganaris CN, Ferretti G, Narici MV. Influence of 90-day simulated microgravity on human tendon mechanical properties and the effect of resistive countermeasures. J Appl Physiol (1985). 2005;98(6):2278–86.

    Article  Google Scholar 

  156. Yasuda T, Kinoshita M, Abe M, Shibayama Y. Unfavorable effect of knee immobilization on Achilles tendon healing in rabbits. Acta Orthop Scand. 2000;71(1):69–73.

    Article  Google Scholar 

  157. Yamamoto N, Ohno K, Hayashi K, Kuriyama H, Yasuda K, Kaneda K. Effects of stress shielding on the mechanical properties of rabbit patellar tendon. J Biomech Eng. 1993;115(1):23–8.

    Article  Google Scholar 

  158. Maganaris CN, Paul JP. In vivo human tendinous tissue stretch upon maximum muscle force generation. J Biomech. 2000;33(11):1453–9.

    Article  Google Scholar 

  159. Zhang J, Wang JH. Mechanobiological response of tendon stem cells: implications of tendon homeostasis and pathogenesis of tendinopathy. J Orthop Res. 2010;28(5):639–43.

    Article  Google Scholar 

  160. Zhang J, Wang JH. Production of PGE(2) increases in tendons subjected to repetitive mechanical loading and induces differentiation of tendon stem cells into non-tenocytes. J Orthop Res. 2010;28(2):198–203.

    Google Scholar 

  161. Arnesen SM, Lawson MA. Age-related changes in focal adhesions lead to altered cell behavior in tendon fibroblasts. Mech Ageing Dev. 2006;127(9):726–32.

    Article  Google Scholar 

  162. Zhou B, Zhou Y, Tang K. An overview of structure, mechanical properties, and treatment for age-related tendinopathy. J Nutr Health Aging. 2014;18:441–8.

    Article  Google Scholar 

  163. Ensey JS, Hollander MS, Wu JZ, Kashon ML, Baker BB, Cutlip RG. Response of tibialis anterior tendon to a chronic exposure of stretch-shortening cycles: age effects. Biomed Eng Online. 2009;8:12.

    Article  Google Scholar 

  164. Dressler MR, Butler DL, Boivin GP. Age-related changes in the biomechanics of healing patellar tendon. J Biomech. 2006;39(12):2205–12.

    Article  Google Scholar 

  165. Sarasa-Renedo A, Chiquet M. Mechanical signals regulating extracellular matrix gene expression in fibroblasts. Scand J Med Sci Sports. 2005;15(4):223–30.

    Article  Google Scholar 

  166. Chiquet M. Regulation of extracellular matrix gene expression by mechanical stress. Matrix Biol. 1999;18(5):417–26.

    Article  Google Scholar 

  167. Fluck M, Carson JA, Gordon SE, Ziemiecki A, Booth FW. Focal adhesion proteins FAK and paxillin increase in hypertrophied skeletal muscle. Am J Physiol. 1999;277(1 Pt 1):C152–62.

    Article  Google Scholar 

  168. Fluck M, Tunc-Civelek V, Chiquet M. Rapid and reciprocal regulation of tenascin-C and tenascin-Y expression by loading of skeletal muscle. J Cell Sci. 2000;113(Pt 20):3583–91.

    Article  Google Scholar 

  169. Goodyear LJ, Chang PY, Sherwood DJ, Dufresne SD, Moller DE. Effects of exercise and insulin on mitogen-activated protein kinase signaling pathways in rat skeletal muscle. Am J Physiol. 1996;271(2 Pt 1):E403–8.

    Google Scholar 

  170. Milanini J, Vinals F, Pouyssegur J, Pages G. p42/p44 MAP kinase module plays a key role in the transcriptional regulation of the vascular endothelial growth factor gene in fibroblasts. J Biol Chem. 1998;273(29):18165–72.

    Article  Google Scholar 

  171. Sackin H. Mechanosensitive channels. Annu Rev Physiol. 1995;57:333–53.

    Article  Google Scholar 

  172. Jones BF, Wall ME, Carroll RL, Washburn S, Banes AJ. Ligament cells stretch-adapted on a microgrooved substrate increase intercellular communication in response to a mechanical stimulus. J Biomech. 2005;38(8):1653–64.

    Article  Google Scholar 

  173. Wall ME, Banes AJ. Early responses to mechanical load in tendon: role for calcium signaling, gap junctions and intercellular communication. J Musculoskel Neuronal Interact. 2005;5(1):70–84.

    Google Scholar 

  174. Wall ME, Dyment NA, Bodle J, Volmer J, Loboa E, Cederlund A, et al. Cell signaling in tenocytes: response to load and ligands in health and disease. Adv Exp Med Biol. 2016;920:79–95.

    Article  Google Scholar 

  175. Nam HY, Balaji Raghavendran HR, Pingguan-Murphy B, Abbas AA, Merican AM, Kamarul T. Fate of tenogenic differentiation potential of human bone marrow stromal cells by uniaxial stretching affected by stretch-activated calcium channel agonist gadolinium. PLoS One. 2017;12(6):e0178117.

    Article  Google Scholar 

  176. Cowan KJ, Storey KB. Mitogen-activated protein kinases: new signaling pathways functioning in cellular responses to environmental stress. J Exp Biol. 2003;206(Pt 7):1107–15.

    Article  Google Scholar 

  177. Arnoczky SP, Tian T, Lavagnino M, Gardner K, Schuler P, Morse P. Activation of stress-activated protein kinases (SAPK) in tendon cells following cyclic strain: the effects of strain frequency, strain magnitude, and cytosolic calcium. J Orthop Res. 2002;20(5):947–52.

    Article  Google Scholar 

  178. Wu YF, Huang YT, Wang HK, Yao CJ, Sun JS, Chao YH. Hyperglycemia augments the adipogenic transdifferentiation potential of tenocytes and is alleviated by cyclic mechanical stretch. Int J Mol Sci. 2017;19(1):E90.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Chao, YH., Sun, JS. (2020). Biomechanics of Skeletal Muscle and Tendon. In: Cheng, CK., Woo, S.LY. (eds) Frontiers in Orthopaedic Biomechanics. Springer, Singapore. https://doi.org/10.1007/978-981-15-3159-0_2

Download citation

  • DOI: https://doi.org/10.1007/978-981-15-3159-0_2

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-15-3158-3

  • Online ISBN: 978-981-15-3159-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics