Skip to main content

Biomechanics of Orthopedic Rehabilitation

  • Chapter
  • First Online:
Frontiers in Orthopaedic Biomechanics

Abstract

This chapter discusses four main areas that clinicians should understand to improve the effectiveness of orthopedic rehabilitation. The first part is about the biomechanical factors that affect orthopedic rehabilitation process. The second part is about the types of exercises during orthopedic rehabilitation and their underlying biomechanical principles. The third part is about how to apply these biomechanical principles to manage common orthopedic disorders. The fourth part is about the biomechanical guidelines for the use of assistive devices during orthopedic rehabilitation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kassab GS. Biomechanics of the cardiovascular system: the aorta as an illustratory example. J R Soc Interface. 2006;3(11):719–40.

    Article  Google Scholar 

  2. Koontz AM, McCrory JL, Cham R, Yang Y, Wilkinson M. Rehabilitation biomechanics. In: Wiley encyclopedia of biomedical engineering. 2006.

    Google Scholar 

  3. Zhang G. Evaluating the viscoelastic properties of biological tissues in a new way. J Musculoskelet Neuronal Interact. 2005;5(1):85–90.

    Google Scholar 

  4. Saldana RP, Smith DA. Four aspects of creep phenomena in striated muscle. J Muscle Res Cell Motil. 1991;12(6):517–31.

    Article  Google Scholar 

  5. Knudson D. Fundamentals of biomechanics. 2nd ed. New York: Springer; 2007.

    Google Scholar 

  6. Manske RC. Fundamental orthopedic management for the physical therapist assistant. 4th ed. Mosby/Elsevier: St. Louis, MI; 2016.

    Google Scholar 

  7. Özkaya N, Nordin M, Goldsheyder D, Leger D. Fundamentals of biomechanics. 3rd ed. New York: Springer; 2012.

    Book  Google Scholar 

  8. Magnusson SP, Simonsen EB, Dyhre-Poulsen P, Aagaard P, Mohr T, Kjaer M. Viscoelastic stress relaxation during static stretch in human skeletal muscle in the absence of EMG activity. Scand J Med Sci Sports. 1996;6(6):323–8.

    Article  Google Scholar 

  9. Knudson D. Mechanics of the musculoskeletal system. In: Fundamentals of biomechanics. 2nd ed. New York: Springer; 2007. p. 343.

    Google Scholar 

  10. Lin DC. Force–velocity relationship of skeletal muscle. In: Encyclopedia of neuroscience. Berlin: Springer; 2009. p. 1611–5.

    Chapter  Google Scholar 

  11. Knudson D. The biomechanics of stretching. J Exerc Sci Physiother. 2006;2:3–12.

    Google Scholar 

  12. Duong B, Low M, Moseley AM, Lee RYW, Herbert RD. Time course of stress relaxation and recovery in human ankles. Clin Biomech. 2001;16(7):601–7.

    Article  Google Scholar 

  13. Minozzo FC, Baroni BM, Correa JA, et al. Force produced after stretch in sarcomeres and half-sarcomeres isolated from skeletal muscles. Sci Rep. 2013;3:77–86.

    Article  Google Scholar 

  14. Decoster LC, Cleland J, Altieri C, Russell P. The effects of hamstring stretching on range of motion: a systematic literature review. J Orthop Sports Phys Ther. 2005;35(6):377–87.

    Article  Google Scholar 

  15. Shrier I. Does stretching improve performance? A systematic and critical review of the literature. Clin J Sport Med. 2004;14(5):267–73.

    Article  Google Scholar 

  16. Page P. Current concepts in muscle stretching for exercise and rehabilitation. Int J Sports Phys Ther. 2012;7(1):109–19.

    Google Scholar 

  17. Haskell WL, Lee I-M, Pate RR, et al. Physical activity and public health: updated recommendation for adults from the American College of Sports Medicine and the American Heart Association. Circulation. 2007;116(9):1081–93.

    Article  Google Scholar 

  18. Kisner C and Colby L. Resistance exercise for impaired muscle performance. In: Theraputic exercise foundations and techniques. 6th ed. Philadelphia, PA: F.A. Davis Company; 2012. p. 157–240.

    Google Scholar 

  19. Davidovits P. Static forces. In: Physics in biology and medicine. 4th ed. Academic Press; 2012. p. 8–10.

    Google Scholar 

  20. Pasquet B, Carpentier A, Duchateau J, Hainaut K. Muscle fatigue during concentric and eccentric contractions. Muscle Nerve. 2000;23(11):1727–35.

    Article  Google Scholar 

  21. Clavet H, Hébert PC, Fergusson D, Doucette S, Trudel G. Joint contracture following prolonged stay in the intensive care unit. CMAJ. 2008;178(6):691–7.

    Article  Google Scholar 

  22. Macdermid J. Evidence-based orthopaedics: the best answers to clinical questions. 1st ed. In: Wright JG, editor. Philadelphia, PA: Elsevier Saunders; 2009.

    Google Scholar 

  23. Kisner C, Colby L. Range of motion. In: Theraputic exercise founsations and techniques. 6th ed. Philadelphia, PA: F.A. Davis Company; 2012. p. 52.

    Google Scholar 

  24. Weigel JP, Arnold G, Hicks DA, Millis DL. Biomechanics of rehabilitation. Vet Clin North Am - Small Anim Pract. 2005;35(6):1255–85.

    Article  Google Scholar 

  25. Neumann DA. The convex-concave rules of Arthrokinematics: flawed or perhaps just misinterpreted? J Orthop Sport Phys Ther. 2012;42(2):53–5.

    Article  Google Scholar 

  26. Michael Aloysius MacConaill JB. Muscles and movements: a basis for human kinesiology. Baltimore: Williams & Wilkins; 1969.

    Google Scholar 

  27. Kisner C, Colby L. Peripheral joint mobilization/manipulation. In: Therapeutic exercise foundations and techniques. 6th ed. Philadelphia, PA: F.A. Davis Company; 2012. p. 119–156.

    Google Scholar 

  28. Müntener M. Functional anatomy of the shoulder girdle. Helv Chir Acta. 1982;48(5):523–32.

    Google Scholar 

  29. Ludewig PM, Cook TM. Alterations in shoulder kinematics and associated muscle activity in people with symptoms of shoulder impingement. Phys Ther. 2000;80(3):276–91.

    Article  Google Scholar 

  30. Ludewig Paula MJPB. Shoulder impingement: biomechanical considerations in Rehabilitation. Man Ther. 2011;16(1):33–9.

    Article  Google Scholar 

  31. Wilk KE, Macrina LC, Reinold MM. Non-operative rehabilitation for traumatic and atraumatic glenohumeral instability. N Am J Sports Phys Ther. 2006;1(1):16–31.

    Google Scholar 

  32. Rosso C, Mueller AM, McKenzie B, et al. Bulk effect of the deltoid muscle on the glenohumeral joint. J Exp Orthop. 2014;1(1):14.

    Article  Google Scholar 

  33. Alolabi B, Gray A, Ferreira LM, Johnson JA, Athwal GS, King GJW. Rehabilitation of the medial- and lateral collateral ligament-deficient elbow: an in vitro biomechanical study. J Hand Ther. 2012;25(4):363–73.

    Article  Google Scholar 

  34. Morrey BF, AK-N TS. Valgus stability of the elbow: a definition of primary and secondary constraints. Clin Orthop Relat Res. 1991;26(5):187–195.

    Article  Google Scholar 

  35. Armstrong AD, Dunning CE, Faber KJ, Duck TR, Johnson JA, King GJW. Rehabilitation of the medial collateral ligament-deficient elbow: an in vitro biomechanical study. J Hand Ther. 2000;25(6):1051–7.

    Google Scholar 

  36. Patterson SD, Johnson JA, King GJW. Muscle forces and pronation stabilize the lateral ligament deficient elbow. Clin Orthop Relat Res. 2001;388:118–24.

    Article  Google Scholar 

  37. Manocha RHK, Kusins JR, Johnson JA, King GJW. Optimizing the rehabilitation of elbow lateral collateral ligament injuries: a biomechanical study. J Shoulder Elb Surg. 2017;26(4):596–603.

    Article  Google Scholar 

  38. Duncan RM. Basic principles of splinting the hand. Phys Ther. 1989;69(12):1104–16.

    Article  Google Scholar 

  39. Walker WC, Metzler M, Cifu DX, Swartz Z. Neutral wrist splinting in carpal tunnel syndrome: a comparison of night-only versus full-time wear instructions. Arch Phys Med Rehabil. 2000;81(4):424–9.

    Article  Google Scholar 

  40. Page MJ, Massy-Westropp N, O’Connor D, Pitt V. Splinting for carpal tunnel syndrome. Cochrane Database Syst Rev. 2012;7(7):CD010003.

    Google Scholar 

  41. Armstrong T. Development of a biomechanical hand model for study of manual activities. In: Ronald Easterby KHE, Kroemer DBC, editors. Anthropometry and biomechanics: theory and application. New York: Plenum Press; 1982. p. 188–9.

    Google Scholar 

  42. Baker-LePaina JC, Lane NE. Relationship between joint shape and the development of osteoarthritis. Curr Opin Rheumatol. 2010;22(5):538–43.

    Article  Google Scholar 

  43. Madsen MS, Ritter MA, Morris HH, et al. The effect of total hip arthroplasty surgical approach on gait. J Orthop Res. 2004;22(1):44–50.

    Article  Google Scholar 

  44. Ewen AM, Stewart S, St Clair Gibson A, Kashyap SN, Caplan N. Post-operative gait analysis in total hip replacement patients-a review of current literature and meta-analysis. Gait Posture. 2012;36(1):1–6.

    Article  Google Scholar 

  45. Shiba N, Tagawa Y, Nakashima Y, et al. Biomechanical effect and clinical application of the hip joint moment reduction brace. Clin Orthop Relat Res. 1998;351:149-157.

    Article  Google Scholar 

  46. McGinty G, Irrgang JJ, Pezzullo D. Biomechanical considerations for rehabilitation of the knee. Clin Biomech (Bristol, Avon). 2000;15(3):160–6.

    Article  Google Scholar 

  47. Beynnon BD, Fleming BC, Johnson RJ, Nichols CE, Renstrom PA, Pope MH. Anterior cruciate ligament strain behavior during rehabilitation exercises in vivo. Am J Sports Med. 1995;23(1):24–34.

    Article  Google Scholar 

  48. Fleming BC, Beynnon BD, Renstrom PA, Peura GD, Nichols CE, Johnson RJ. The strain behavior of the anterior cruciate ligament during bicycling. Am J Sports Med. 1998;26(1):109–18.

    Article  Google Scholar 

  49. Lutz GE, Palmitier RA, An KN, Chao EY. Comparison of tibiofemoral joint forces during open-kinetic-chain and closed-kinetic-chain exercises. J Bone Joint Surg Am. 1993;75(5):732–9.

    Article  Google Scholar 

  50. Lin C-WC, Hiller CE, de Bie RA. Evidence-based treatment for ankle injuries: a clinical perspective. J Man Manip Ther. 2010;18(1):22–8.

    Article  Google Scholar 

  51. Fong DT, Chan Y-Y, Mok K-M, Yung PS, Chan K-M. Understanding acute ankle ligamentous sprain injury in sports. Sports Med Arthrosc Rehabil Ther Technol. 2009;1(1):14.

    Google Scholar 

  52. Di Marco A, Russell M, Masters M. Standards for wheelchair prescription. Aust Occup Ther J. 2003;50(1):30–9.

    Article  Google Scholar 

  53. Vanlandewijck Y, Theisen D, Daly D. Wheelchair propulsion biomechanics: implications for wheelchair sports. Sports Med. 2001;31(5):339–67.

    Article  Google Scholar 

  54. Edelstein J. Assistive devices for mobility: canes, crutches, walkers and wheelchairs. In: Michelle H, Cameron LM, editors. Physical rehabilitation: evidence-based examination, evaluation, and intervention. 1st ed: Saunders; 2007. p. 877–96.

    Google Scholar 

  55. Koontz AM, Roche BM, Collinger JL, Cooper RA, Boninger ML. Manual wheelchair propulsion patterns on natural surfaces during start-up propulsion. Arch Phys Med Rehabil. 2009;90(11):1916–23.

    Article  Google Scholar 

  56. Bachschmidt RA, Harris GF, Simoneau GG. Walker-assisted gait in rehabilitation: a study of biomechanics and instrumentation. IEEE Trans Neural Syst Rehabil Eng. 2001;9(1):96–105.

    Article  Google Scholar 

  57. Li S, Armstrong CW, Cipriani D. Three-point gait crutch walking: variability in ground reaction force during weight bearing. Arch Phys Med Rehabil. 2001;82(1):86–92.

    Article  Google Scholar 

  58. Carpentier C, Font-Llagunes JM, Kövecses J. Dynamics and energetics of impacts in crutch walking. J Appl Biomech. 2010;26(4):473–83.

    Article  Google Scholar 

  59. Dean E, Ross J. Relationships among cane fitting, function, and falls. Phys Ther. 1993;73(8):494–500-4.

    Article  Google Scholar 

  60. Kumar R, Roe MC, Scremin OU. Methods for estimating the proper length of a cane. Arch Phys Med Rehabil. 1995;76(12):1173–5.

    Article  Google Scholar 

  61. Ajemian S, Thon D, Clare P, Kaul L, Zernicke RF, Loitz-Ramage B. Cane-assisted gait biomechanics and electromyography after total hip arthroplasty. Arch Phys Med Rehabil. 2004;85(12):1966–71.

    Article  Google Scholar 

  62. Bateni H, Maki BE. Assistive devices for balance and mobility: benefits, demands, and adverse consequences. Arch Phys Med Rehabil. 2005;86(1):134–45.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yih-Kuen Jan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Mohamed, A.A., Jan, YK., Rice, I.M., Pu, F., Cheng, CK. (2020). Biomechanics of Orthopedic Rehabilitation. In: Cheng, CK., Woo, S.LY. (eds) Frontiers in Orthopaedic Biomechanics. Springer, Singapore. https://doi.org/10.1007/978-981-15-3159-0_14

Download citation

  • DOI: https://doi.org/10.1007/978-981-15-3159-0_14

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-15-3158-3

  • Online ISBN: 978-981-15-3159-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics