Skip to main content

Biomechanics of Foot and Ankle

  • Chapter
  • First Online:
Frontiers in Orthopaedic Biomechanics
  • 1377 Accesses

Abstract

The human foot-and-ankle is a highly developed, biomechanically complex structure which sustains the weight of the body and facilitates forces transmission during propulsion. Apart from 28 bones, the foot is composed of more than 30 joints surrounded by more than a hundred of muscles, tendons, and ligaments. The geometry of the foot and the balance-controlling mechanism of the body enabled us on a variety of motions, including walking, running, and jumping.

However, the high and complicated load on the foot impose risk of the foot injury, trauma, and other problems. Common foot disorders include hallux valgus, bunion, flatfoot, plantar fasciitis, heel pain, and Achilles tendonitis. Ankle fracture in elderly people is a major burden in developed countries with an aging population. There was a threefold increase in the incidence of ankle fractures in elderly people in the last century. Aging and overweight also contribute to the chance of foot problems. Besides, calcaneal fracture is common for young and physically active population and may turn into degenerative or traumatic arthritis after serious injuries.

Both surgical and conservative methods have been adopted to treat foot problems and diseases. Most of the interventions targeted the treatment on the problem site but the effect of the foot problems could extend beyond the site to adjacent regions or the entire foot. Assessment and evaluation of the biomechanical environment and the variations before and after the intervention could help intervention design, planning and thus minimizes complications.

Experimental methodologies, such as motion capture analysis, pedobarography, and cadaveric experiments have been developed to quantify foot biomechanics. However, the internal biomechanics of the foot, such as the stress distributions within bones and soft tissues is not easy to measure by experiments. Computational methods or platforms such as the finite element (FE) analysis are useful tools to investigate biomechanics of the musculoskeletal structures. This evaluation method has been used to study injury mechanism, improve prosthetic and orthotic designs, and predict surgery outcome, in addition to promoting fundamental understanding of foot biomechanics. In this chapter, four common foot problems and interventions of the foot and ankle were analyzed by FE models including hallux valgus, ankle arthroplasty, tarsometatarsal joint fusion, and calcaneal fractures.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Abhishek A, Roddy E, Zhang W, Doherty M. Are hallux valgus and big toe pain associated with impaired quality of life? A cross-sectional study. Osteoarthr Cartil. 2010;18(7):923–6.

    Article  Google Scholar 

  2. Cho JR, Park SB, Ryu SH, Kim SH, Lee SB. Landing impact analysis of sports shoes using 3-d coupled foot-shoe finite element model. J Mech Sci Technol. 2009b;23(10):2583–91.

    Article  Google Scholar 

  3. Cho NH, Kim S, Kwon DJ, Kim HA. The prevalence of hallux valgus and its association with foot pain and function in a rural korean community. J Bone Joint Surg Br. 2009a;91b(4):494–8.

    Article  Google Scholar 

  4. Menz HB, Roddy E, Thomas E, Croft PR. Impact of hallux valgus severity on general and foot-specific health-related quality of life. Arthritis Care Res Hoboken. 2011;63(3):396–404.

    Google Scholar 

  5. Meyr AJ, Adams ML, Sheridan MJ, Ahalt RG. Epidemiological aspects of the surgical correction of structural forefoot pathology. J Foot Ankle Surg. 2009;48(5):543–51.

    Article  Google Scholar 

  6. Wu D, Louie L. Does wearing high-heeled shoe cause hallux valgus? A survey of 1,056 chinese females. Foot Ankle Online J. 2010;3(5):3.

    Google Scholar 

  7. Bonney G, McNab L. Hallux valgus and hallux rigidus—a critical survey. J Bone Joint Surg Br. 1952;34-B(3):366–85.

    Article  Google Scholar 

  8. Roddy E, Zhang W, Doherty M. Prevalence and associations of hallux valgus in a primary-care population. Ann Rheum Dis. 2006;65:403–4.

    Google Scholar 

  9. Coughlin MJ, Shurnas PS. Hallux valgus in men. Part II: first ray mobility after bunionectomy and factors associated with hallux valgus deformity. Foot Ankle Int. 2003a;24(1):73–8.

    Article  Google Scholar 

  10. Ferrari J, Hopkinson DA, Linney AD. Size and shape differences between male and female foot bones: is the female foot predisposed to hallux abducto valgus deformity? J Am Podiatr Med Assoc. 2004;94(5):434–52.

    Article  Google Scholar 

  11. Wilkerson RD, Mason MA. Differences in men’s and women’s mean ankle ligamentous laxity. Iowa Orthop J. 2000;20:46.

    Google Scholar 

  12. Coughlin MJ, Jones CP. Hallux valgus and first ray mobility. A prospective study. J Bone Joint Surg Am. 2008;90(5):1166–7.

    Google Scholar 

  13. Owoeye BA, Akinbo SR, Aiyegbusi AL, Ogunsola MO. Prevalence of hallux valgus among youth population in Lagos, Nigeria. Nigerian Postgrad Med J. 2011;18(1):51–5.

    Google Scholar 

  14. Menz HB, Lord SR. The contribution of foot problems to mobility impairment and falls in community-dwelling older people. J Am Geriatr Soc. 2001;49(12):1651–6.

    Article  Google Scholar 

  15. Thompson FM, Coughlin MJ. The high price of high-fashion footwear. J Bone Joint Surg Am. 1994;76a(10):1586–93.

    Article  Google Scholar 

  16. Access Economics. The economic impact of podiatric surgery. In: Report for the Australasian College of Podiatric Surgeons. Sydney: Access Economics Pty Ltd; 2008.

    Google Scholar 

  17. Australian Bureau of Statistics. Australian National Accounts: national income, expenditure and product. Canberra: Australian Bureau of Statistics; 2008.

    Google Scholar 

  18. Courtney TK, Matz S, Webster BS. Disabling occupational injury in the us construction industry, 1996. J Occup Environ Med. 2002;44(12):1161–8.

    Article  Google Scholar 

  19. Mathers CD, Vos ET, Stevenson CE, Begg SJ. The burden of disease and injury in Australia. Bull World Health Organ. 2001;79(11):1076–84.

    Google Scholar 

  20. Caminear DS, Addis-Thomas E, Brynizcka AW, Saxena A. Revision hallux valgus surgery. In: Saxena A, editor. International advances in foot and ankle surgery. London: Springer-Verlag; 2012. p. 71–82.

    Chapter  Google Scholar 

  21. Lehman DE. Salvage of complications of hallux valgus surgery. Foot Ankle Clin. 2003;8(1):15–35.

    Article  Google Scholar 

  22. Coughlin MJ, Mann RA. Hallux valgus. In: Coughlin MJ, Saltzman CL, Mann RA, editors. Surgery of the foot and ankle. 8th ed. Pennsylvania: Mosby Elsevier; 2012.

    Google Scholar 

  23. Faber FWM, Kleinrensink GJ, Mulder PGH, Verhaar JAN. Mobility of the first tarsometatarsal joint in hallux valgus patients: a radiographic analysis. Foot Ankle Int. 2001;22(12):965–9.

    Article  Google Scholar 

  24. Glasoe WM, Allen MK, Saltzman CL, Ludewig PM, Sublett SH. Comparison of two methods used to assess first-ray mobility. Foot Ankle Int. 2002;23(3):248–52.

    Article  Google Scholar 

  25. Kim JY, Park JS, Hwang SK, Young KW, Sung IH. Mobility changes of the first ray after hallux valgus surgery: clinical results after proximal metatarsal chevron osteotomy and distal soft tissue procedure. Foot Ankle Int. 2008;29(5):468–72.

    Article  Google Scholar 

  26. Smith BW, Coughlin MJ. The first metatarsocuneiform joint, hypermobility, and hallux valgus: what does it all mean? Foot Ankle Surg. 2008;14(3):138–41.

    Article  Google Scholar 

  27. Klaue K, Hansen ST, Masquelet AC. Clinical, quantitative assessment of first tarsometatarsal mobility in the sagittal plane and its relation to hallux valgus deformity. Foot Ankle Int. 1994;15(1):9–13.

    Article  Google Scholar 

  28. Hillstrom HJ, Song JS, Kraszewski AP, et al. Foot type biomechanics part 1: structure and function of the asymptomatic foot. Gait Posture. 2013;37(3):445–51.

    Article  Google Scholar 

  29. Stokes IAF, Hutton WC, Stott JRR, Lowe LW. Forces under the hallux valgus foot before and after surgery. Clin Orthop Relat Res. 1979;142:64–72.

    Google Scholar 

  30. Kernozek TW, Elfessi A, Sterriker S. Clinical and biomechanical risk factors of patients diagnosed with hallux valgus. J Am Podiatr Med Assoc. 2003;93(2):97–103.

    Article  Google Scholar 

  31. Martínez-Nova A, Cuevas-García JC, Sánchez-Rodríguez R, Pascual-Huerta J, Sánchez-Barrado E. Study of plantar pressure patterns by means of instrumented insoles in subjects with hallux valgus. Rev Esp Cir Ortop Traumatol (Engl Ed). 2008;52(2):94–8.

    Google Scholar 

  32. Mickle KJ, Munro BJ, Lord SR, Menz HB, Steele JR. Gait, balance and plantar pressures in older people with toe deformities. Gait Posture. 2011;34(3):347–51.

    Article  Google Scholar 

  33. Wen JM, Ding QC, Yu ZY, Sun WD, Wang QN, Wei KL. Adaptive changes of foot pressure in hallux valgus patients. Gait Posture. 2012;36(3):344–9.

    Article  Google Scholar 

  34. Mittal D, Raja S, Geary NPJ. The modified mcbride procedure: clinical, radiological, and pedobarographic evaluations. J Foot Ankle Surg. 2006;45(4):235–9.

    Article  Google Scholar 

  35. Saro C, Andrén B, Felländer-Tsai L, Lindgren U, Arndt A. Plantar pressure distribution and pain after distal osteotomy for hallux valgus: a prospective study of 22 patients with 12-month follow-up. Foot. 2007;17(2):84–93.

    Article  Google Scholar 

  36. Dhukaram V, Hullin MG, Senthil Kumar C. The Mitchell and scarf osteotomies for hallux valgus correction: a retrospective, comparative analysis using plantar pressures. J Foot Ankle Surg. 2006;45(6):400–9.

    Article  Google Scholar 

  37. Cheung JT-M, Nigg BM. Clinical applications of computational simulation of foot and ankle. Sports Orthop Traumatol. 2008;23(4):264–71.

    Article  Google Scholar 

  38. Yu J, Cheung JTM, Fan YB, Zhang Y, Leung AKL, Zhang M. Development of a finite element model of female foot for high-heeled shoe design. Clin Biomech. 2008;23:S31–8.

    Article  Google Scholar 

  39. Kai T, Wang C-T, Wang D-M, Wang X. Primary analysis of the first ray using a 3-dimension finite element foot model. Paper read at Engineering in Medicine and Biology Society, 2005. In: 27th Annual International Conference of the IEEE-EMBS 2005. 2006.

    Google Scholar 

  40. Nakamura S, Crowninshield RD, Cooper RR. An analysis of soft tissue loading in the foot—a preliminary report. Bull Prosthet Res. 1981;10:27–34.

    Google Scholar 

  41. Lemmon D, Shiang TY, Hashmi A, Ulbrecht JS, Cavanagh PR. The effect of insoles in therapeutic footwear—a finite element approach. J Biomech. 1997;30(6):615–20.

    Article  Google Scholar 

  42. Siegler S, Block J, Schneck CD. The mechanical characteristics of the collateral ligaments of the human ankle joint. Foot Ankle. 1988a;8(5):234–42.

    Article  Google Scholar 

  43. Milz P, Milz S, Steinborn M, Mittlmeier T, Putz R, Reiser M. Lateral ankle ligaments and tibiofibular syndesmosis—13-MHz high-frequency sonography and mri compared in 20 patients. Acta Orthop Scand. 1998;69(1):51–5.

    Article  Google Scholar 

  44. Arnold EM, Ward SR, Lieber RL, Delp SL. A model of the lower limb for analysis of human movement. Ann Biomed Eng. 2010;38(2):269–79.

    Article  Google Scholar 

  45. Froberg A, Komi P, Ishikawa M, Movin T, Arndt A. Force in the achilles tendon during walking with ankle foot orthosis. Am J Sports Med. 2009;37(6):1200–7.

    Article  Google Scholar 

  46. Perry J, Davids JR. Gait analysis: normal and pathological function. J Pediatr Orthop. 1992;12(6):815.

    Article  Google Scholar 

  47. Zhang M, Mak AFT. In vivo friction properties of human skin. Prosthetics Orthot Int. 1999;23(2):135–41.

    Article  Google Scholar 

  48. Coughlin MJ. Instructional course lectures, the american academy of orthopaedic surgeons-hallux valgus. J Bone Joint Surg. 1996;78(6):932–66.

    Article  Google Scholar 

  49. Valderrabano V, Horisberger M, Russell I, Dougall H, Hintermann B. Etiology of ankle osteoarthritis. Clin Orthop Relat Res. 2009;467(7):1800–6.

    Article  Google Scholar 

  50. Goldberg AJ, MacGregor A, Dawson J, et al. The demand incidence of symptomatic ankle osteoarthritis presenting to foot & ankle surgeons in the United Kingdom. Foot. 2012;22(3):163–6.

    Article  Google Scholar 

  51. Glazebrook M, Daniels T, Younger A, et al. Comparison of health-related quality of life between patients with end-stage ankle and hip arthrosis. J Bone Joint Surg. 2008;90(3):499–505.

    Article  Google Scholar 

  52. Slobogean GP, Younger A, Apostle KL, et al. Preference-based quality of life of end-stage ankle arthritis treated with arthroplasty or arthrodesis. Foot Ankle Int. 2010;31(7):563–6.

    Article  Google Scholar 

  53. Coester LM, Saltzman CL, Leupold J, Pontarelli W. Long-term results following ankle arthrodesis for post-traumatic arthritis. J Bone Joint Surg Am. 2001;83a(2):219–28.

    Article  Google Scholar 

  54. Fuchs S, Sandmann C, Skwara A, Chylarecki C. Quality of life 20 years after arthrodesis of the ankle—a study of adjacent joints. J Bone Joint Surg Br. 2003;85b(7):994–8.

    Article  Google Scholar 

  55. Mazur JM, Schwartz E, Simon SR. Ankle arthrodesis - long-term follow-up with gait analysis. J Bone Joint Surg Am. 1979;61(7):964–75.

    Article  Google Scholar 

  56. Thomas R, Daniels TR, Parker K. Gait analysis and functional outcomes following ankle arthrodesis for isolated ankle arthritis. J Bone Joint Surg Am. 2006;88a(3):526–35.

    Google Scholar 

  57. Muir DC, Amendola A, Saltzman CL. Long-term outcome of ankle arthrodesis. Foot Ankle Clin. 2002;7(4):703–8.

    Article  Google Scholar 

  58. Beyaert C, Sirveaux F, Paysant J, Mole D, Andre JM. The effect of tibio-talar arthrodesis on foot kinematics and ground reaction force progression during walking. Gait Posture. 2004;20(1):84–91.

    Article  Google Scholar 

  59. Flavin R, Coleman SC, Tenenbaum S, Brodsky JW. Comparison of gait after total ankle arthroplasty and ankle arthrodesis. Foot Ankle Int. 2013;34(10):1340–8.

    Article  Google Scholar 

  60. Piriou P, Culpan P, Mullins M, Cardon JN, Pozzi D, Judet T. Ankle replacement versus arthrodesis: a comparative gait analysis study. Foot Ankle Int. 2008;29(1):3–9.

    Article  Google Scholar 

  61. Ramlee MH, Kadir MRA, Murali MR, Kamarul T. Finite element analysis of three commonly used external fixation devices for treating type iii pilon fractures. Med Eng Phys. 2014;36(10):1322–30.

    Article  Google Scholar 

  62. Vazquez AA, Lauge-Pedersen H, Lidgren L, Taylor M. Finite element analysis of the initial stability of ankle arthrodesis with internal fixation: flat cut versus intact joint contours. Clin Biomech. 2003;18(3):244–53.

    Article  Google Scholar 

  63. Cheung JTM, Zhang M, Leung AKL, Fan YB. Three-dimensional finite element analysis of the foot during standing - a material sensitivity study. J Biomech. 2005;38(5):1045–54.

    Article  Google Scholar 

  64. Cheung JTM, Zhang M. A 3-dimensional finite element model of the human foot and ankle for insole design. Arch Phys Med Rehabil. 2005;86(2):353–8.

    Article  Google Scholar 

  65. Athanasiou KA, Liu GT, Lavery LA, Lanctot DR, Schenck RC. Biomechanical topography of human articular cartilage in the first metatarsophalangeal joint. Clin Orthop Relat Res. 1998;348:269–81.

    Article  Google Scholar 

  66. Gefen A, Megido-Ravid M, Itzchak Y, Arcan M. Biomechanical analysis of the three-dimensional foot structure during gait: a basic tool for clinical applications. J Biomech Eng Trans ASME. 2000;122(6):630–9.

    Article  Google Scholar 

  67. Wright DG, Rennels DC. A study of the elastic properties of plantar fascia. J Bone Joint Surg. 1964;46(3):482–92.

    Article  Google Scholar 

  68. Dul J. Development of a minimum-fatigue optimization technique for predicting individual muscle forces during human posture and movement with application to the ankle musculature during standing and walking. Ph.D. thesis, Vanderbilt University. 1983.

    Google Scholar 

  69. Kim K-J, Kitaoka HB, Luo Z-P, et al. In vitro simulation of the stance phase in human gait. J Musculoskelet Res. 2001;5(02):113–21.

    Article  Google Scholar 

  70. Eleftheriou KI, Rosenfeld PF, Calder JDF. Lisfranc injuries: an update. Knee Surg Sports Traumatol Arthrosc. 2013;21(6):1434–46.

    Article  Google Scholar 

  71. Arastu MH, Buckley RE. Tarsometatarsal joint complex and midtarsal injuries. Acta Chir Orthop Traumatol Cechoslov. 2012;79(1):21–30.

    Google Scholar 

  72. Desmond EA, Chou LB. Current concepts review: Lisfranc injuries. Foot Ankle Int. 2006;27(8):653–60.

    Article  Google Scholar 

  73. Watson TS, Shurnas PS, Denker J. Treatment of lisfranc joint injury: current concepts. J Am Acad Orthop Surg. 2010;18(12):718–28.

    Article  Google Scholar 

  74. Ghate SD, Sistla VM, Nemade V, Vibhute D, Shahane SM, Samant AD. Screw and wire fixation for lisfranc fracture dislocations. J Orthop Surg. 2012;20(2):170–5.

    Article  Google Scholar 

  75. Lakin RC, DeGnore LT, Pienkowski D. Contact mechanics of normal tarsometatarsal joints. J Bone Joint Surg Am. 2001;83a(4):520–8.

    Article  Google Scholar 

  76. Wang Y, Li Z, Zhang M. Biomechanical study of tarsometatarsal joint fusion using finite element analysis. Med Eng Phys. 2014;36(11):1394–400.

    Article  Google Scholar 

  77. Keyak JH, Rossi SA. Prediction of femoral fracture load using finite element models: an examination of stress-and strain-based failure theories. J Biomech. 2000;33(2):209–14.

    Article  Google Scholar 

  78. Weatherall JM, Chapman CB, Shapiro SL. Postoperative second metatarsal fractures associated with suture-button implant in hallux valgus surgery. Foot Ankle Int. 2013a;34(1):104–10.

    Article  Google Scholar 

  79. Weatherall JM, Chapman C, Shapiro S. Comment on “postoperative second metatarsal fractures associated with suture-button implant in hallux valgus surgery” response. Foot Ankle Int. 2013b;34(6):919–20.

    Article  Google Scholar 

  80. Epstein N, Chandran S, Chou L. Current concepts review: intra-articular fractures of the calcaneus. Foot Ankle Int. 2012;33(1):79–86.

    Article  Google Scholar 

  81. Mitchell MJ, McKinley JC, Robinson CM. The epidemiology of calcaneal fractures. Foot. 2009;19(4):197–200.

    Article  Google Scholar 

  82. Lim EVA, Leung JPF. Complications of intraarticular calcaneal fractures. Clin Orthop Relat Res. 2001;391:7–16.

    Article  Google Scholar 

  83. Forman JL, Lopez-Valdes FJ, Duprey S, et al. The tolerance of the human body to automobile collision impact–a systematic review of injury biomechanics research, 1990–2009. Accid Anal Prev. 2015;80:7–17.

    Article  Google Scholar 

  84. Funk JR, Crandall JR, Tourret LJ, et al. The axial injury tolerance of the human foot/ankle complex and the effect of achilles tension. J Biomech Eng Trans ASME. 2002;124(6):750–7.

    Article  Google Scholar 

  85. Gallenberger K, Yoganandan N, Pintar F. Biomechanics of foot/ankle trauma with variable energy impacts. Ann Adv Automot Med. 2013;57:123.

    Google Scholar 

  86. Crandall JR, Portier L, Petit P, et al. Biomechanical response and physical properties of the leg, foot, and ankle. SAE Technical Paper. 1996.

    Google Scholar 

  87. McKay BJ, Bir CA. Lower extremity injury criteria for evaluating military vehicle occupant injury in underbelly blast events. Stapp Car Crash J. 2009;53:229.

    Google Scholar 

  88. Parenteau CS, Viano DC, Petit PY. Biomechanical properties of human cadaveric ankle-subtalar joints in quasi-static loading. J Biomech Eng Trans ASME. 1998;120(1):105–11.

    Article  Google Scholar 

  89. Yoganandan N, Pintar FA, Kumaresan S, Boynton M. Axial impact biomechanics of the human foot-ankle complex. J Biomech Eng. 1997;119:433–7.

    Article  Google Scholar 

  90. Chang CY, Rupp JD, Kikuchi N, Schneider LW. Development of a finite element model to study the effects of muscle forces on knee-thigh-hip injuries in frontal crashes. Stapp Car Crash J. 2008;52(52):475–504.

    Google Scholar 

  91. Cheung JT-M, Yu J, Wong DW-C, Zhang M. Current methods in computer-aided engineering for footwear design. Footwear Sci. 2009;1(1):31–46.

    Article  Google Scholar 

  92. Telfer S, Erdemir A, Woodburn J, Cavanagh PR. What has finite element analysis taught us about diabetic foot disease and its management. A systematic review. PLoS One. 2014;9(10):e109994.

    Article  Google Scholar 

  93. Wang Y, Li ZY, Wong DWC, Zhang M. Effects of ankle arthrodesis on biomechanical performance of the entire foot. PLoS One. 2015;10(7):e0134340.

    Article  Google Scholar 

  94. Wang Y, Wong DWC, Zhang M. Computational models of the foot and ankle for pathomechanics and clinical applications: a review. Ann Biomed Eng. 2016;44(1):213–21.

    Article  Google Scholar 

  95. Farhang B, Araghi FR, Bahmani A, Moztarzadeh F, Shafieian M. Landing impact analysis of sport surfaces using three-dimensional finite element model. Proc Inst Mech Engrs P J Sports Eng Technol. 2016;230(3):180–5.

    Google Scholar 

  96. Shin J, Yue N, Untaroiu CD. A finite element model of the foot and ankle for automotive impact applications. Ann Biomed Eng. 2012;40(12):2519–31.

    Article  Google Scholar 

  97. Sabry FF, Ebraheim NA, Mehalik JN, Rezcallah AT. Internal architecture of the calcaneus: implications for calcaneus fractures. Foot Ankle Int. 2000;21(2):114–8.

    Article  Google Scholar 

  98. Wong DWC, Zhang M, Yu J, Leung AKL. Biomechanics of first ray hypermobility: an investigation on joint force during walking using finite element analysis. Med Eng Phys. 2014;36(11):1388–93.

    Article  Google Scholar 

  99. Wong DWC, Wang Y, Zhang M, Leung AKL. Functional restoration and risk of non-union of the first metatarsocuneiform arthrodesis for hallux valgus: a finite element approach. J Biomech. 2015;48(12):3142–8.

    Article  Google Scholar 

  100. Morales-Orcajo E, Bayod J, de Las Casas EB. Computational foot modeling: scope and applications. Arch Comput Methods Eng. 2016;23(3):389–416.

    Article  Google Scholar 

  101. Gu YD, Li JS, Ren XJ, Lake MJ, Zeng YJ. Heel skin stiffness effect on the hind foot biomechanics during heel strike. Skin Res Technol. 2010;16(3):291–6.

    Google Scholar 

  102. Siegler S, Chen J, Schneck CD. The effect of damage to the lateral collateral ligaments on the mechanical characteristics of the human ankle joint. In: Proceedings of the annual international conference of the IEEE Engineering in Medicine and Biology Society, Pts 1–4, 1988b. p. 622–3.

    Google Scholar 

  103. Mittra E, Rubin C, Gruber B, Qin YX. Evaluation of trabecular mechanical and microstructural properties in human calcaneal bone of advanced age using mechanical testing, mu ct, and dxa. J Biomech. 2008;41(2):368–75.

    Article  Google Scholar 

  104. Sanyal A, Gupta A, Bayraktar HH, Kwon RY, Keaveny TM. Shear strength behavior of human trabecular bone. J Biomech. 2012;45(15):2513–9.

    Article  Google Scholar 

  105. Kelly N, McGarry JP. Experimental and numerical characterisation of the elasto-plastic properties of bovine trabecular bone and a trabecular bone analogue. J Mech Behav Biomed Mater. 2012;9:184–97.

    Article  Google Scholar 

Download references

Acknowledgments

The work of this chapter was supported by the Key R&D Program granted by the Ministry of Science and Technology of China (2018YFB1107000), NSFC granted by the National Natural Science Foundation of China (11732015), and General Research Fund granted by the Hong Kong Research Grant Council (PolyU152065/17E).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ming Zhang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Wong, D.WC., Ni, M., Wang, Y., Zhang, M. (2020). Biomechanics of Foot and Ankle. In: Cheng, CK., Woo, S.LY. (eds) Frontiers in Orthopaedic Biomechanics. Springer, Singapore. https://doi.org/10.1007/978-981-15-3159-0_10

Download citation

  • DOI: https://doi.org/10.1007/978-981-15-3159-0_10

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-15-3158-3

  • Online ISBN: 978-981-15-3159-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics