Skip to main content

Wheat Microbiome: Present Status and Future Perspective

  • Chapter
  • First Online:
Phytobiomes: Current Insights and Future Vistas

Abstract

Wheat microbiome harbors a diverse array of microbial communities and play a vital role in maintaining wheat physiology as well assist in offering protection from biotic and abiotic stresses. Several research findings indicated that wheat microbiome encompasses predominantly fungi, bacteria, viruses, actinomycetes, cyanobacteria, protozoa, archaea, etc. which performed myriads of advantageous activities including bio-management of crop pathogens, abiotic stress amelioration, as well as plant growth promotion under adverse conditions. In this chapter, attempts have been made to provide comprehensive and up-to-date insights on wheat microbiome research with major emphasis on emerging microbiome-based sustainable solutions for profitable and quality wheat production under every changing climate.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aarab S, Ollero JF, Megias M, Laglaoui A, Bakkali M, Arakrak A (2015) Isolation and screening of bacteria from rhizospheric soils of rice fields in Northwestern Morocco for different plant growth promotion (PGP) activities: an in vitro study. Int J Curr Microbiol App Sci 4(1):260–269

    Google Scholar 

  • Abbasi M, Yousra M (2012) Synergistic effects of biofertilizer with organic and chemical N sources in improving soil nutrient status and increasing growth and yield of wheat grown under greenhouse conditions. Plant Biosyst Int J Deal Asp Plant Biol 146(sup1):181–189

    Google Scholar 

  • Abbaspoor A, Zabihi HR, Movafegh S, Asl MA (2009) The efficiency of plant growth promoting rhizobacteria (PGPR) on yield and yield components of two varieties of wheat in salinity condition. Am Eurasian J Sustain Agric 3(4):824–828

    Google Scholar 

  • Abd-Alla MH, El-Sayed E-SA, Rasmey A-HM (2013) Indole-3-acetic acid (IAA) production by Streptomyces atrovirens isolated from rhizospheric soil in Egypt. J Biol Earth Sci 3(2):B182–BB93

    Google Scholar 

  • Agarwal R, Nagarajan S (1992) Possible biocontrol of loose smut of wheat (Ustilago segetum var. tritici). J Biol Control 6(2):114–115

    Google Scholar 

  • Ahemad M, Kibret M (2014) Mechanisms and applications of plant growth promoting rhizobacteria: current perspective. J King Saud Univ Sci 26(1):1–20

    Google Scholar 

  • Akbari GA, Arab SM, Alikhani H, Allakdadi I, Arzanesh M (2007) Isolation and selection of indigenous Azospirillum spp. and the IAA of superior strains effects on wheat roots. World J Agric Sci 3(4):523–529

    Google Scholar 

  • Akhtar MS, Shakeel U, Siddiqui ZA (2010) Biocontrol of Fusarium wilt by Bacillus pumilus, Pseudomonas alcaligenes and Rhizobium sp. on lentil. Turk J Biol 34(3):1–7

    Google Scholar 

  • Alien DJ (1982) Verticillium lecanii on the bean rust fungus, Uromyces appendiculatus. Trans Brit Myco Soc 55:173

    Google Scholar 

  • Amaral FP, Pankievicz VCS, Arisi ACM, Souza EM, Pedrosa F, Stacey G (2016) Differential growth responses of Brachypodium distachyon genotypes to inoculation with plant growth promoting rhizobacteria. Plant Mol Biol 90(6):689–697. https://doi.org/10.1007/s11103-016-0449-8. PMID: 26873699

    Article  CAS  PubMed  Google Scholar 

  • Amer GAM, Singh DV, Aggarwal R, Prem-Dureja (2000) Microbial antagonism to Neovossia indica, causing Karnal bunt of wheat. International conference on integrated plant disease management for sustainable agriculture. New Delhi, India, pp 1281

    Google Scholar 

  • Arkhipova T, Veselov S, Melentiev A, Martynenko E, Kudoyarova G (2005) Ability of bacterium Bacillus subtilis to produce cytokinins and to influence the growth and endogenous hormone content of lettuce plants. Plant Soil 272(1–2):201–209

    CAS  Google Scholar 

  • Asseng S, Ewert F, Martre P, Rotter RP, Lobell DB, Cammarano D (2015) Rising temperatures reduce global wheat production. Nat Clim Chang 5(2):143–147

    Google Scholar 

  • Bacon, C. W. (1990). Isolation, culture and maintenance of endophytic fungi of grasses in: isolation of biotechnological organisms from nature. Ed. by D. P. Labeda, McGraw-Hill, New York

    Google Scholar 

  • Banerjee S, Palit R, Sengupta C, Standing D (2010) Stress induced phosphate solubilisation by Arthrobacter sp. and Bacillus sp. isolated from tomato rhizosphere. Aust J Crop Sci 4(6):378–383

    Google Scholar 

  • Barnett S, Zhao S, Ballard R, Franco C (2017) Selection of microbes for control of Rhizoctonia root rot on wheat using a high throughput pathosystem. Biol Control. 113: 45–57, https://doi.org/10.1016/j.biocontrol.2017.07.003

  • Barra P, Inostroza NG, Sobarzo JA, Mora ML (2014) Formulation of bacterial consortia from avocado (persea americana mill.) and their effect on growth, biomass and superoxide dismutase activity of wheat seedlings under salt stress. Appl Soil Ecol 102(2016):80–91

    Google Scholar 

  • Berendsen RL, Pieterse CMJ, Bakker P (2012) The rhizosphere microbiome and plant health. Trends Plant Sci 17(8):478–486. https://doi.org/10.1016/j.tplants.2012.04.001

    Article  CAS  PubMed  Google Scholar 

  • Berg G, Grube M, Schloter M, Smalla K (2014) Unraveling the plant microbiome: looking back and future perspectives. Front Microbiol 5:148

    PubMed  PubMed Central  Google Scholar 

  • Bhattacharyya P, Jha D (2012) Plant growth-promoting rhizobacteria (PGPR): emergence in agriculture. World J Microbiol Biotechnol 28(4):1327–1350

    CAS  PubMed  Google Scholar 

  • Boe L, Danielsen M, Knudsen S, Petersen JB, Maymann J, Jensen PR (2000) The frequency of mutators in populations of Escherichia coli. Mutat Res 448:47–55. https://doi.org/10.1016/S0027-5107(99)00239-0

    Article  CAS  PubMed  Google Scholar 

  • Borgen A, Davanlou M (2000) Biological control of common bunt in organic agriculture. J Crop Prod 3:159–174

    Google Scholar 

  • Brader G, Compant S, Mitter B, Trognitz F, Sessitsch A (2014) Metabolic potential of endophytic bacteria. Curr Opin Biotechnol 27:30–37

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bulgarelli D, Schlaeppi K (2015) The plant microbiome at work. MPMI 28(3):212–217. https://doi.org/10.1094/MPMI-10-14-0334-FI

    Article  CAS  PubMed  Google Scholar 

  • Bulgarelli D, Schlaeppi K, Spaepen S, van Themaat EVL, Schulze-Lefert P (2013) Structure and functions of the bacterial microbiota of plants. Annu Rev Plant Biol 64(1):807–838

    CAS  PubMed  Google Scholar 

  • Bulgarelli D, Rott M, Schlaeppi K, Ver Loren van Themaat E, Ahmadinejad N, Assenza F et al (2012) Revealing structure and assembly cues for Arabidopsis root-inhabiting bacterial microbiota. Nature 488:91–95. https://doi.org/10.1038/nature11336

    Article  CAS  PubMed  Google Scholar 

  • Busby PE, Soman C, Wagner MR et al (2017) Research priorities for harnessing plant microbiomes in sustainable agriculture. PLoS Biol 15(3):e2001793

    PubMed  PubMed Central  Google Scholar 

  • Cakmakci R, Turan M, Kitir N, Gunes A, Nikerel E, Ozdemir BS, Yildirim E, Olgun M, Topcuoglu B, Tufenkci S, Karaman MR, Tarhan L, Mokhtari NEP (2017) The role of soil beneficial bacteria in wheat production: a review. Intech Open 7. https://doi.org/10.5772/67274

  • Calvo P, Nelson L, Kloepper JW (2014) Agricultural uses of plant biostimulants. Plant Soil 383(1–2):3–41

    CAS  Google Scholar 

  • Canbolat MY, Bilen S, Çakmakçı R, Şahin F, Aydın A (2006) Effect of plant growth-promoting bacteria and soil compaction on barley seedling growth, nutrient uptake, soil properties and rhizosphere microflora. Biol Fertil Soils 42(4):350–357

    CAS  Google Scholar 

  • Cania B, Vestergaard G, Krauss M, Fliessbach A, Schloter M, Schulz S (2019) A long-term field experiment demonstrates the influence of tillage on the bacterial potential to produce soil structure-stabilizing agents such as exopolysaccharides and lipopolysaccharides. Environ Microbiome 14:1. https://doi.org/10.1186/s40793-019-0341

    Article  PubMed  PubMed Central  Google Scholar 

  • Carroll GC (1988) Fungal endophytes in stems and leaves: from latent pathogens to mutualistic symbiont. Ecology 69(1):2–9. https://doi.org/10.2307/1943154

    Article  Google Scholar 

  • Chakraborty U, Chakraborty BN, Chakraborty AP, Dey PL (2013) Water stress amelioration and plant growth promotion in wheat plants by osmotic stress tolerant bacteria. World J Microbiol Biotechnol 29(5):789–803. https://doi.org/10.1007/s11274-012-1234-8

    Article  CAS  PubMed  Google Scholar 

  • Chatrath R (2004) Breeding strategies for developing wheat varieties targeted for rice-wheat cropping system of Indo-Gangetic plains of Eastern India. In: Joshi AK et al (eds) A compendium of the training program on wheat improvement in eastern and warmer regions of India: conventional and non-conventional approaches, 26–30 December, 2003, NATP project, (ICAR). BHU, Varanasi

    Google Scholar 

  • Chaves MS, Martinelli JA, Wesp-Guterres C, Graichen FAS, Brammer SP, Scagliusi SM, Consoli L (2013) The importance for food security of maintaining rust resistance in wheat. Food Secur 5(2):157–176

    Google Scholar 

  • Chan YK, McCormick WA, Seifert KA (2003) Characterization of an antifungal soil bacterium and its antagonistic activities against Fusarium species. Can J Microbiol 49:253–262

    CAS  PubMed  Google Scholar 

  • Chen Y, Wang J, Yang N, Wen Z, Sun X (2018) Wheat microbiome bacteria can reduce virulence of a plant pathogenic fungus by altering histone acetylation. Nat Commun 9:3429. https://doi.org/10.1038/s41467-018-05683-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Clay K (1989) Clavicipitaceous endophytes of grasses: their potential as biocontrol agents. Mycol Res 92:1–12

    Google Scholar 

  • Compant S, Clement C, Sessitsch A (2010) Plant growth-promoting bacteria in the rhizo- and endosphere of plants: Their role, colonization, mechanisms involved and prospects for utilization. Soil Biol Biochem 42:669–678

    CAS  Google Scholar 

  • Crane JM, Frodyma ME, Bergstrome JC (2014) Nutrient-induced spore germination of a Bacillus amyloliquefaciens biocontrol agent on wheat spikes. J Appl Microbiol 116(6):1572-1583, https://doi.org/10.1111/jam.12480

  • Creus CM, Sueldo RJ, Barassi CA (2004) Water relations and yield in Azospirillum-inoculated wheat exposed to drought in the field. Can J Bot 82(2):273–281. Microbiology 160(4):778–788

    Google Scholar 

  • Curtis FD, Cicco VD, Lima G (2012) Efficacy of biocontrol yeasts combined with calcium silicate or sulphur for controlling durum wheat powdery mildew and increasing grain yield components. Field Crops Res 134:36–46

    Google Scholar 

  • Dangl JL, Horvath DM, Staskawicz BJ (2013) Pivoting the plant immune system from dissection to deployment. Science 341:746–751

    CAS  PubMed  Google Scholar 

  • De Curtis F, De Cicco V, Lima G (2012) Efficacy of biocontrol yeasts combined with calcium silicate or sulphur for controlling durum wheat powdery mildew and increasing grain yield components. Field Crop Res 134:36–46

    Google Scholar 

  • Diaz-Zorita M, Fernández-Canigia MV (2009) Field performance of a liquid formulation of Azospirillum brasilense on dryland wheat productivity. Eur J Soil Biol 45(1):3–11

    Google Scholar 

  • Denamur E, Matic I (2006) Evolution of mutation rates in bacteria. Mol Microbiol 60(4):820–827

    CAS  PubMed  Google Scholar 

  • Devi HM, Mahapatra S, Das S (2018) Assessment of yield loss of wheat caused by spot blotch using regression model. Indian Phytopathol 71:291–294

    Google Scholar 

  • Dorworth CE, Callan BE (1996) Manipulation of endophytic fungi to promote their utility as vegetation biocontrol agents. In: Reddin SC, Carris LM (eds) Endophytic fungi in grasses and woody plants. APS Press, St. Paul

    Google Scholar 

  • Egamberdiyeva D, Höflich G (2003) Influence of growth-promoting bacteria on the growth of wheat in different soils and temperatures. Soil Biol Biochem 35(7):973–978

    CAS  Google Scholar 

  • El-Daim IAA, Bejai S, Meijer J (2014) Improved heat stress tolerance of wheat seedlings by bacterial seed treatment. Plant Soil 379(1–2):337–350

    Google Scholar 

  • Eldoksch HA, Atteia MF, Abdel-Moity SMH (2001) Management of brown leaf rust, Puccinia recondita of wheat using natural products and biocontrol agents. Pak J Biol Sci 4:550–553

    Google Scholar 

  • El-Gremi SM, Draz IS, Youssef WA (2017) Biological control of pathogens associated with kernel black point disease of wheat. Crop Prot 91:13–19

    Google Scholar 

  • El-Meleigi MA, Hassan ZM, Ibrahim GH (2007) Biological control of common root rot of spring wheat by coating seeds with Bacillus or Trichoderma spp. in Central Saudi Arabia. JKAU: Met Env Arid Land Agric Sci 18:3–12

    Google Scholar 

  • El-Razek UA, El-Sheshtawy A (2013) Response of some wheat varieties to bio and mineral nitrogen fertilizers. Asian J Crop Sci 5(2):200

    Google Scholar 

  • El-Sharkawy HHA, Tohamey S, Khalil AA (2015) Combined effects of Streptomyces viridosporus and Trichoderma harzianum on controlling wheat leaf rust caused by Puccinia triticina. Plant Pathol J 14:182–188. https://doi.org/10.3923/ppj.2015.182.188

    Article  CAS  Google Scholar 

  • Farooq M, Wahid A, Kobayashi N, Fujita D, Basra S (2009) Plant drought stress: effects, mechanisms and management. Sustainable agriculture. Springer, pp 153–88

    Google Scholar 

  • Federhen S (2014) Type material in the Ncbi Taxonomy Database. Nucleic Acids Res 1127

    Google Scholar 

  • Fisher PJ, Andoson AE, Petrini O (1986) Fungal endophytes in Ulex europaeus and Ulex gallii. Trans Br Mycol Soc 86:153–156

    Google Scholar 

  • Flaishman MA, Eyal Z, Zilberstein A, Voisard C, Haas D (1996) Suppression of Septoria tritici blotch and leaf rust of wheat by recombinant cyanide-producing strains of Pseudomonas putida. Mol Plant-Microbe Interact 9:642–664

    CAS  Google Scholar 

  • Forchetti G, Masciarelli O, Alemano S, Alvarez D, Abdala G (2007) Endophytic bacteria in sunflower (Helianthus annuus L.): isolation, characterization, and production of jasmonates and abscisic acid in culture medium. Appl Microbiol Biotechnol 76(5):1145–1152

    CAS  PubMed  Google Scholar 

  • GagneA-Bourque F, Mayer BF, Charron JB, Vali H, Bertrand A, Jabaji S (2015) Acceleration growth rate and increased drought stress resilience of the model grass Brachypodium distachyon colonized by Bacillus subtilis B26. PLoS One 10(6). https://doi.org/10.1371/journal.pone.0130456

  • Gao X, Gong Y, Huo Y, Han Q, Kang Z, Huang L (2015) Endophytic Bacillus subtilis strain E1R-J is a promising biocontrol agent for wheat powdery mildew. Biomed Res Int 2015:462645. https://doi.org/10.1155/2015/462645

    Article  PubMed  PubMed Central  Google Scholar 

  • Gdanetz K, Trail F (2017) The wheat microbiome under four management strategies and potential for endophytes in disease protection. Phytobiomes 1:158–168

    Google Scholar 

  • Ghoneem KM, Saber WIA, Youssef IAM, Mohamed MR, Al-Askar AA (2015) Postulation and efficiency of leaf rust resistance genes of wheat and biological control of virulence formulae of Puccinia triticina races. Egypt J Biol Pest Control 25(1):23–31

    Google Scholar 

  • Glick BR (2012) Plant growth-promoting bacteria: mechanisms and applications. Scientifica 2012:1–15

    Google Scholar 

  • Glick BR (2015) Beneficial plant-bacterial interactions. Springer, Cham, p 243

    Google Scholar 

  • Glick BR, Penrose DM, Li J (1998) A model for the lowering of plant ethylene concentrations by plant growth-promoting bacteria. J Theor Biol 190(1):63–68

    CAS  PubMed  Google Scholar 

  • Goswami D, Vaghela H, Parmar S, Dhandhukia P, Thakker JN (2013) Plant growth promoting potentials of Pseudomonas spp. strain OG isolated from marine water. J Plant Interact 8 (4):281–290

    Google Scholar 

  • Granzow S, Kaiser K, Wemheuer B, Pfeiffer B, Daniel R, Vidal S, Wemheuer F (2017) The effects of cropping regimes on fungal and bacterial communities of wheat and faba bean in a greenhouse pot experiment differ between plant species and compartment. Front Microbiol 8:902

    PubMed  PubMed Central  Google Scholar 

  • Gupta G, Parihar SS, Ahirwar NK, Snehi SK, Singh V (2015) Plant growth promoting rhizobacteria (pgpr): current and future prospects for development of sustainable agriculture. J Microbial Biochem Technol 7:096–102. https://doi.org/10.4172/1948-5948.1000188

    Article  CAS  Google Scholar 

  • Hall RA (1981) The fungus Verticillium lecanii as a microbial insecticide against aphids and scales. In: Microbial control of pests and plant diseases. Academic, London, pp 483–498

    Google Scholar 

  • Hallmann J, Hallmann AQ, Mahaffee WF, Kloepper JW (1997) Bacterial endophytes in agricultural crops. Can J Microbiol 43(10):895–914

    CAS  Google Scholar 

  • Hammami I, Rhouma A, Jaouadi B, Rebai A, Nesme X (2009) Optimization and biochemical characterization of a bacteriocin from a newly isolated bacillus subtilis strain 14b for biocontrol of agrobacterium spp. Strains. Lett Appl Microbiol 48(2):253–260

    CAS  PubMed  Google Scholar 

  • Haney CH, Ausubel FM (2015) Plant microbiome blueprints. Science 349(6250):788–789

    CAS  PubMed  Google Scholar 

  • Haney CH, Samuel BS, Bush J, Ausubel FM (2015) Associations with rhizosphere bacteria can confer an adaptive advantage to plants. Nat Plants 1(6):15051. https://doi.org/10.1038/nplants.2015.51

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hartman K, Marcel GA, Heijden VD, Wittwer RA, Banerjee S, Walser JC, Schlaeppi K (2018) Cropping practices manipulate abundance patterns of root and soil microbiome members paving the way to smart farming. Microbiome 6:14. https://doi.org/10.1186/s40168-017-0389-9

    Article  PubMed  PubMed Central  Google Scholar 

  • Hartmann M, Frey B, Mayer J, Mader P, Widmer F (2014) Distinct soil microbial diversity under long-term organic and conventional farming. ISME J 9:1177–1194

    PubMed  PubMed Central  Google Scholar 

  • Hassan TU, Bano A (2015) Role of carrier-based biofertilizer in reclamation of saline soil and wheat growth. Arch Agron Soil Sci 61(12):1719–1731

    Google Scholar 

  • Hayden HL, Savin KW, Wadeson J, Gupta VVSR, Mele PM (2018) Metatranscriptomics of wheat rhizosphere microbiomes in disease suppressive and non-suppressive soils for Rhizoctonia solani AG8. Front Microbiol 9:859. https://doi.org/10.3389/fmicb.2018.00859

  • Hegazi N, Fayez M, Amin G, Hamza M, Abbas M, Youssef H (1998) Diazotrophs associated with non-legumes grown in sandy soils. In: Nitrogen fixation with non-legumes. Springer, Dordercht, pp 209–222

    Google Scholar 

  • Hirsch PR, Mauchline T (2014) Who’s who in the plant root microbiome? Nat Biotechnol 30(10):961–962. https://doi.org/10.1038/nbt.2387

    Article  CAS  Google Scholar 

  • Hossain MM, Hossain I, Khalequzzaman KM (2015) Effect of seed treatment with biological control agent against Bipolaris leaf blight of wheat. Int J Sci Res Agric Sci 2(7):151–158

    Google Scholar 

  • Huang Y, Kuang Z, Wang W, Cao L (2016) Exploring potential bacterial and fungal biocontrol agents transmitted from seeds to sprouts of wheat. Biol Control 98:27–33

    Google Scholar 

  • Hug LA, Baker BJ, Anantharaman K, Brown CT, Probst AJ, Castelle CJ et al (2016) A new view of the tree of life. Nat Microbiol 1:16048. https://doi.org/10.1038/nmicrobiol.2016.48

    Article  CAS  PubMed  Google Scholar 

  • Iniguez AL, Dong Y, Triplett EW (2004) Nitrogen fixation in wheat provided by Klebsiella pneumoniae 342. Mol Plant-Microbe Interact 17(10):1078–1085

    Google Scholar 

  • Islam N, Rao C, Kennedy I (2002) Facilitating a N2-fixing symbiosis between diazotrophs and wheat. In: Biofertilisers in action. Rural Industries Research and Development Corporation, Canberra, pp 84–93

    Google Scholar 

  • Jankiewicz U (2006) Synthesis of siderophores by soil bacteria of the genus Pseudomonas under various culture conditions. Acta Sci Pol Agric 5(2):s. 33–s. 44

    Google Scholar 

  • Jaramillo JEP, Carrion VJ, Hollander MD, Raaijmakers JM (2018) The wild side of plant microbiomes. Microbiome 6:143. https://doi.org/10.1186/s40168-018-0519-z260-269

    Article  Google Scholar 

  • Jasrotia P, Kashyap PL, Bhardwaj AK, Kumar S, Singh GP (2018) Scope and applications of nanotechnology for wheat production: a review of recent advances. Wheat Barley Res 10(1):1–14

    Google Scholar 

  • Jochum CC, Osborne LE, Yuen GY (2006) Fusarium head blight biological control with Lysobacter enzymogenes strain C3. Biol Control 39:336–344

    Google Scholar 

  • Jog R, Pandya M, Nareshkumar G, Rajkumar S (2014) Mechanism of phosphate solubilization and antifungal activity of Streptomyces spp. isolated from wheat roots and rhizosphere and their application in improving plant growth. Microbiology 160:778–788

    Google Scholar 

  • Joshi AK, Chand R, Arun B, Singh RP, Ortiz R (2007) Breeding crops for reduced-tillage management in the intensive, rice-wheat systems of south Asia. Euphytica 153:135–151

    Google Scholar 

  • Kalappanavar IK, Patidar RK, Kulkarni S (2008) Management strategies of leaf rust of wheat caused by Puccinia recondita f. sp. tritici Rob. ex. Desm. Karnataka J Agric Sci 21(1):61–64

    Google Scholar 

  • Kannan V, Sureender R (2009) Synergistic effect of beneficial rhizosphere microflora in biocontrol and plant growth promotion. J Basic Microbiol 49(2):158–164

    CAS  PubMed  Google Scholar 

  • Karlsson I, Friberg H, Kolseth AK, Steinberg C (2017) Organic farming increases richness of fungal taxa in the wheat phyllosphere. Mol Ecol 2017:1–13

    Google Scholar 

  • Kashyap PL, Jasrotia P, Kumar S, Singh DP, Singh GP (2018) Identification guide for major diseases and insect-pests of wheat. Technical bulletin 18. ICAR Indian Institute of Wheat and Barley Research, Karnal, India, p 38

    Google Scholar 

  • Kashyap PL, Kaur S, Pannu PPS (2019) Expression analysis of pathogenesis related proteins induced by compatible and incompatible interactions of Tilletia indica in wheat plants. J Mycol Plant Pathol 49(1):39–47

    Google Scholar 

  • Kashyap PL, Kaur S, Pannu PPS (2018) Induction of systemic tolerance to Tilletia indica in wheat by plant defence activators . Arch Phytopathol Plant Prot 51(1-2):1–13

    Google Scholar 

  • Kashyap PL, Kaur S, Sanghera GS, Kang SS, Pannu PPS (2011) Novel methods for quarantine detection of Karnal bunt (Tilletia indica) of wheat. Elixir Agric 31:1873–1876

    Google Scholar 

  • Kempf HJ, Wolf G (1989) Erwinia herbicola as a biocontrol agent of Fusarium culmorum and Puccinia recondita f. sp. tritici on wheat. Phytopathology 79(9):990–994

    Google Scholar 

  • Khalafallah AA, Abo-Ghalia HH (2008) Effect of arbuscular mycorrhizal fungi on the metabolic products and activity of antioxidant system in wheat plants subjected to shorter water stress, followed by recovery at different growth stages. J Appl Sci Res 4(5):559–569

    CAS  Google Scholar 

  • Khalid A, Arshad M, Zahir Z (2004) Screening plant growth-promoting rhizobacteria for improving growth and yield of wheat. J Appl Microbiol 96(3):473–480

    CAS  PubMed  Google Scholar 

  • Khan MR, Doohan FM (2009) Bacterium-mediated control of Fusarium head blight disease of wheat and barley and associated mycotoxin contamination of grain. Biol Control 48(1):42–47

    Google Scholar 

  • Khan MS, Zaidi A (2007) Synergistic effects of the inoculation with plant growth-promoting rhizobacteria and an arbuscular mycorrhizal fungus on the performance of wheat. Turk J Agric For 31(6):355–362

    CAS  Google Scholar 

  • Khan MS, Zaidi A, Wani PA (2007) Role of phosphate solubilizing microorganisms in sustainable agriculture-a review. Agron Sustain Dev 27:29–43

    Google Scholar 

  • Khan H, Bhardwaj SC, Gangwar OP, Prasad P, Kashyap PL, Savadi PLS, Kumar S, Rathore R (2017) Identifying some additional rust resistance genes in Indian wheat varieties using robust markers. Cereal Res Commun 45(4):633–646

    CAS  Google Scholar 

  • Kibota TT, Lynch M (1996) Estimate of the genomic mutation rate deleterious to overall fitness in E. coli. Nature 381(6584):694–696. https://doi.org/10.1038/381694a0

  • Kollmorgen JE, Jones LC (1975) The effects of soil-borne micro-organisms on the germination of chlamydospores of Tilletia caries and T. foetida. Soil Biol Biochem 7:407–410

    Google Scholar 

  • Kudoyarova GR, Melentiev AI, Martynenko EV, Timergalina LN, Arkhipova TN, Shendel GV (2014) Cytokinin producing bacteria stimulate amino acid deposition by wheat roots. Plant Physiol Biochem 83:285–291

    CAS  PubMed  Google Scholar 

  • Kumar V, Behl RK, Narula N (2001) Establishment of phosphate-solubilizing strains of Azotobacter chroococcum in the rhizosphere and their effect on wheat cultivars under greenhouse conditions. Microbiol Res 156(1):87–93

    CAS  PubMed  Google Scholar 

  • Kumar V, Singh S, Singh J, Upadhyay N (2015) Potential of plant growth promoting traits by bacteria isolated from heavy metal contaminated soils. Bull Environ Contam Toxicol 94(6):807–814

    CAS  PubMed  Google Scholar 

  • Kumar S, Singroha G, Bhardwaj SC, Bala R, Saharan MS, Gupta V, Khan A, Mahapatra S, Sivasamy M, Rana V, Mishra CN, Prakash O, Verma A, Sharma P, Sharma I, Chatrath R, Singh GP (2019) Multienvironmental evaluation of wheat (Triticum aestivum L.) germplasm identifies donors with multiple fungal disease resistance. Genet Resour Crop Evol 66:797–808

    CAS  Google Scholar 

  • Kumar S, Kashyap PL, Singh GP (2020) Wheat blast. CRC Press Boca Raton, pp 214, https://doi.org/10.1201/9780429470554

    Google Scholar 

  • Kushwaha P, Kashyap PL, Srivastava AK, Tiwari RK (2020a) Plant growth promoting and antifungal activity in endophytic Bacillus strains from pearl millet (Pennisetum glaucum). Brazilian Journal of Microbiology 51(1):229–241

    Google Scholar 

  • Kushwaha P, Kashyap PL, Bhardwaj AK, Kuppusamy P, Srivastava AK, Tiwari RK (2020b) Bacterial endophyte mediated plant tolerance to salinity: growth responses and mechanisms of action. World Journal of Microbiology and Biotechnology 36:26. https://doi.org/10.1080/11263504.2019.1651773

    Google Scholar 

  • Kushwaha P, Kashyap PL, Kuppusamy P, Srivastava AK, Tiwari RK (2019) Functional characterization of endophytic bacilli from pearl millet (Pennisetum glaucum) and their possible role in multiple stress tolerance . Plant Biosystems - An International Journal Dealing with all Aspects of Plant Biology:1-12, https://doi.org/10.1080/11263504.2019.1651773

    Google Scholar 

  • Kuzmina LY, Melentev AI (2003) The effect of seed bacterization by Bacillus Cohn bacteria on their colonization of the spring wheat rhizosphere. Microbiology 72:230–235

    CAS  Google Scholar 

  • Lanteigne C, Gadkar VJ, Wallon T, Novinscak A, Filion M (2012) Production of DAPG and HCN by Pseudomonas sp. LBUM300 contributes to the biological control of bacterial canker of tomato. Phytopathology 102(10):967–973

    CAS  PubMed  Google Scholar 

  • Li H, Zhao J, Feng H, Huang L, Kang Z (2013) Biological control of wheat stripe rust by an endophytic Bacillus subtilis strain E1R-j in greenhouse and field trials. Crop Prot 43:201–206

    Google Scholar 

  • Liu B, Qiao H, Huang L, Buchenauer H, Han Q, Kang Z, Gong Y (2009) Biological control of take-all in wheat by endophytic Bacillus subtilis E1R-j and potential mode of action. Biol Control 49(3):277–285

    Google Scholar 

  • Liu X, Jia J, Atkinson S, Camara M, Gao K (2010) Biocontrol potential of an endophytic Serratia sp. G3 and its mode of action. World J Microbiol Biotechnol 26(8):1465–1471

    Google Scholar 

  • Liu W, Liu J, Triplett L, Leach JE, Wang GL (2014) Novel insights into rice innate immunity against bacterial and fungal pathogens. Annu Rev Phytopathol 52:213–241. https://doi.org/10.1146/annurev-phyto-102313-045926

    Article  CAS  PubMed  Google Scholar 

  • Liu H, Caravalhais LC, Schenk PM (2016) Effects of Salicylic acid signaling on Wheat microbiome are dependent on soil type, Effects of strategic tillage and plant hormone treatments on Wheat associated microbial communities. The University of Queensland, pp 148–168

    Google Scholar 

  • Liu H, Carvalhais LC, Schenk PM, Dennis PG (2017) Effects of jasmonic acid signaling on the wheat microbiome differ between body sites. Sci Rep 7:41766. https://doi.org/10.1038/srep41766

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lobell DB, Schlenker W, Costa-Roberts J (2011) Climate trends and global crop production since 1980. Science 333:616–620

    CAS  PubMed  Google Scholar 

  • Lu T, Ke M, Lavoie M (2018) Rhizosphere microorganisms can influence the timing of plant flowering. Microbiome 6:231

    PubMed  PubMed Central  Google Scholar 

  • Lundberg DS, Lebeis SL, Paredes S, Yourstone S (2012) Defining the core Arabidopsis thaliana root microbiome. Nature 488:86–90

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mahmoud AF (2016) Genetic variation and Biological control of Fusarium graminearum isolated from wheat in Assiut-Egypt. Plant Pathol J 32(2):145–156. https://doi.org/10.5423/PPJ.OA.09.2015.0201

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mahoney AK, Yin C, Hulbert SH (2017) Community structure, species variation, and potential functions of rhizosphere-associated bacteria of different winter wheat (Triticum aestivum) cultivars. Front Plant Sci 8:132

    PubMed  PubMed Central  Google Scholar 

  • Marasco R, Rolli E, Ettoumi B, Vigani G, Mapelli F et al (2012) A drought resistance-promoting microbiome is selected by root system under desert farming. PLoS One 7(10):e48479. https://doi.org/10.1371/journal.pone.0048479

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Marshall D, Tunali B, Nelson LR (1999) Occurrence of fungal endophytes in species of wild Triticum. Crop Sci 39(5):1507–1512

    Google Scholar 

  • Mathre DE, Johnston RH, Grey WE (1998) Biological control of take-all disease of wheat caused by Gaeumannomyces graminis var. tritici under field conditions using a Phialophora sp. Biocontrol Sci Tech 8(3):449–457. https://doi.org/10.1080/09583159830243

    Article  Google Scholar 

  • McDonald BR, Currie CR (2017) Lateral gene transfer dynamics in the ancient bacterial genus Streptomyces. MBio 8:e00644-17. https://doi.org/10.1128/mBio.00644-17

    Article  PubMed  PubMed Central  Google Scholar 

  • McManus PS, Ravenscrofi AV, Fulbright DW (1993) Inhibition of Tilletia laevis teliospore germination and suppression of common bunt of wheat by Pseudomonas fluorescens 2–79. Plant Dis 77:1012–1015

    Google Scholar 

  • Mehnaz S (2015) Azospirillum: a biofertilizer for every crop. In: Plant microbes symbiosis: applied facets. Springer, New Delhi, pp 297–314

    Google Scholar 

  • Mishra PK, Mishra S, Bisht SC, Selvakumar G, Kundu S, Bisht J (2009) Isolation, molecular characterization and growth-promotion activities of a cold tolerant bacterium Pseudomonas sp. NARs9 (MTCC9002) from the Indian Himalayas. Biol Res 42(3):305–313

    Google Scholar 

  • Mishra PK, Bisht SC, Ruwari P, Selvakumar G, Joshi GK, Bisht JK (2011) Alleviation of cold stress in inoculated wheat (Triticum aestivum L.) seedlings with psychrotolerant Pseudomonads from NW Himalayas. Arch Microbiol 193(7):497–513

    Google Scholar 

  • Monaco C, Sisterna M, Perello A, Bello GD (2004) Preliminary studies on biological control of the blackpoint complex of wheat in Argentina. World J Microbiol Biotechnol 20:285–290

    Google Scholar 

  • Monte E (2001) Underestanding Trichoderma: between biotechnology and microbial ecology. Int Microbiol 4:1–4

    CAS  PubMed  Google Scholar 

  • Moore B (2014) Life in our universe elephants in space. Springer, Dordrecht, pp 99–113

    Google Scholar 

  • Mueller UG, Sachs JL (2015) Engineering microbiomes to improve plant and animal health. Trends Microbiol 23(10):606–617. https://doi.org/10.1016/j.tim.2015.07.009

    Article  CAS  PubMed  Google Scholar 

  • Murray FR, Latch GCM, Scott DB (1992) Surrogate transformation of perennial rye grass, Lolium perenne, using genetically modified Acremonium endophyte. Mol Gen Genet 233(1–2):1–9

    CAS  PubMed  Google Scholar 

  • Nabti E, Sahnoune M, Ghoul M, Fischer D, Hofmann A, Rothballer M, Schmid M, Hartmann A (2010) Restoration of growth of durum wheat (Triticum durum var. waha) under saline conditions due to inoculation with the rhizosphere bacterium Azospirillum brasilense NH and extracts of the marine alga Ulva lactuca. J Plant Growth Regul 29:6–22

    CAS  Google Scholar 

  • Nallathambi P, Maheswari CU, Singh DP, Watpade S , Kashyap PL, Aarthy B, Ravikumar P, Sharma A, Kumar R (2019) Rapid nass culturing method of wheat (Triticum species) powdery mildew pathogen [Blumeria graminis (DC) Speer f. sp. tritici Marchal under controlled conditions at Wellington. J Mycol Plant Pathol 49(2):211–216

    Google Scholar 

  • Narula N, Deubel A, Gans W, Behl R, Merbach W (2006) Paranodules and colonization of wheat roots by phytohormone producing bacteria in soil. Plant Soil Environ 52(3):119

    CAS  Google Scholar 

  • Narula N, Remus R, Deubel A, Granse A, Dudeja S, Behl R (2007) Comparison of the effectiveness of wheat roots colonization by Azotobacter chroococcum and Pantoea agglomerans using serological techniques. Plant Soil Environ 53(4):167

    CAS  Google Scholar 

  • Nasraoui B, Hajlaoui MR, Aïssa AD, Kremer RJ (2007) Biological control of wheat take-all disease: I – characterization of antagonistic bacteria from diverse soils toward Gaeumannomyces graminis var. tritici. Tunis J Plant Prot 2:23–34

    Google Scholar 

  • Naveed M, Hussain MB, Zahir ZA, Mitter B, Sessitsch A (2014) Drought stress amelioration in wheat through inoculation with Burkholderia phytofirmans strain PsJN. Plant Growth Regul 73(2):121–131

    Google Scholar 

  • Nelson EB (2018) The seed microbiome: origins, interactions, and impacts. Plant Soil 422:7–34

    CAS  Google Scholar 

  • Ofek M, Voronov-Goldman M, Hadar Y, Minz D (2013) Host signature effect on plant root-associated microbiomes revealed through analyses of resident vs. active communities. Environ Microbiol 16:2157–2167

    PubMed  Google Scholar 

  • Page AP, Tremblay J, Masson L, Greer CW (2019) Nitrogen- and phosphorus-starved Triticum aestivum show distinct belowground microbiome profile. PLoS One 14(2):e0210538. https://doi.org/10.1371/journal.pone.0210538

  • Palazzini JM, Alberione E, Torres A, Donat C, Köhl J, Chulze S (2016) Biological control of Fusarium graminearum sensu stricto, causal agent of Fusarium head blight of wheat, using formulated antagonists under field conditions in Argentina. Biol Control 94:56–61

    Google Scholar 

  • Panwar J, Singh O (2000) Response of Azospirillum and Bacillus on growth and yield of wheat under field conditions. Indian J Plant Physiol 5(1):108–10.513

    Google Scholar 

  • Peiffer JA, Spor A, Koren O (2013) Diversity and heritability of the maize rhizospheric microbiome under field conditions. Proc Natl Acad Sci 110(16):6548–6553

    Google Scholar 

  • Peng D, Li S, Chen C, Zhou M (2014) Combined application of Bacillus subtilis NJ-18 with fungicides for control of sharp eyespot of wheat. Biol Control 70:28–34

    CAS  Google Scholar 

  • Perelló A, Mónaco C, Cordo C (1997) Evaluation of Trichoderma harzianum and Gliocladium roseum in controlling leaf blotch of wheat (Septoria tritici) under in vitro and greenhouse conditions. Z Pflanzenkr Pflanzenschutz 104:588–598

    Google Scholar 

  • Pereyra M, Garcia P, Colabelli M, Barassi C, Creus C (2012) A better water status in wheat seedlings induced by Azospirillum under osmotic stress is related to morphological changes in xylem vessels of the coleoptile. Appl Soil Ecol 53:94–97

    Google Scholar 

  • Pleban S, Ingel F, Chet I (1995) Control of Rhizoctonia solani and Sclerotium rolfsii in the green house using endophytic Bacillus spp. Eur J Plant Pathol 101(6):665–667

    Google Scholar 

  • Prasanna R, Nain L, Pandey AK (2012) Microbial diversity and multidimensional interactions in the rice ecosystem. Arch Agron Soil Sci 58(7):723–744

    Google Scholar 

  • Prashant S, Makarand R, Bhushan C, Sudhir C (2009) Siderophoregenic Acinetobacter calcoaceticus isolated from wheat rhizosphere with strong PGPR activity. Malays J Microbiol 5(1):6–12

    Google Scholar 

  • Rana A, Saharan B, Joshi M, Prasanna R, Kumar K, Nain L (2011) Identification of multi-trait PGPR isolates and evaluating their potential as inoculants for wheat. Ann Microbiol 61:893–900

    CAS  Google Scholar 

  • Rana A, Joshi M, Prasanna R, Shivay YS, Nain L (2012) Biofortification of wheat through inoculation of plant growth promoting rhizobacteria and cyanobacteria. Eur J Soil Biol 50:118–126

    CAS  Google Scholar 

  • Richardson AE, Barea JM, McNeill AM, Prigent-Combaret C (2009) Acquisition of phosphorus and nitrogen in the rhizosphere and plant growth promotion by microorganisms. Plant Soil 321(1–2):305–339. https://doi.org/10.1007/s11104-009-9895

    Article  CAS  Google Scholar 

  • Roat, C., Saraf, M. (2017) Isolation and screening of resveratrol producing endophytes from wild grape Cayratia trifolia. Int J Adv Agric Sci Technol 4(11):27–33

    Google Scholar 

  • Roesti D, Gaur R, Johri B, Imfeld G, Sharma S, Kawaljeet K (2006) Plant growth stage, fertiliser management and bio-inoculation of arbuscular mycorrhizal fungi and plant growth promoting rhizobacteria affect the rhizobacterial community structure in rainfed wheat fields. Soil Biol Biochem 38(5):1111–1120

    CAS  Google Scholar 

  • Rroco E, Kosegarten H, Harizaj F, Imani J, Mengel K (2003) The importance of soil microbial activity for the supply of iron to sorghum and rape. Eur J Agron 19(4):487–493

    CAS  Google Scholar 

  • Sabry SR, Saleh SA, Batchelor CA, Jones J, Jotham J, Webster G (1997) Endophytic establishment of Azorhizobium caulinodans in wheat. Proc R Soc Lond B Biol Sci 264(1380):341–346

    Google Scholar 

  • Sachdev DP, Chaudhari HG, Kasture VM, Dhavale DD, Chopade BA (2009) Isolation and characterization of indole acetic acid (IAA) producing Klebsiella pneumoniae strains from rhizosphere of wheat (Triticum aestivum) and their effect on plant growth. Indian J Exp Biol 47(12):993

    Google Scholar 

  • Sacherer P, Défago G, Haas D (1994) Extracellular protease and phospholipase C are controlled by the global regulatory gene gacA in the biocontrol strain Pseudomonas fluorescens CHA0. FEMS Microbiol Lett 116:155–160

    CAS  PubMed  Google Scholar 

  • Santiago TR, Grabowski C, Rossato M (2014) Biological control of eucalyptus bacterial wilt with rhizobacteria. Biol Control 80:14–22

    Google Scholar 

  • Santoyo G, Orozco-Mosqueda Mdel C, Govindappa M (2012) Mechanisms of biocontrol and plant growth-promoting activity in soil bacterial species of Bacillus and Pseudomonas: a review. Biocontrol Sci Tech 22(8):855–872

    Google Scholar 

  • Santoyo G, Moreno-Hagelsieb G, Glick BR (2016) Plant growth-promoting bacterial endophytes. Microbiol Res 183:92–99

    CAS  PubMed  Google Scholar 

  • Sarode Prashant D, Rane Makarand R, Chaudhari Bhushan L, Chincholkar SB (2009) Siderophoregenic Acinetobacter calcoaceticus isolated from wheat rhizosphere with strong PGPR activity. Malays J Microbiol 5(1):6–12

    Google Scholar 

  • Sarode P, Rane M, Kadam M, Chincholkar S (2013) Role of microbial siderophores in improving crop productivity in wheat. In: Bacteria in agrobiology: crop productivity. Springer, Berlin, pp 287–308

    Google Scholar 

  • Savadi S, Prasad P, Kashyap PL, Bhardwaj SC (2018) Molecular breeding technologies and strategies for rust resistance in wheat (Triticum aestivum) for sustained food security. Plant Pathol 67(4):771–791

    CAS  Google Scholar 

  • Scavino AF, Pedraza RO (2013) The role of siderophores in plant growth-promoting bacteria. In: Bacteria in agrobiology: crop productivity. Springer, Berlin, pp 265–285

    Google Scholar 

  • Schardl CL, Liu J, White JK, Finkel RA, An Z, Siegel M (1991) Molecular phylogenetic relationship of nonpathogenic grass mycosymbionts and clavicipitaceous plant pathogens. Plant Syst 178(1–2):27–41

    CAS  Google Scholar 

  • Schisler DA, Khan NI, Boehm MJ, Slininger PJ (2002) Greenhouse and field evaluation of biological control of Fusarium head blight on durum wheat. Plant Dis 86(12):1350–1356

    Google Scholar 

  • Schisler DA, Khan NI, Boehm MJ, Lipps PE, Slininger PJ, Zhang S (2006) Selection and evaluation of the potential of choline-metabolizing microbial strains to reduce Fusarium head blight. Biol Control 39:497–506

    Google Scholar 

  • Schisler DA, Core AB, Boehm MJ, Horst L, Krause C, Dunlap CA, Rooney AP (2014) Population dynamics of the Fusarium head blight biocontrol agent Cryptococcus flavescens OH 182.9 on wheat anthers and heads. Biol Control 70:17–27

    Google Scholar 

  • Schlaeppi K, Bulgarelli D (2015) The plant microbiome at work. Mol Plant-Microbe Interact 28(3):212–217

    CAS  PubMed  Google Scholar 

  • Sergaki C, Lagunas B, Lidbury I, Gifford ML, Schafer P (2018) Challenges and approaches in microbiome research: from fundamental to applied. Front Plant Sci 9:1205. https://doi.org/10.3389/fpls.2018.01205

    Article  PubMed  PubMed Central  Google Scholar 

  • Sezen A, Ozdal M, Koc K, Algur OF (2016) Isolation and characterization of plant growth promoting rhizobacteria (PGPR) and their effects on improving growth of wheat. J Appl Biol Sci 10(1):41–46

    Google Scholar 

  • Sharma BK, Basandrai AK (2000) Effectiveness of some fungicides and biocontrol agents for the management of Karnal bunt of wheat. Indian J Mycol Plant Pathol 30:76–78

    CAS  Google Scholar 

  • Sharma SK, Johri BN, Ramesh A, Joshi OP, Prasad SS (2011a) Selection of plant growth-promoting Pseudomonas spp. that enhanced productivity of soybean-wheat cropping system in Central India. J Microbiol Biotechnol 21:1127–1142

    Google Scholar 

  • Sharma S, Kumar V, Tripathi RB (2011b) Isolation of phosphate solubilizing microorganism (psms) from soil. J Microbiol Biotechnol Res 1(2):90–95

    Google Scholar 

  • Simon A, Sivasithamparam K (1989) Pathogen suppression: a case study in biological suppression of Gaeumannomyces graminis var. tritici in soil. Soil Biol Biochem 21:331–337

    Google Scholar 

  • Singh DP (2017) Management of wheat and barley diseases. Apple Academic Press, Waretown, p 682. ISBN 9781771885478

    Google Scholar 

  • Singh D, Maheshwari VK (2001) Biological seed treatment for the control of loose smut of wheat. Indian Phytopathol 54(4):457–460

    Google Scholar 

  • Singh KN, Chatrath R (2001) Salinity tolerance. In: Reynolds MP, Ortiz-Monasterio JI, McNab A (eds) Application of physiology in wheat breeding. CIMMYT, Mexico, pp 101–110

    Google Scholar 

  • Singh S, Mustard (2012) India grain and feed annual grain report number IN2026. USDA Foreign Agricultural Services, Washington, DC

    Google Scholar 

  • Singh RP, Hodson DP, Jin Y, Huerta-Espino J, Kinyua MG, Wanyera R, Njau P, Ward RW (2006) Current status, likely migration and strategies to mitigate the threat to wheat production from race Ug99 (TTKS) of stem rust pathogen. CAB Rev 1(054):1–13. http://www.cababstractsplus.org/cabreviews

    CAS  Google Scholar 

  • Singh R, Behl R, Jain P, Narula N, Singh K (2007) Performance and gene effects for root characters and micronutrient uptake in wheat inoculated with arbuscular mycorrhizal fungi and Azotobacter chroococcum. Acta Agronomica Hungarica 55(3):325–330

    Google Scholar 

  • Singh RK, Kumar DP, Singh P, Solanki MK, Srivastava S, Kashyap PL, Kumar S, Srivastava AK, Singhal PK, Arora DK (2014) Multifarious plant growth promoting characteristics of chickpea rhizosphere associated Bacilli help to suppress soil-borne pathogens. Plant Growth Regul 73(1):91–101

    Google Scholar 

  • Singh P, Kumar V, Agrawal S (2014) Evaluation of phytase producing bacteria for their plant growth promoting activities. Int J Microbiol. https://doi.org/10.1155/2014/426483

  • Solanki MK, Kumar S, Pandey AK, Srivastava S, Singh RK, Kashyap PL, Srivastava AK, Arora DK (2012) Diversity and antagonistic potential of Bacillus spp. associated to the rhizosphere of tomato for the management of Rhizoctonia solani. Biocontrol Sci Technol 22(2):203–217

    Google Scholar 

  • Solanki MK, Singh RK, Srivastava S, Kumar S, Kashyap PL, Srivastava AK, Arora DK (2014) Isolation and characterization of siderophore producing antagonistic rhizobacteria against Rhizoctonia solani. J Basic Microbiol 54(6):585–597

    Google Scholar 

  • Solanki MK, Singh RK, Srivastava S, Kumar S, Kashyap PL, Srivastava AK (2015) Characterization of antagonistic-potential of two Bacillus strains and their biocontrol activity against Rhizoctonia solani in tomato. J Basic Microbiol 55(1):82–90

    Google Scholar 

  • Srivastava AK, Defago G, Kern H (1985) Hyperparasitism of Puccinia horiana and other microcyclic rusts. Phytopathol Z 114:73

    Google Scholar 

  • Stierle A, Strobel G, Stierle D (1993) Taxol and taxane production by Taxomyces andreanae and endophytic fungus of Pacific Yew. Science 260:214–216

    CAS  PubMed  Google Scholar 

  • Strobel G, Daisy B (2003) Bioprocessing for microbial endophytes and their natural products. Microbiol Mol Biol Rev 67:491–502

    CAS  PubMed  PubMed Central  Google Scholar 

  • Suman A, Verma P, Yadav AN et al (2016a) Development of hydrogel-based bio-inoculant formulations and their impact on plant biometric parameters of wheat (Triticum aestivum L.). Int J Curr Microbiol App Sci 5(3):890–901

    Google Scholar 

  • Suman A, Verma P, Yadav AN et al (2016b) Endophytic microbes in crops: diversity and beneficial impact for sustainable agriculture. In: Singh D, Singh H, Prabha R (eds) Microbial inoculants in sustainable agricultural productivity. Springer, New Delhi, pp 117–143. https://doi.org/10.1007/978-81-322-2647-5-7

    Chapter  Google Scholar 

  • Surovy MZ, Gupta DR, Chanclud E, Win J, Kamoun S, Tofazzal I (2017) Plant probiotic bacteria suppress wheat blast fungus Magnaporthe oryzae Triticum pathotype. https://doi.org/10.6084/m9.figshare.5549278.v1

  • Tan RX, Zou WX (2001) Endophytes: a rich source of functional metabolites. Nat Prod Rep 18:448–459

    CAS  PubMed  Google Scholar 

  • Timmusk S, Abd El-Daim IA, Copolovici L, Tanilas T, Kannaste A (2014) Drought-tolerance of wheat improved by rhizosphere bacteria from harsh environments: enhanced biomass production and reduced emissions of stress volatiles. PLoS One 9(5):e96086. https://doi.org/10.1371/journal.pone.0096086

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tkacz A, Cheema J, Chandra G, Grant A, Poole PS (2015) Stability and succession of the rhizosphere microbiota depends upon plant type and soil composition. ISME J 9:2349–2359. https://doi.org/10.1038/ismej.2015.41

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tsvetanov T, Qi L, Mukherjee D, Shah F, Bravo-Ureta B (2016) Climate change and land use in Southeastern US: did the “dumb farmer” get it wrong? Clim Change Econ 7(03):1650005

    Google Scholar 

  • Turan M, Gulluce M, Şahin F (2012) Effects of plant-growth-promoting rhizobacteria on yield, growth, and some physiological characteristics of wheat and barley plants. Commun Soil Sci Plant Anal 43(12):1658–1673

    CAS  Google Scholar 

  • Turner TR, James EK, Poole PS, Gilbert J, Meyer F, Jansson J (2013) The plant microbiome. Genome Biol 14:209. https://doi.org/10.1186/gb-2013-14-6-209

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Upadhyay SK, Singh JS, Saxena AK, Singh DP (2012) Impact of PGPR inoculation on growth and antioxidant status of wheat under saline conditions. Plant Biol 14(4):605–611

    CAS  PubMed  Google Scholar 

  • Vajpayee G, Asthana S, Purwar S, Sundaram S (2015) Screening of antagonistic activity of bacteria against Tilletia indica. Indian J Nat Sci 5(29):4302–4313

    Google Scholar 

  • Venieraki A, Dimou M, Pergalis P, Kefalogianni I, Chatzipavlidis I, Katinakis P (2011) The genetic diversity of culturable nitrogen-fixing bacteria in the rhizosphere of wheat. Microb Ecol 61(2):277–285

    PubMed  Google Scholar 

  • Verma P, Suman A (2018) Wheat microbiomes: ecological significances, molecular diversity and potential Bioresources for sustainable agriculture. EC Microbiol 14(9):641–665

    Google Scholar 

  • Verma JP, Yadav J, Tiwari KN (2010) Impact of plant growth promoting rhizobacteria on crop production. Int J Agric Res 5(11):954–983

    Google Scholar 

  • Verma P, Yadav AN, Kazy SK, Kumar S (2016) Molecular diversity and multifarious plant growth promoting attributes of bacilli associated with wheat (Triticum aestivum L.) rhizosphere from six diverse agro-ecological zones of India. Int J Curr Microbiol App Sci 56(1):44–58

    Google Scholar 

  • Vessey JK (2003) Plant growth promoting rhizobacteria as biofertilizers. Plant Soil 255(2):571–586

    CAS  Google Scholar 

  • Wachowska U, Głowacka K (2014) Antagonistic interactions between Aureobasidium pullulans and Fusarium culmorum, a fungal pathogen of winter wheat. BioControl 59:635–645

    Google Scholar 

  • Wang Y-F (2011) Biocontrol of wheat leaf rust caused by Puccinia triticina and induction of systemic acquired resistance by salicyclic acid. Agricultural University of Hebei (Master dissertation)

    Google Scholar 

  • Wang YG, Xia QY, Gu WL (2012) Isolation of a strong promoter fragment from endophytic enterobacter cloacae and verification of its promoter activity when its host strain colonizes banana plants. Appl Microbiol Biotechnol 93(4):1585–1599

    CAS  PubMed  Google Scholar 

  • Wang H, Xu R, You L, Zhong G (2013) Characterization of Cu-tolerant bacteria and definition of their role in promotion of growth, Cu accumulation and reduction of Cu toxicity in Triticum aestivum L. Ecotoxicol Environ Saf 94:1–7

    CAS  PubMed  Google Scholar 

  • Watt M, Kirkegaard JA, Passioura JB (2006) Rhizosphere biology and crop productivity – a review. Aust J Soil Res 44(4):299–317. https://doi.org/10.1071/sr05142

    Article  Google Scholar 

  • Wilson D (1995) Endophyte: the evolution of a term and clarification of its use and definition. Oikos 73:274–276. https://doi.org/10.2307/3545919

    Article  Google Scholar 

  • Wong PTW, Southwell RJ (1980) Field control of take-all of wheat by avirulent fungi. Ann Appl Biol 94:41–49

    Google Scholar 

  • Wong PTW, Mead JA, Holley MP (1996) Enhanced field control of wheat take-all using cold tolerant isolates of Gaeumannomyces graminis var. graminis and Phialophora sp. (lobed hyphopodia). Plant Pathol 45(2):285–293

    Google Scholar 

  • Xue AG, Chen Y, Voldeng HD, Fedak G, Savard ME, Längle T (2014) Concentration and cultivar effects on efficacy of CLO-1 biofungicide in controlling Fusarium head blight of wheat. Biol Control 73:2–7. https://doi.org/10.1016/j.biocontrol.2014.02.010

    Article  Google Scholar 

  • Yadav AN, Verma P, Kumar M (2015a) Diversity and phylogenetic profiling of niche-specific bacilli from extreme environments of India. Ann Microbiol 65(2):611–629

    Google Scholar 

  • Yadav AN, Verma P, Tyagi SP, Kaushik R, Saxena AK (2015b) Culturable diversity and functional annotation of psychrotrophic bacteria from cold desert of Leh ladakh (India). World J Microbiol Biotechnol 31(1):95–108

    CAS  PubMed  Google Scholar 

  • Yadav AN, Kazy SK, Kumar S (2016) Molecular diversity and multifarious plant growth promoting attributes of bacilli associated with wheat (Triticum aestivum L.) rhizosphere from six diverse agro-ecological zones of India. Int J Curr Microbiol Appl Sci 56(1):44–58

    Google Scholar 

  • Yadav AN, Verma P, Kour D (2017a) Plant microbiomes and its beneficial multifunctional plant growth promoting attributes. Int J Environ Sci Nat Resour 3(1):1–8

    Google Scholar 

  • Yadav AN, Verma P, Kumar R, Kumar V (2017b) Current applications and future prospects of eco-friendly microbes. EU Voice 3(1):21–22

    Google Scholar 

  • Yasin M, El-Mehdawi AF, Anwar A, Pilon-Smits EA, Faisal M (2015) Microbial-enhanced selenium and iron biofortification of wheat (Triticum aestivum L.)-applications in phytoremediation and biofortification. Int J Phytoremediation 17(4):341–347

    Google Scholar 

  • Yin C, Mueth N, Hulbert S, Schlatter D, Paulitz TC, Schroeder K, Prescott A, Dhingra A (2017) Bacterial communities on wheat grown under long-term conventional tillage and no-till in the Pacific Northwest of the United States. Phytobiomes 1:83–90

    Google Scholar 

  • Yu H, Zhang L, Li L, Zheng C, Guo L, Li W, Sun P, Qin L (2010) Recent developments and future prospects of antimicrobial metabolites produced by endophytes. Microbiol Res 165(6):437–449

    CAS  PubMed  Google Scholar 

  • Zafari DM, Koushki M, Bazgir E (2008) Biocontrol evaluation of wheat take all disease by Trichoderma screened isolates. Afr J Biotechnol 7:3653–3659

    Google Scholar 

  • Zahir ZA, Arshad M, Frankenberger WT (2003) Plant growth promoting rhizobacteria: applications and perspectives in agriculture. Adv Agron 81:97–168

    Google Scholar 

  • Zahir ZA, Ghani U, Naveed M, Nadeem SM, Asghar HN (2009) Comparative effectiveness of Pseudomonas and Serratia sp. containing ACC-deaminase for improving growth and yield of wheat (Triticum aestivum L.) under salt-stressed conditions. Arch Microbiol 191(5):415–424

    CAS  PubMed  Google Scholar 

  • Zaidi A, Khan S (2005) Interactive effect of rhizotrophic microorganisms on growth, yield, and nutrient uptake of wheat. J Plant Nutr 28(12):2079–2092

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Mahapatra, S., Rayanoothala, P., Solanki, M.K., Das, S. (2020). Wheat Microbiome: Present Status and Future Perspective. In: Solanki, M., Kashyap, P., Kumari, B. (eds) Phytobiomes: Current Insights and Future Vistas. Springer, Singapore. https://doi.org/10.1007/978-981-15-3151-4_8

Download citation

Publish with us

Policies and ethics