Skip to main content

Plant Mycobiome: Current Research and Applications

  • Chapter
  • First Online:
Phytobiomes: Current Insights and Future Vistas

Abstract

Plant mycobiome studies are one of the leading burning aspects of the twenty-first century for ecological management and sustainable agricultural. A plant-associated fungal community plays an important role in maintaining ecological fitness by cycling organic matter and channeling nutrients across the trophic levels. Several reports highlighted the need for plant mycobiome studies for better disease management, ecological practices, and the use of eco-friendly methods for crop production. In this context, plant mycobiome revealed the effect of the fungal community on the composition of other microbial communities associated with the plant, plant growth, and plant responses against the pathogens. Fungal biodiversity, functionality, and associative interaction with other microbiome organisms and plants are revealed by high-throughput sequencing methods that broaden our view on understanding the fungal importance to plants. The present chapter discussed the modern tools and techniques utilized to study fungal diversity and community structure by the use of different kinds of OMICS approaches such as ITS rDNA gene or specific functional gene sequencing, transcriptomics, proteomics, and metabolomics. Here, the chapter focused on the current research, development of new techniques and approaches that can provide an integrative insight of the role of fungal communities in the plant microbiome. Plant mycobiome and their diversity are important to predict plant growth and survival against the pathogen and multitrophic interactions between the organisms to identify their functional cores in regard to plant health and forecast which fungal community is likely to affect plant fitness and produce useful secondary metabolites.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abd-Elsalam K, Bahkali A, Moslem M, Amin OE, Niessen L (2011) An optimized protocol for DNA extraction from wheat seeds and Loop-Mediated Isothermal Amplification (LAMP) to detect Fusarium graminearum contamination of wheat grain. Int J Mol Sci 12(6):3459–3472. ISSN 1422-0067

    CAS  PubMed  PubMed Central  Google Scholar 

  • Adèle L, Bunbury-Blanchette A, Walker K (2019) Trichoderma species show biocontrol potential in dual culture and greenhouse bioassays against Fusarium basal rot of onion. Biol Control 130:127–135

    Google Scholar 

  • Ahanger RA, Qazi NA, Bhat HA et al (2018) Indian Phytopathol 71:377

    Google Scholar 

  • Alberton O, Kuyper TW, Summerbell RC (2010) Dark septate root endophytic fungi increase growth of Scots pine seedlings under elevated CO2 through enhanced nitrogen use efficiency. Plant Soil 328:459–470

    CAS  Google Scholar 

  • Andrews JH, Harris RF (2000) The ecology and biogeography of microorganisms on plant surfaces. Annu Rev Phytopathol 38:145–180

    PubMed  Google Scholar 

  • Anil K, Lakshmi T (2010) Phosphate solubilisation potential and phosphate activity of rhizospheric Trichoderma spp. Braz J Microbiol 41:787–795

    PubMed  PubMed Central  Google Scholar 

  • Aramsirirujiwet Y, Gumlangmak C, Kitpreechavanich V (2016) Studies on antagonistic effect against plant pathogenic fungi from endophytic fungi isolated from houttuynia cordata thunb. and screening for siderophore and Indole-3-acetic acid production. KKU Res J 21(1):55–66

    Google Scholar 

  • Arici SE, Koc NK (2010) RAPD–PCR analysis of genetic variation among isolates of Fusarium graminearum and Fusarium culmorum from wheat in Adana Turkey. Pak J Biol Sci 13(3):138–142. ISSN 1028-8880

    CAS  PubMed  Google Scholar 

  • Arnold AE (2007) Understanding the diversity of foliar endophytic fungi: progress, challenges and frontiers. Fungal Biol Rev 21:51–56

    Google Scholar 

  • Arnold EA, Mejia LC, Kyllo D, Rojas E, Maynard Z, Robbins N, Herre EA (2003) Fungal endophytes limit pathogen damage in a tropical tree. Proc Natl Acad Sci U S A 100:15649–15654

    CAS  PubMed  PubMed Central  Google Scholar 

  • Arnold AE, Maynard Z, Gilbert GS, Coley PD, Kursar TA (2000) Are tropical fungal endophytes hyperdiverse? Ecol Lett 3:267–274

    Google Scholar 

  • Aroca A, Raposo R (2007) PCR-based strategy to detect and identify species of Phaeoacremonium causing grapevine diseases. Appl Environ Microbiol 73(9):2911–2918

    CAS  PubMed  PubMed Central  Google Scholar 

  • Aslam MM, Karanja J, Bello SK (2019) Piriformospora indica colonization reprograms plants to improved P-uptake, enhanced crop performance, and biotic/abiotic stress tolerance. Physiol Mol Plant Pathol 106:232–237

    CAS  Google Scholar 

  • Atugala DM, Deshappriya N (2015) Effect of endophytic fungi on plant growth and blast disease incidence of two traditional rice varieties. J Natl Sci Found Sri Lanka 43(2):173–187

    Google Scholar 

  • Babu AG, Kim SW, Yadav DR, Hyum U, Adhikari M, Lee YS (2015) Penicillium menonorum: a novel fungus to promote growth and nutrient management in cucumber plants. Microbiology 43(1):49–56

    Google Scholar 

  • Bader AN, Salerno GL, Covacevich F, Consolo VF (2019) Native Trichoderma harzianum strains from Argentina produce indole-3 acetic acid and phosphorus solubilization, promote growth and control wilt disease on tomato (Solanum lycopersicum L.). J King Saud Univ Sci. https://doi.org/10.1016/j.jksus.2019.04.002

  • Badri DV, Zolla G, Bakker MG et al (2013) Potential impact of soil microbiomes on the leaf metabolome and on herbivore feeding behavior. New Phytol 198:264–273

    CAS  PubMed  Google Scholar 

  • Baetz U, Martinoia E (2014) Root exudates: the hidden part of plant defense. Trends Plant Sci 19:90–98

    CAS  PubMed  Google Scholar 

  • Bae H, Sicher RC, Kim MS, Kim SH et al (2009) The beneficial endophyte Trichoderma hamatum isolate DIS 219b promotes growth and delays the onset of the drought response in Theobroma cacao. J Exp Bot 60:3279–3295

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bahram M, Peay KG, Tedersoo L (2015) Local-scale biogeography and spatiotemporal variability in communities of mycorrhizal fungi. New Phytol 205:1454–1463

    CAS  PubMed  Google Scholar 

  • Bai Y, Muller DB, Srinivas G, Garrido-Oter R, Potthoff E, Rott M, Dombrowski N, Munch PC, Spaepen S, Remus-Emsermann M et al (2015) Functional overlap of the Arabidopsis leaf and root microbiota. Nature 528:364–369

    CAS  PubMed  Google Scholar 

  • Bailey AM, Mitchell DJ, Manjunath KL, Nolasco G, Niblett CL (2002) Identification to the species level of the plant pathogens Phytophthora and Pythium by using unique sequences of the ITS1 region of ribosomal DNA as capture probes for PCR Elisa. FEMS Microbiol Lett 207(2):153–158. ISSN 0378-1097

    CAS  PubMed  Google Scholar 

  • Balbi V, Devoto A (2008) Jasmonate signalling network in Arabidopsis thaliana: crucial regulatory nodes and new physiological scenarios. New Phytol 177(2):301–318

    CAS  PubMed  Google Scholar 

  • Bálint M et al (2016) Millions of reads, thousands of taxa: microbial community structure and associations analyzed via marker genes. FEMS Microbiol Rev 40:686–700

    PubMed  Google Scholar 

  • Bayman P (2006) Diversity, scale and variation of endophytic fungi in leaves of tropical plants. In: Bailey MJ, Lilley AK, Timms-Wilson TM (eds) Microbial ecology of aerial plant surfaces. CABI, Oxfordshire, pp 37–50

    Google Scholar 

  • Bayraktar H, Dolar FS, Tor M (2007) Determination of genetic diversity within Ascochyta rabiei (pass.) labr., the cause of ascochyta blight of chickpea in Turkey. J Plant Pathol 89(3):341–347. ISSN 1125-4653

    CAS  Google Scholar 

  • Beckers B, Op De Beeck M, Weyens N, Van Acker R, Van Montagu M, Boerjan W et al (2016) Lignin engineering in field-grown poplar trees affects the endosphere bacterial microbiome. Proc Natl Acad Sci 113:2312–2317

    CAS  PubMed  PubMed Central  Google Scholar 

  • Benitez T, Rincon AM, Limon MC, Codon AC (2004) Biocontrol mechanisms of Trichoderma strains. Int Microbiol 7:249–260

    CAS  PubMed  Google Scholar 

  • Bhagobaty RK, Joshi SR (2012) Enzymatic activity of fungi endophytic on five medicinal plant species of the Pristine sacred forests of Meghalaya, India. Biotechnol Bioprocess Eng 17:33–40

    CAS  Google Scholar 

  • Bhramaramba S, Nagamani A (2013) Antagonistic Trichoderma isolates to control bakanae pathogen of rice. Agric Sci Digest 33:104–108

    Google Scholar 

  • Biam M, Majumder D, Papang H (2019) In vitro efficacy of native Trichoderma isolates against Pythium spp. and Rhizoctonia solani (Kuhn.) causing damping off disease in tomato (Solanum lycopersicum Miller). Int J Curr Microbiol App Sci 8(02):566–579

    CAS  Google Scholar 

  • Bindslev L, Oliver RP, Johansen B (2002) In situ PCR for detection and identification of fungal species. Mycol Res 106(3):277–279. ISSN 0953-7562

    CAS  Google Scholar 

  • Błaszczyk L, Siwulski M, Sobieralski K, Lisiecka J, Jędryczka M (2014) Trichoderma spp.—application and prospects for use in organic farming and industry. J Plant Prot Res 54:309–317

    Google Scholar 

  • Boddy L, Frankland J, Van West P (2008) Ecology of saprotrophic basidiomycetes (British Mycological Society symposia series), vol 28. Academic, London

    Google Scholar 

  • Bragina A, Cardinale M, Berg C, Berg G (2013) Vertical transmission explains the specific Burkholderia pattern in Sphagnum mosses at multi-geographic scale. Front Microbiol 4:394

    PubMed  PubMed Central  Google Scholar 

  • Broberg M, Doonan J, Mundt F, Denman S, McDonald JE (2018) Integrated multi-omic analysis of host-microbiota interactions in acute oak decline. Microbiome 6:21

    PubMed  PubMed Central  Google Scholar 

  • Brotman Y, Landau U, Cuadros-Inostroza A, Takayuki T, Fernie AR et al (2013) Trichoderma-plant root colonization: Escaping early plant defense responses and activation of the antioxidant machinery for saline stress tolerance. PLoS Pathog 9(3):e1003221. https://doi.org/10.1371/journal.ppat.1003221

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bucher M, Wegmuller S, Drissner D (2009) Chasing the structures of small molecules in arbuscular mycorrhizal signaling. Curr Opin Plant Biol 12:500–507

    CAS  PubMed  Google Scholar 

  • Cai F, Yu G, Wang P, Wei Z, Fu L, Shen Q, Chen W (2013) Harzianolide, a novel plant growth regulator and systemic resistance elicitor from Trichoderma harzianum. Plant Physiol Biochem 73:106–113

    CAS  PubMed  Google Scholar 

  • Cai F, Chen W, Wei Z, Pang G, Li R, Ran W, Shen Q (2015) Colonization of Trichoderma harzianum strain SQR-T037 on tomato roots and its relationship to growth, nutrient availability and soil microflora. Plant Soil 388:337–350

    CAS  Google Scholar 

  • Castle SC et al (2018) DNA template dilution impacts amplicon sequencing-based estimates of soil fungal diversity. Phytobiomes J 2:100–107

    Google Scholar 

  • Chacon MR, Rodriguez-Galan O, Beritez T, Sousa S, Rey M, Llobell A, Delgado-Jarana J (2007) Microscopic and transcriptome analyses of early colonization of tomato roots by Trichoderma harzianum. Int Microbiol 10:19–27

    CAS  PubMed  Google Scholar 

  • Chadha N, Mishra M, Rajpal K, Bajaj R, Choudhary DK, Varma A (2015) An ecological role of fungal endophytes to ameliorate plants under biotic stress. Arch Microbiol 197:869–881. https://doi.org/10.1007/s00203-015-1130-3

    Article  CAS  PubMed  Google Scholar 

  • Chandaniea WA, Kubota M, Hyakumachi M (2009) Interactions between the arbuscular mycorrhizal fungus Glomus mosseae and plant growth-promoting fungi and their significance for enhancing plant growth and suppressing damping-off of cucumber (Cucumis sativus L.). Appl Soil Ecol 41:336–341

    Google Scholar 

  • Chapelle E, Mendes R, Bakker PA, Raaijmakers JM (2016) Fungal invasion of the rhizosphere microbiome. ISME J 10(1):265–268

    CAS  PubMed  Google Scholar 

  • Chepsergon J, Mwamburi L, Kassim MK (2014) Mechanism of drought tolerance in plants using Trichoderma spp. IJSR 3:1592–1595

    Google Scholar 

  • Chen RS, Chu C, Cheng CW, Chen WY, Tsay JG (2008) Differentiation of two powdery mildews of sunflower (Helianthus annuus) by a PCR-mediated method based on ITS sequences. Eur J Plant Pathol 121(1):1–8. ISSN 0929-1873

    CAS  Google Scholar 

  • Chen W, Seifert KA, Lévesque CA (2009) A high density COX1 barcode oligonucleotide array for identification and detection of species of Penicillium subgenus Penicillium. Mol Ecol Resour 9:114–129. ISSN 1755-098X

    CAS  PubMed  Google Scholar 

  • Classen AT, Sundqvist MK, Henning JA, Newman GS, Moore JAM, Cregger MA et al (2015) Direct and indirect effects of climate change on soil microbial and soil microbial-plant interactions: what lies ahead? Ecosphere 6(8):130

    Google Scholar 

  • Contreras-Cornejo HA, Macías-Rodríguez L, del-Val E, Larsen J (2016) Ecological functions of Trichoderma spp. and their secondary metabolites in the rhizosphere: interactions with plants. FEMS Microbiol Ecol 92:fiw036

    PubMed  Google Scholar 

  • Compant S, Clément C, Sessitsch A (2010) Plant growth-promoting bacteria in the rhizo- and endosphere of plants: their role, colonization, mechanisms involved and prospects for utilization. Soil Biol Biochem 42(5):669–678

    CAS  Google Scholar 

  • Curl EA, Truelove B (1986) The rhizosphere, Advanced series in agriculture sciences, vol 15. Springer-Verlag, Berlin

    Google Scholar 

  • De Jager ES, Wehner FC, Korsten L (2001) Microbial ecology of the mango phyllo- plane. Microb Ecol 42:201–207

    PubMed  Google Scholar 

  • Delgado-Baquerizo M, Maestre FT, Gallardo A, Bowker MA et al (2013) Decoupling of soil nutrient cycles as a function of aridity in global drylands. Nature 502:672–676. https://doi.org/10.1038/nature12670

    Article  CAS  PubMed  Google Scholar 

  • Donoso EP, Bustamante RO, Carú M, Niemeyer HM (2008) Water deficit as a driver of the mutualistic relationship between the fungus Trichoderma harzianum and two wheat genotypes. Appl Environ Microbiol 74:1412–1417

    CAS  PubMed  PubMed Central  Google Scholar 

  • Druzhinina IS, Seidl-Seiboth V, Herrera-Estrella A, Horwitz BA, Kenerley CM, Monte E, Mukherjee PK, Zeilinger S, Grigoriev IV, Kubicek CP (2011) Trichoderma: the genomics of opportunistic success. Nat Rev Microbiol 9:749–759

    CAS  PubMed  Google Scholar 

  • Ehrmann J, Ritz K (2014) Plant: soil interactions in temperate multi-cropping production systems. Plant Soil 376:1–29

    CAS  Google Scholar 

  • Ellouze W, Esmaeili Taheri A, Bainard LD, Yang C, Bazghaleh N, Navarro-Borrell A et al (2014) Soil fungal resources in annual cropping systems and their potential for management. Bio Med Res Int 15:436

    Google Scholar 

  • Falk SP, Gadoury DM, Pearson RC, Seem RC (1995) Partial control of grape powdery mildew by the mycoparasite Ampelomyces quisqualis. Plant Dis 79(5):483–490

    Google Scholar 

  • Finzi AC, Austin AT, Cleland EE et al (2011) Coupled biochemical cycles: responses and feedbacks of coupled biogeochemical cycles to climate change: examples from terrestrial ecosystems. Front Ecol Environ 9:61–67

    Google Scholar 

  • Gajera H, Rakholiya K, Vakharia D (2011) Bioefficacy of Trichoderma isolates against Aspergillus niger Van Tieghem inciting collar rot in groundnut (Arachis hypogaea L.). J Plant Prot Res 51:240–247

    Google Scholar 

  • Gao FK, Dai CC, Liu XZ (2010) Mechanisms of fungal endophytes in plant protection against pathogens. Afr J Microbiol Res 4:1346–1351

    Google Scholar 

  • Gautam AK, Kant M, Thakur Y (2013) Isolation of endophytic fungi from Cannabis sativaand study their antifungal potential. Arch Phytopathol Plant Protect 46:627–635

    Google Scholar 

  • Gohl DM et al (2016) Systematic improvement of amplicon marker gene methods for increased accuracy in microbiome studies. Nat Biotechnol 34:942–949

    CAS  PubMed  Google Scholar 

  • Gómez-Alpizar L, Saalau E, Picado I, Tambong JT, Saborio F (2011) A PCR-RFLP assay for identification and detection of Pythium myriotylum, causal agent of the cocoyam root rot disease. Lett Appl Microbiol 52(3):185–192. ISSN 0266-8254

    PubMed  Google Scholar 

  • Goud JC, Termorshuizen AJ (2003) Quality of methods to quantify microsclerotia of Verticillium dahliae in soil. Eur J Plant Pathol 109(6):523–534. ISSN 0929-1873

    Google Scholar 

  • Grote D, Olmos A, Kofoet JJ, Tuset E, Bertolini E, Cambra M (2002) Specific and Sensitive detection of Phytophthora nicotianae by simple and nested-PCR. Eur J Plant Pathol 108(3):197–207

    CAS  Google Scholar 

  • Guglielmo F, Bergemann SE, Gonthier P, Nicolotti G, Garbelotto M (2007) A multiplex PCR-based method for the detection and early identification of wood rotting fungi in standing trees. J Appl Microbiol 103:1490–1507. ISSN 1364-5072

    CAS  PubMed  Google Scholar 

  • Glushakova AM, Chernov IY (2004) Seasonal dynamics in a yeast population on leaves of the common wood sorrel Oxalisacetosella L. Microbiology 73:184–188

    CAS  Google Scholar 

  • Gomes T, Pereira JA, Benhadi J, Lino-Neto T, Baptista P (2018) Endophytic and epiphytic phyllosphere fungal communities are shaped by different environmental factors in a mediterranean ecosystem. Microb Ecol 76(3):668–679

    PubMed  Google Scholar 

  • Guler NS, Pehlivan N, Karaoglu SA, Guzel S, Bozdeveci A (2016) Trichoderma atroviride ID20G inoculation ameliorates drought stress-induced damages by improving antioxidant defence in maize seedlings. Acta Physiol Plant 38:132

    Google Scholar 

  • Guo JR, Schnieder F, Beyer M, Verreet JA (2005) Rapid detection of Mycosphaerella graminicola in wheat using reverse transcription-PCR assay. J Phytopathol 153(11–12):674–679. ISSN 0931-1785

    CAS  Google Scholar 

  • Guo B, Wang Y, Sun X, Tang K (2008) Bioactive natural products from endophytes: a review. Appl Biochem Microbiol 44:136–142

    CAS  Google Scholar 

  • Hardoim PR, van Overbeek LS, Berg G, Pirttila AM, Compant S, Campisano A et al (2015) The hidden world within plants: ecological and evolutionary considerations for defining functioning of microbial endophytes. Microbiol Mol Biol Rev 79:293–320

    PubMed  PubMed Central  Google Scholar 

  • Hartmann A, Rothballer M, Schmid M (2008) Lorenz Hiltner, a pioneer in rhizosphere microbial ecology and soil bacteriology research. Plant Soil 312:7–14

    CAS  Google Scholar 

  • Hartmann A, Schmid M, Van Tuinen D, Berg G (2009) Plant-driven selection of microbes. Plant Soil 321:235–257

    CAS  Google Scholar 

  • Hassan SED (2017) Plant growth-promoting activities for bacterial and fungal endophytes isolated from medicinal plant of Teucrium polium L. J Adv Res 8:687–695

    PubMed  PubMed Central  Google Scholar 

  • Herrera J, Khidir HH, Eudy DM, Porras-Alfaro A, Natvig DO, Sinsabaugh RL (2010) Variation in root-associated fungal endophytes: some taxonomic consistency at a transcontinental scale. Mycologia 102:1012–1026

    PubMed  Google Scholar 

  • Hinsinger P, Bengough GA, Vetterlein D, Young IM (2009) Rhizosphere: biophysics, biogeochemistry and ecological relevance. Plant Soil 321:117–152. https://doi.org/10.1007/s11104-008-9885-9

    Article  CAS  Google Scholar 

  • Hiremani NS, Dubey SC (2019) Genetic diversity of Fusarium oxysporum f. sp. lentis populations causing wilt of lentil in India. Indian Phytopathol. https://doi.org/10.1007/s42360-019-00126-9

  • Hong SY, Kang MR, Cho EJ, Kim HK, Yun SH (2010) Specific PCR detection of four quarantine Fusarium species in Korea. Plant Pathol J 26(4):409–416. ISSN 1598-2254

    CAS  Google Scholar 

  • Hu W, Strom N, Haarith D, Chen S, Bushley KE (2018) Mycobiome of cysts of the soybean cyst nematode under long term crop rotation. Front Microbiol 9:386

    PubMed  PubMed Central  Google Scholar 

  • Hwang SF, Ahmed HU, Gossen BD, Kutcher HR, Brandt SA, Strelkov SE, Chang KF, Turnbull GD (2009) Effect of crop rotation on soil pathogen population and dynamics and canola seedlings establishment. Plant Pathol J 8(3):106–112

    Google Scholar 

  • Hyun JW, Yi SH, MacKenzie SJ, Timmer LW, Kim KS, Kang SK, Kwon HM, Lim HC (2009) Pathotypes and genetic relationship of worldwide collections of Elsinoe spp. causing scab diseases of citrus. Phytopathology 99(6):721–728. ISSN 0031-949X

    CAS  PubMed  Google Scholar 

  • Ikeda S, Okubo T, Anda M, Nakashita H, Yasuda M et al (2010) Community- and genome-based views of plant-associated bacteria: plant-bacterial interactions in soybean and rice. Plant Cell Physiol 51:1398–1410

    CAS  PubMed  Google Scholar 

  • Ikram N, Dawar S (2014) Impact of biocontrol agents in combination with Prosopis juliflora (Swartz) DC. In controlling the root-infecting fungi of leguminous crops. Arch Phytopathol Plant Protect 47(8):930–937

    Google Scholar 

  • Inácio J, Pereira P, Carvalho M, Fonseca Á, Amaral-Collaço MT, Spencer-Martins I (2002) Estimation and diversity of phylloplane mycobiota on selected plants in a Mediterranean-type ecosystem in Portugal. Microb Ecol 44:44–353

    Google Scholar 

  • Jana T, Sharma TR, Singh NK (2005) SSR-based detection of genetic variability in the charcoal root rot pathogen Macrophomina phaseolina. Mycol Res 109(1):81–86. ISSN 0953-7562

    CAS  PubMed  Google Scholar 

  • Jeeva ML, Mishra AK, Vidyadharan P, Misra RS, Hegde V (2010) A species-specific polymerase chain reaction assay for rapid and sensitive detection of Sclerotium rolfsii. Australas Plant Pathol 39(6):517–523. ISSN 0815-3191

    Google Scholar 

  • Jiménez-Fernández D, Montes-Borrego M, Jimenez-Diaz RM, Navas-Cortes JA, Landa BB (2011) In planta and soil quantification of Fusarium oxysporum f. sp. ciceris and evaluation of Fusarium wilt resistance in chickpea with a newly developed quantitative polymerase chain reaction assay. Phytopathology 101(2):250–262. ISSN: 0031-949X

    PubMed  Google Scholar 

  • Jumpponen A, Jones KL (2009) Massively parallel 454 sequencing indicates hyperdiverse fungal communities in temperate Quercus macrocarpa phyllosphere. New Phytol 184:438–448

    CAS  PubMed  Google Scholar 

  • Kandel KP (2014). Transcriptomic studies of the early stages of potato infection by Phytophthora infestans. PhD thesis, University of Dundee

    Google Scholar 

  • Kchouk M, Gibrat JF, Elloumi M (2017) Generations of sequencing technologies: from first to next generation. Biol Med 9:3

    Google Scholar 

  • Khan AL, Hamayun M, Kim YH, Kang SM, Lee IJ (2011) Ameliorative symbiosis of endophyte (Penicillium funiculosum LHL06) under salt stress elevated plant growth of Glycine max L. Plant Physiol Biochem 49:852–861

    CAS  PubMed  Google Scholar 

  • Khan AL, Hamayun M, Kang SM, Kim YH, Jung HY, Lee JH, Lee IJ (2012) Endophytic fungal association via gibberellins and indole acetic acid can improve plant growth under abiotic stress: an example of Paecilomyces formosus LHL10. BMC Microbiol 12:3

    CAS  PubMed  PubMed Central  Google Scholar 

  • Khan AL, Hussain J, Al-Harrasi A, Al-Rawahi A, Lee IJ (2015) Endophytic fungi: resource for gibberellins and crop abiotic stress resistance. Crit Rev Biotechnol 35:62–74

    CAS  PubMed  Google Scholar 

  • Khan MR, Shahid S, Mohidin FA, Mustafa U (2017) Interaction of Fusarium oxysporum f. sp. gladioli and Meloidogyne incognita on gladiolus cultivars and its management through corm treatment with biopesticides and pesticides. Biol Control 115:95–104

    Google Scholar 

  • Kharbikar LL, Shanware AS, Saharan MS et al (2019) Fusarium graminearum microRNA-like RNAs and their interactions with wheat genome: a much needed study. Ind Phytopathol:1–9. https://doi.org/10.1007/s42360-019-00139-4

  • Köberl M, Schmidt R, Ramadan EM et al (2013) The microbiome of medicinal plants: diversity and importance for plant growth, quality and health. Front Microbiol 4:400

    PubMed  PubMed Central  Google Scholar 

  • Kotasthane A, Agrawal T, Kushwah R, Rahatkar OV (2015) In-vitro antagonism of Trichoderma spp. against Sclerotium rolfsii and Rhizoctonia solani and their response towards growth of cucumber, bottle gourd and bitter gourd. Eur J Plant Pathol 141:523–543

    CAS  Google Scholar 

  • Kowalchuk GA, Veen JAHV (2004) The significance of microbial diversity in agricultural soil for suppressiveness of plant diseases and nutrient retention. Physiol Behav 100(5):519–524

    Google Scholar 

  • Kubicek CP, Herrera-Estrella A, Seidl-Seiboth V, Martinez DA et al (2011) Comparative genome sequence analysis underscores mycoparasitism as the ancestral life style of Trichoderma. Genome Biol 12:R40

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kulik T, Jestoi M, Okorski A (2011) Development of TaqMan assays for the quantitative detection of Fusarium avenaceum/Fusarium tricinctum and Fusarium poae esyn1 genotypes from cereal grain. FEMS Microbiol Lett 314(1):49–56. ISSN 0378-1097

    CAS  PubMed  Google Scholar 

  • Kumar V, Anal AKD, Nath V (2018) Biocontrol fitness of an indigenous Trichoderma viride, isolate NRCL T-01 against Fusarium solani and Alternaria alternata causing diseases in Litchi (Litchi chinensis). Int J Curr Microbiol App Sci 7(03):2647–2662

    Google Scholar 

  • Kumari V, Singh A, Chaudhary HK et al (2019) Identification of Phytophthora blight resistant mutants through induced mutagenesis in sesame (Sesamum indicum L.). Indian Phytopathol 72:71

    Google Scholar 

  • Lambers H, Mougel C, Jaillard B, Hinsinger P (2009) Plant-microbe-soil interactions in the rhizosphere: an evolutionary perspective. Plant Soil 321:83–115

    CAS  Google Scholar 

  • Langrell SRH, Barbara DJ (2001) Magnetic capture hybridization for improved PCR detection of Nectria galligena from lignified apple extracts. Pl Mol Biol Rep 19:5–11

    CAS  Google Scholar 

  • Li R-X, Cai F, Pang G, Shen QR, Li R, Chen W (2015) Solubilisation of phosphate and micronutrients by Trichoderma harzianum and its relationship with the promotion of tomato plant growth. PLoS One 10:e0130081

    PubMed  PubMed Central  Google Scholar 

  • Li Y, Sun R, Yu J, Saravanakumar K, Chen J (2016) Antagonistic and biocontrol potential of Trichoderma asperellum ZJSX5003 against the maize stalk rot pathogen Fusarium graminearum. Indian J Microbiol 56:318–327. https://doi.org/10.1007/s12088-016-0581-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lievens B, Claes L, Vakalounakis DJ, Vanachter ACRC, Thomma BPHJ (2007) A robust identification and detection assay to discriminate the cucumber pathogens Fusarium oxysporum f. sp cucumerinum and f. sp radicis-cucumerinum. Environ Microbiol 9(9):2145–2161. ISSN 1462-2912

    CAS  PubMed  Google Scholar 

  • Lindow SE, Brandl MT (2003) Microbiology of the phyllosphere. Appl Environ Microbiol 69(4):1875–1883. https://doi.org/10.1128/AEM.69.4.1875-1883

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • López-Bucio J, Pelagio-Flores R, Herrera-Estrell A (2015) Trichoderma as biostimulant: exploiting the multilevel properties of a plant beneficial fungus. Sci Hortic 196:109–123

    Google Scholar 

  • Lugtenberg B, Kamilova F (2009) Plant-growth-promoting rhizobacteria. Annu Rev Microbiol 63:541–556

    CAS  PubMed  Google Scholar 

  • Martos S, Torres E, El Bakali MA, Raposo R, Gramaje D, Armengol J, Luque J (2011) Co-operational PCR coupled with Dot Blot Hybridization for the detection of Phaeomoniella chlamydospora on infected grapevine wood. J Pathol 159(4):247–254

    CAS  Google Scholar 

  • Matsuda Y, Sameshima T, Moriura N, Inoue K, Nonomura T, Kakutani K, Nishimura H, Kusakari S, Tamamatsu S, Toyoda H (2005) Identification of individual powdery mildew fungi infecting leaves and direct detection of gene expression of single conidium by polymerase chain reaction. Phytopathology 95(10):1137–1143. ISSN 0031-949X

    CAS  PubMed  Google Scholar 

  • Mawar R, Tomer AS, Singh D (2019) Demonstration of efficacy of bio-control agents in managing soil-borne diseases of various crops in arid region of India. Indian Phytopathol 72:699–703. https://doi.org/10.1007/s42360-018-0071-6

    Article  Google Scholar 

  • Mendes R, Kruijt M, Bruijn I, Dekkers E, Voort M, van der Schneider JHM, Piceno YM, Santis TZ, Andersen GL, PAHM B, Raaijmakers JM (2011) Deciphering the rhizosphere microbiome for disease-suppressive bacteria. Science 332:1097–1100

    CAS  PubMed  Google Scholar 

  • Mendes R, Garbeva P, Raaijmakers JM (2013) The rhizosphere microbiome: significance of plant beneficial, plant pathogenic, and human pathogenic microorganisms. FEMS Microbiol Rev 37:634–663

    CAS  PubMed  Google Scholar 

  • Mendes LW, Raaijmakers JM, de Hollander M, Mendes R, Tsai SM (2018) Influence of resistance breeding in common bean on rhizosphere microbiome composition and function. ISME J 12:212–224

    PubMed  Google Scholar 

  • Molla AH, Haque MM, Haque MA, Ilias GNM (2012) Trichoderma enriched biofertilizer enhances production and nutritional quality of tomato (Lycopersicon esculentum Mill.) and minimizes NPK fertilizer use. Agric Res 1(3):265–272

    CAS  Google Scholar 

  • Mukherjee M, Mukherjee PK, Horwitz BA, Zachow C, Berg G, Zeilinger S (2012) Trichoderma-plant-pathogen interactions: advances in genetics of biological control. Indian J Microbiol 52:522–529

    PubMed  PubMed Central  Google Scholar 

  • Murolo S, Concas J, Romanazzi G (2019) Use of biocontrol agents as potential tools in the management of chestnut blight. Biol Control 132:102–109

    Google Scholar 

  • Muthuswamy A, Kakkattil Balakrishnan V, Palaniyandi U et al (2018) Pathogenic variability in Phytophthora capsici from black pepper (Piper nigrum L.) as revealed by transcriptome analysis. Indian Phytopathol 71:495

    Google Scholar 

  • Naglot A, Goswami S, Rahman I, Shrimali DD, Yadav KK, Gupta VK, Rabha AJ, Gogoi HK, Veer V (2015) Antagonistic potential of native Trichoderma viride strain against potent tea fungal pathogens in North East India. Plant Pathol J 31:278–289

    CAS  PubMed  PubMed Central  Google Scholar 

  • Nandhini M, Rajini SB, Udayashankar AC, Niranjana SR, Lund OS, Shetty HS, Prakash HS (2018) Diversity, plant growth promoting and downy mildew disease suppression potential of cultivable endophytic fungal communities associated with pearl millet. Biol Control 127:127–138

    Google Scholar 

  • Nayyar BG, Woodward S, Mur AJ, Akram A, Arshad SMM, Naqvi S, Akhund S (2018) Identification and pathogenicity of Fusarium species associated with sesame (Sesamum indicum L.) seeds from the Punjab, Pakistan. Physiol Mol Plant Pathol 102:128–135

    CAS  Google Scholar 

  • Nicolaisen M, Justesen AF, Thrane U, Skouboe P, Holmstrom K (2005) An oligonucleotide microarray for the identification and differentiation of trichothecene producing and nonproducing Fusarium species occurring on cereal grain. J Microbiol Methods 62(1):57–69. ISSN 0167-7012

    CAS  PubMed  Google Scholar 

  • Nilsson RH, Anslan S, Bahram M, Wurzbacher C, Baldrian P, Tedersoo L (2018) Mycobiome diversity: high-throughput sequencing and identification of fungi. Nat Rev Microbiol 17(2):95–109

    Google Scholar 

  • Oros G, Naár Z (2017) Mycofungicide: Trichoderma based preparation for foliar applications. Am J Plant Sci 8(02):113–125

    CAS  Google Scholar 

  • Pagano MC, Correa EJA, Duarte NF, Yelikbayev B, O’Donovan A, Gupta VK (2017) Advances in eco-efficient agriculture: the plant-soil mycobiome. Agriculture 7:14. https://doi.org/10.3390/agriculture7020014

    Article  CAS  Google Scholar 

  • Pan S, Mukherji R, Bhagat S (2013) Evaluation of Trichoderma spp. against soil borne plant pathogens. Ann Plant Protect Sci 21:197–198

    Google Scholar 

  • Pareek CS, Smoczynski R, Tretyn A (2011) Sequencing technologies and genome sequencing. J Appl Genet 52:413–435

    CAS  PubMed  PubMed Central  Google Scholar 

  • Penuelas J, Farre-Armengol G, Llusia J et al (2014) Removal of floral microbiota reduces floral terpene emissions. Sci Rep 4:6727

    CAS  PubMed  PubMed Central  Google Scholar 

  • Perazzolli M, Antonielli L, Storari M, Puopolo G, Pancher M, Giovannini O et al (2014) Resilience of the natural phyllosphere microbiota of the grapevine to chemical and biological pesticides. Appl Environ Microbiol 80(12):3585–3596. https://doi.org/10.1128/AEM.00415-14

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pérez-Jaramillo JE, Carrión VJ, de Hollander M, Raaijmakers JM (2018) The wild side of plant microbiomes. Microbiome 6:143

    PubMed  PubMed Central  Google Scholar 

  • Porras-Alfaro A, Bayman P (2011) Hidden fungi, emergent properties: endophytes and microbiomes. Annu Rev Phytopathol 49:291–315

    CAS  PubMed  Google Scholar 

  • Prabukumar S, Rajkuberan C, Ravindran K, Sivaramakrishnan S (2015) Isolation and characterization of endophytic fungi from medicinal plant Crescentia cujete L. and their antibacterial, antioxidant and anticancer properties. Int J Pharm Pharm Sci 7:316–321

    Google Scholar 

  • Priya KS, Nagaveni HC (2009) Screening of Trichoderma spp. against Lasiodiplodia theobromae causing fruit rot of Elaeocarpus munronii. Indian J Plant Protect 37(1/2):166–169

    Google Scholar 

  • Priyadharsini P, Muthukumar T (2017) The root endophytic fungus Curvularia geniculate from Parthenium hysterophorus roots improves plant growth through phosphate solubilization and phytohormone production. Fungal Ecol 27:69–77

    Google Scholar 

  • Qiang-long Z, Shi L, Peng G, Fei-shi L (2014) High-throughput sequencing technology and its application. J Northeast Agric Univ 21:84–96

    Google Scholar 

  • Rai S, Kashyap PL, Kumar S et al (2016) Identification, characterization and phylogenetic analysis of antifungal Trichoderma from tomato rhizosphere. Springerplus 5:1939. https://doi.org/10.1186/s40064-016-3657-4

  • Rai S, Slanki MK, Solanki AC, Surapathrudu K (2019) Trichoderma as biocontrol agent: molecular prospectus and application. In: Ansari RA, Mahmood I (eds) Plant health under biotic stress. Springer, Singapore. https://doi.org/10.1007/978-981-13-6040-4_7

    Chapter  Google Scholar 

  • Rhoads A, Au KF (2015) PacBio sequencing and its applications. Genomics Proteomics Bioinformatics 13:178–289

    Google Scholar 

  • Rodriguez RJ, White JF, Arnold AE, Redman RS (2009) Fungal endophytes: diversity and functional roles. New Phytol 182:314–330

    CAS  PubMed  Google Scholar 

  • Roe AD, Rice AV, Bromilow SE, Cooke JEK, Sperling FAH (2010) Multilocus species identification and fungal DNA barcoding: insights from blue stain fungal symbionts of the mountain pine beetle. Mol Ecol Resour 10:946–959

    CAS  PubMed  Google Scholar 

  • Rytkönen AP, Lilja A, Hantula J (2011) PCR-DGGE method for in planta detection and identification of Phytophthora species. F Pathol 42(1):22–27

    Google Scholar 

  • Samuelian SK, Greer LA, Savocchia S, Steel CC (2011) Detection and monitoring of Greeneria uvicola and Colletotrichum acutatum development on grapevines by real time PCR. Plant Dis 95(3):298–303. ISSN 0191-2917

    PubMed  Google Scholar 

  • Saravanakumar K, Dou K, Lu Z, Wang X, Li Y, Chen J (2018) Enhanced biocontrol activity of cellulase from Trichoderma harzianum against Fusarium graminearum through activation of defense-related genes in maize. Physiol Mol Pl Pathol 103:130–136

    CAS  Google Scholar 

  • Schmidt H, Taniwaki MH, Vogel RF, Niessen L (2004) Utilization of AFLP markers for PCR-based identification of Aspergillus carbonarius and indication of its presence in green coffee samples. J Appl Microbiol 97(5):899–909. ISSN 1364-5072

    CAS  PubMed  Google Scholar 

  • Schmidt R, Koberl M, Mostafa A et al (2014) Effects of bacterial inoculants on the indigenous microbiome and secondary metabolites of chamomile plants. Front Microbiol 5:64

    PubMed  PubMed Central  Google Scholar 

  • Schweitzer JA, BaileyBangert RK, Hart SC, Whitham TG (2006) The role of plant genetics in determining above – and below – ground microbial communities. In: Bailey MJ, Lilley AK, Timms-Wilson TM, Spencer-Phillips PTN (eds) Microbial ecology of the aerial plant surface. CABI International, Wallingford, pp 107–119

    Google Scholar 

  • Shah N, Meisel JS, Pop M (2019) Embracing ambiguity in the taxonomic classification of microbiome sequencing data. Front Genet 10:1022. https://doi.org/10.3389/fgene.2019.01022

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shahid S, Khan MR (2019) Evaluation of biocontrol agents for the management of root-rot of mung bean caused by Macrophomina phaseolina. Indian Phytopathol 72:89

    Google Scholar 

  • Sharma KK, Singh US, Sharma P, Kumar A, Sharma L (2015) Seed treatments for sustainable agriculture – a review. J Appl Nat Sci 7(1):521–539

    Google Scholar 

  • Silvar C, Díaz J, Merino F (2005) Real-time polymerase chain reaction quantification of Phytophthora capsici in different pepper genotypes. Phytopathology 95(12):1423–1429. ISSN 0031-949X

    CAS  PubMed  Google Scholar 

  • Singh M, Sharma OP (2012) Trichoderma- A savior microbe in the era of climate change. IJABR 2(4):784–786

    Google Scholar 

  • Somai BM, Keinath AP, Dean RA (2002) Development of PCR-ELISA detection and differentiation of Didymella bryoniae from related Phoma species. Plant Dis 86(7):710–716. ISSN 0191-2917

    CAS  PubMed  Google Scholar 

  • Song Z et al (2015) Effort versus reward: preparing samples for fungal community characterization in high-throughput sequencing surveys of soils. PLoS One 10:e0127234

    PubMed  PubMed Central  Google Scholar 

  • Srivastava RK, Singh RK, Kumar N, Singh S (2010) Management of Macrophomina disease complex in jute (Corchorus olitorius) by Trichoderma viride. J Biol Control 24:77–79

    Google Scholar 

  • Suresh N, Nelson R (2016) Isolation of antagonistic fungi and evaluation of antifungal activity of the separated metabolite against the red rot of sugarcane pathogen. Eu J Exp Bol 6(1):15–21

    CAS  Google Scholar 

  • Szabo LJ (2007) Development of simple sequence repeats markers for the plant pathogenic rust fungus, Puccinia graminis. Mol Ecol Notes 7:92–94

    CAS  Google Scholar 

  • Szabo LJ, Kolmer JA (2007) Development of simple sequence repeats markers for the plant pathogenic rust fungus, Puccinia triticina. Mol Ecol Notes 7(4):708–710. https://doi.org/10.1111/j.1471-8286.2007.01686.x

    Article  CAS  Google Scholar 

  • Tedersoo L, Nilsson RH (2016) Molecular mycorrhizal symbiosis (ed Martin F). Wiley, Hoboken, pp 301–322

    Google Scholar 

  • Tellenbach C, Grunig CR, Sieber TN (2010) Suitability of quantitative real-time PCR to estimate the biomass of fungal root endophytes. Appl Environ Microbiol 76:5764–5772

    CAS  PubMed  PubMed Central  Google Scholar 

  • Tetali S, Karpagavalli S, Pavani SL (2015) Management of dry root rot of black gram caused by Macrophomina phaseolina (Tassi) Goid. using bio agent. Plant Arch 15(2):647–650

    Google Scholar 

  • Tewoldemedhin YT, Mazzola M, Botha WJ, CFJ S, McLeod A (2011) Characterization of fungi (Fusarium and Rhizoctonia) and oomycetes (Phytophthora and Pythium) associated with apple orchards in South Africa. Eur J Plant Pathol 130(2):215–229

    CAS  Google Scholar 

  • Thombre B, Kohire O (2018) Integrated management of Macrophomina blight of mungbean (Vigna radiata L.) caused by Macrophomina phaseolina (Tassi) Goid. Indian Phytopathol 71:423–429. https://doi.org/10.1007/s42360-018-0055-6

    Article  Google Scholar 

  • Toju H, Peay KG, Yamamichi M, Narisawa K, Hiruma K et al (2018) Core microbiomes for sustainable agroecosystem. Nat Plants 4(9):247–257

    PubMed  Google Scholar 

  • Tkacz A, Poole P (2015) Role of root microbiota in plant productivity. J Exp Bot 66(8):2167–2175. https://doi.org/10.1093/jxb/erv157

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tomlinson JA, Barker I, Boonham N (2007) Faster, simpler, more-specific methods for improved molecular detection of Phytophthora ramorum in the field. Appl Environ Microbiol 73(12):4040–4047. https://doi.org/10.1128/AEM.00161-07

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tomlinson JA, Dickinson MJ, Boonham N (2010) Rapid detection of Phytophthora ramorum and P. kernoviae by two-minute DNA extraction followed by isothermal amplification and amplicon detection by generic lateral flow device. Phytopathology 100:143–149

    CAS  PubMed  Google Scholar 

  • Torres-Calzada C, Tapia-Tussell R, Quijano-Ramayo A, Martin-Mex R, Rojas-Herrera R, Higuera-Ciapara I, Perez-Brito D (2011) A species-specific polymerase chain reaction assay for rapid and sensitive detection of Colletotrichum capsici. Mol Biotechnol 49:48–55

    CAS  PubMed  Google Scholar 

  • Turrini A, Avio L, Giovannetti M, Agnolucci M (2018) Functional Complementarity of Arbuscular Mycorrhizal Fungi and Associated Microbiota: The Challenge of Translational Research. Front Plant Sci 9:1407. https://doi.org/10.3389/fpls.2018.01407

    Article  PubMed  PubMed Central  Google Scholar 

  • Vergara C, Araujoa KEC, Alvesa LS, de Souza SR, Santos LA et al (2018) Contribution of dark septate fungi to the nutrient uptake and growth of rice plants. Braz J Microbiol 49:67–78

    CAS  PubMed  Google Scholar 

  • Verginer M, Siegmund B, Cardinale M et al (2010) Monitoring the plant epiphyte Methylobacterium extorquens DSM 21961 by real-time PCR and its influence on the strawberry flavor. FEMS Microbiol Ecol 74:136–145

    CAS  PubMed  Google Scholar 

  • Vezzi F (2012). Next generation sequencing revolution challenges: search, assemble, and validate genomes. Ph.D, Universita degli Studi di Udine, Italy

    Google Scholar 

  • Vorholt JA (2012) Microbial life in the phyllosphere. Nat Rev Microbiol 10(12):828–840. https://doi.org/10.1038/nrmicro2910

    Article  CAS  PubMed  Google Scholar 

  • Waghunde RR, Shelake RM, Sabalpara AN (2016) Trichoderma: A significant fungus for agriculture and environment. Afr J Agric Res 11:1952–1965

    Google Scholar 

  • Weller DM, Raaijmakers JM, Gardener BBM, Thomashow LS (2002) Microbial populations responsible for specific soil suppressiveness to plant pathogens. Annu Rev Phytopathol 40:309–348

    CAS  PubMed  Google Scholar 

  • Winton LM, Krohn AL, Leiner RH (2007) Microsatellite markers for Sclerotinia subarctica nom. prov., a new vegetable pathogen of the High North. Mol Ecol Notes 7(6):1077–1079. ISSN 1471-8278

    CAS  Google Scholar 

  • Yao H, Sun X, He C, Maitra P, Li CX, Guo DL (2019) Phyllosphere epiphytic and endophytic fungal community and network structures differ in a tropical mangrove ecosystem. Microbiome 7:57. https://doi.org/10.1186/s40168-019-0671-0

    Article  PubMed  PubMed Central  Google Scholar 

  • You J, Zhang J, Wu M, Yang L, Chen W, Li G (2016) Multiple criteria-based screening of Trichoderma isolates for biological control of Botrytis cinerea on tomato. Biol Control 101:31–38

    Google Scholar 

  • Zabetakis I, Moutevelis-Minakakis P, Gramshaw JW (1999) The role of 2-hydroxypropanal in the biosynthesis of 2,5-dimethyl-4- hydroxy-2H-furan-3-one in strawberry (Fragaria × ananassa, cv. Elsanta) callus cultures. Food Chem 64:311–314

    CAS  Google Scholar 

  • Zeilinger S, Gruber S, Bansalb R, Mukherjee PK (2016) Secondary metabolism in Trichoderma-Chemistry meets genomics. Fungal Biol Rev 30:74–90

    Google Scholar 

  • Zhang N, Tantardini A, Miller S, Eng A, Salvatore N (2011) TaqMan real-time PCR method for detection of Discula destructiva that causes dogwood anthracnose in Europe and North America. Eur J Plant Pathol 130(4):551–558. ISSN 0929–1873

    CAS  Google Scholar 

  • Zhang F, Liu Z, Gulijimila M, Wang Y, Fan H, Wang Z (2016) Functional analysis of the 1-aminocyclopropane-1-carboxylate deaminase gene of the biocontrol fungus Trichoderma asperellum ACCC30536. Can J Plant Sci 96:265–275

    CAS  Google Scholar 

  • Zhang S, Xu B, Zhang J, Gan Y (2018) Identification of the antifungal activity of Trichoderma longibrachiatum T6 and assessment of bioactive substances in controlling phytopathogens. Pestic Biochem Physiol 147:59–66

    CAS  PubMed  Google Scholar 

  • Zheng Y, Zhang G, Lin FC, Wang ZH, Jin GL, Yang L, Wang Y, Chen X, Xu ZH, Zhao XQ, Wang HK, Lu JP, Lu GD, Wu WR (2008) Development of microsatellite markers and construction of genetic map in rice blast pathogen Magnaporthe grisea. Fungal Genet Biol 45(10):1340–1347. ISSN 1087-1845

    CAS  PubMed  Google Scholar 

  • Zheng YK, Miao CP, Chen HH, Huang FF, Xia YM, Chen YW, Zhao LX (2017) Endophytic fungi harbored in Panax notoginseng: diversity and potential as biological control agents against host plant pathogens of root-rot disease. J Ginseng Res 41:353–360

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Anal, A.K.D., Rai, S., Singh, M., Solanki, M.K. (2020). Plant Mycobiome: Current Research and Applications. In: Solanki, M., Kashyap, P., Kumari, B. (eds) Phytobiomes: Current Insights and Future Vistas. Springer, Singapore. https://doi.org/10.1007/978-981-15-3151-4_4

Download citation

Publish with us

Policies and ethics