Advertisement

Prediction of Psychosocial Risks in Teachers Using Data Mining

Chapter
Part of the Lecture Notes in Electrical Engineering book series (LNEE, volume 643)

Abstract

Integrated management systems aim to improve these everyday situations that are inherent to work and cause for concern. In search for continuous improvement, it is necessary to innovate with techniques in areas that are not yet explored and that contribute to strategic decision-making processes, such as machine learning techniques or machine learning. In occupational safety and health management systems, it is important to carry out the proper follow-ups and process controls in any type of industry and organization whose relationship is direct. This paper presents the application of three methods related to data mining: Support Vector Machine algorithms, Naïve Bayes, and Genetic Algorithms to identify the degree of psychosocial risk in university teachers of the Mumbai University in India. The use of SVM easily recognizes physiological variables and the best prediction performance was achieved with 96.34% accuracy efficiency.

Keywords

Support vector machine Naïve bayes Genetic algorithms 

References

  1. 1.
    Viloria A, Bucci N, Luna M (2017) Historical development of psychosocial risk assessment models. J Eng Appl Sci 12(11):2915–2919. ISSN: 1816-949X. Medwell Journals. https://www.medwelljournals.com/journalhome.php?jid=1816-949x
  2. 2.
    Viloria A, Bucci N, Luna M (2017) Comparative analysis between psychosocial risk assessment models. J Eng Appl Sci 12(11):2901–2903. ISSN: 1816-949X. Medwell Journals. https://www.medwelljournals.com/journalhome.php?jid=1816-949x
  3. 3.
    Instituto Sindical de Trabajo, Ambiente y Salud (ISTAS). http://www.istas.net/web/index.asp?idpagina=1235
  4. 4.
    Organización Mundial de la Salud (2007) Commission on social determinants of health. A conceptual framework for action on the social determinants of health. (Discussion paper. Geneve: Retrieved from http://www.who.int/social_determinants/resources/csdh_framework_action_05_07.pdf
  5. 5.
    Moncada S, Llorens C, Navarro A, Kristensen T (2005) Versión en lengua castellana del cuestionario psicosocial de Copenhague (COPSOQ). La Societat Catalana de Seguretat i Medicina del Treball. España. http://www.scsmt.cat/pdf/8n1orig1.pdf
  6. 6.
    Serra J (2011) Pautas para la intervención Psicosocial en las organizaciones. Taller para gestionar el estrés y otros riesgos psicosociales. Reto laboral del siglo XXI. http://www.asepeyo.es/apr/apr0301.nsf/ficheros/PSI0904001%20Intervenciones%20medio%20laboral%20riesgo%20psicosocial.pdf/$file/PSI0904001%20Intervenciones%20medio%20laboral%20riesgo%20psicosocial.pdf
  7. 7.
    Viloria A, Bucci N, Luna M (2017) Comparative analysis between psychosocial risk assessment models. J Eng Appl Sci 12(11):2901–2903. ISSN: 1816-949X. Medwell JournalsGoogle Scholar
  8. 8.
    Caamaño AJ, Echeverría MM, Retamal VO, Navarro CT, Espinosa FT (2015) Modelo predictivo de fuga de clientes utilizando minería de datos para una empresa de telecomunicaciones en chile. Universidad Ciencia y Tecnología, 18(72)Google Scholar
  9. 9.
    Mark Hall y otros 5 autores (2009) The WEKA data mining software: an update; SIGKDD explorations 11(1)Google Scholar
  10. 10.
    Bucci N, Luna M (2012) Contrastación entre los Modelos de Estudio del Estrés como Soporte para la Evaluación de los Riesgos Psicosociales en el Trabajo. Revista Digital de Investigación y Postgrado de la Universidad Nacional Experimental Politécnica “Antonio José de Sucre”, Vicerrectorado Barquisimeto. Venezuela 2(1):21–38 abril 2012. ISSN: 2244-7393. http://redip.bqto.unexpo.edu.ve
  11. 11.
    Agarwal B, Mittal N (2014) Text classification using machine learning methods—a survey. In: Proceedings of the second international conference on soft computing for problem solving (SocProS 2012), Springer, New Delhi, 28–30 Dec 2012, pp 701–709Google Scholar
  12. 12.
    Larrañaga P, Inza I, Moujahid A (2016) Tema 6. Clasificadores Bayesianos. Departamento de Ciencias de la Computación e Inteligencia Artificial. En línea: http://www.sc.ehu.es/ccwbayes/docencia/mmcc/docs/t6bayesianos.pdf Acceso: 9 de enero de 2016, Universidad del País Vasco-Euskal Herriko Unibertsitatea, España
  13. 13.
    Quinlan JR (1993) C4.5: programs for machine learning. Elsevier, BurlingtonGoogle Scholar
  14. 14.
    García DA (2007) Algoritmo de discretización de series de tiempo basado en entropía y su aplicación en datos colposcopicos. Tesis de Maestría en Inteligencia Artificial. Universidad Veracruzana, MéxicoGoogle Scholar
  15. 15.
    Corso CL (2009) Alternativa de herramienta libre para la implementación de aprendizaje automático. En línea: http://www.investigacion.frc.utn.edu.ar/labsis/Publicaciones/congresos_labsis/cynthia/Alternativa_de_herramienta_para_Mineria_Datos_CNEISI_2009.pdf. Acceso: 10 de agosto de 2015, Argentina
  16. 16.
    Anon D (2016) Búsqueda exhaustiva. En línea: http://dis.um.es/~domingo/apuntes/AlgBio/1213/exhaustiva.pdf. Acceso: 2 de agosto 2015, Universidad de Murcia, España
  17. 17.
    Hepner GF (1990) Artificial neural network classification using a minimal training set. Comparison to conventional supervised classification. Photogramm Eng Remote Sens 56(4):469–473Google Scholar
  18. 18.
    Bucci N, Luna M, Viloria A, García JH, Parody A, Varela N, López LAB (2018) Factor analysis of the psychosocial risk assessment instrument. In: Tan Y, Shi Y, Tang Q (eds) Data mining and big data. DMBD 2018. Lecture notes in computer science, vol 10943. Springer, BerlinGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2020

Authors and Affiliations

  1. 1.Universidad de la CostaBarranquillaColombia
  2. 2.Universidad Simón BolívarBarranquillaColombia
  3. 3.Corporación Universitaria Minuto de Dios—UNIMINUTOBarranquillaColombia
  4. 4.Corporación Universitaria LatinoamericanaBarranquillaColombia
  5. 5.Universidad Cooperativa de Colombia MonteríaCordobaColombia
  6. 6.Universidad Tecnológica Centroamericana (UNITEC)San Pedro SulaHonduras

Personalised recommendations