Skip to main content

Photosynthesis in Chlamydomonas reinhardtii: What We Have Learned So Far?

  • Chapter
  • First Online:
Microbial Photosynthesis

Abstract

Microalgae play a major role in the global photosynthesis and CO2 fixation. Chlamydomonas reinhardtii represents one of the most extensively studied eukaryotic algal organism, and milestone discoveries related to photosynthesis have been achieved over the years in this alga, including photosynthetic complexes biogenesis, regulation of photosynthetic genes expression, pigments biosynthesis, and the regulation of photosynthetic performance in response to changes of environmental parameters. Comparisons of Chlamydomonas photosynthetic mechanisms with other phototrophs, such as cyanobacteria and higher plants, have dramatically expanded our understanding about the robustness and plasticity of photosynthetic machineries during more than 1 billion years of evolution in nature.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aihara, Y., Fujimura-Kamada, K., Yamasaki, T., & Minagawa, J. (2019). Algal photoprotection is regulated by the E3 ligase CUL4-DDB1(DET1). Nat Plants, 5(1), 34–40.

    Article  CAS  PubMed  Google Scholar 

  • Allorent, G., Lefebvre-Legendre, L., Chappuis, R., Kuntz, M., Truong, T. B., Niyogi, K. K., Ulm, R., & Goldschmidt-Clermont, M. (2016). UV-B photoreceptor-mediated protection of the photosynthetic machinery in Chlamydomonas reinhardtii. Proceedings of the National Academy of Sciences of the United States of America, 113(51), 14864–14869.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Alric, J., Lavergne, J., & Rappaport, F. (2010). Redox and ATP control of photosynthetic cyclic electron flow in Chlamydomonas reinhardtii (I) aerobic conditions. Biochimica et Biophysica Acta, 1797(1), 44–51.

    Article  CAS  PubMed  Google Scholar 

  • Aro, E. M., Mccaffery, S., & Anderson, J. M. (1993). Photoinhibition and D1 protein degradation in peas acclimated to different growth irradiances. Plant Physiology, 103(3), 835–843.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Badger, M. R., von Caemmerer, S., Ruuska, S., & Nakano, H. (2000). Electron flow to oxygen in higher plants and algae: Rates and control of direct photoreduction (Mehler reaction) and rubisco oxygenase. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 355(1402), 1433–1446.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bellafiore, S., Barneche, F., Peltier, G., & Rochaix, J. (2005). State transitions and light adaptation require chloroplast thylakoid protein kinase STN7. Nature, 433(7028), 892–895.

    Article  CAS  PubMed  Google Scholar 

  • Bonente, G., Ballottari, M., Truong, T. B., Morosinotto, T., Ahn, T. K., Fleming, G. R., Niyogi, K. K., & Bassi, R. (2011). Analysis of LhcSR3, a protein essential for feedback de-excitation in the green alga Chlamydomonas reinhardtii. PLoS Biology, 9(1), e1000577.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Boudreau, E., Takahashi, Y., Lemieux, C., Turmel, M., & Rochaix, J. D. (1997). The chloroplast ycf3 and ycf4 open reading frames of Chlamydomonas reinhardtii are required for the accumulation of the photosystem I complex. The EMBO Journal, 16(20), 6095–6104.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brzezowski, P., Richter, A. S., & Grimm, B. (2015). Regulation and function of tetrapyrrole biosynthesis in plants and algae. Biochimica et Biophysica Acta, 1847(9), 968–985.

    Article  CAS  PubMed  Google Scholar 

  • Burton-Smith, R. N., Watanabe, A., Tokutsu, R., Song, C., Murata, K., & Minagawa, J. (2019). Structural determination of the large photosystem II–light-harvesting complex II supercomplex of Chlamydomonas reinhardtii using nonionic amphipol. The Journal of Biological Chemistry, 294(41), 15003–15013.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cao, P., Su, X., Pan, X., Liu, Z., Chang, W., & Li, M. (2018). Structure, assembly and energy transfer of plant photosystem II supercomplex. Biochimica et Biophysica Acta, 1859(9), 633–644.

    Article  CAS  PubMed  Google Scholar 

  • Caspy, I., & Nelson, N. (2018). Structure of the plant photosystem I. Biochemical Society Transactions, 46(2), 285–294.

    Article  CAS  PubMed  Google Scholar 

  • Chaux, F., Burlacot, A., Mekhalfi, M., Auroy, P., Blangy, S., Richaud, P., & Peltier, G. (2017). Flavodiiron proteins promote fast and transient O2 Photoreduction in Chlamydomonas. Plant Physiology, 174(3), 1825–1836.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen, X., Pu, H., Wang, X., Long, W., Lin, R., & Liu, L. (2015). Crystal structures of GUN4 in complex with Porphyrins. Molecular Plant, 8(7), 1125–1127.

    Article  CAS  PubMed  Google Scholar 

  • Chen, Y., Shimoda, Y., Yokono, M., Ito, H., & Tanaka, A. (2019). Mg-dechelatase is involved in the formation of photosystem II but not in chlorophyll degradation in Chlamydomonas reinhardtii. The Plant Journal, 97(6), 1022–1031.

    Article  CAS  PubMed  Google Scholar 

  • Czarnecki, O., & Grimm, B. (2012). Post-translational control of tetrapyrrole biosynthesis in plants, algae, and cyanobacteria. Journal of Experimental Botany, 63(4), 1675–1687.

    Article  CAS  PubMed  Google Scholar 

  • Dang, K. V., Plet, J., Tolleter, D., Jokel, M., Cuiné, S., Carrier, P., Auroy, P., Richaud, P., et al. (2014). Combined increases in mitochondrial cooperation and oxygen photoreduction compensate for deficiency in cyclic electron flow in Chlamydomonas reinhardtii. Plant Cell, 26(7), 3036–3050.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Delosme, R., Olive, J., & Wollman, F. A. (1996). Changes in light energy distribution upon state transitions: An in vivo photoacoustic study of the wide type and photosynthesis mutants from Chlamydomonas reinhardtii. Biochimica et Biophysica Acta, 1273(1996), 150–158.

    Article  Google Scholar 

  • Desplats, C., Mus, F., Cuiné, S., Billon, E., Cournac, L., & Peltier, G. (2009). Characterization of Nda2, a plastoquinone-reducing type II NAD(P)H dehydrogenase in chlamydomonas chloroplasts. The Journal of Biological Chemistry, 284(7), 4148–4157.

    Article  CAS  PubMed  Google Scholar 

  • Dewez, D., Park, S., García-Cerdán, J. G., Lindberg, P., & Melis, A. (2009). Mechanism of REP27 protein action in the D1 protein turnover and photosystem II repair from Photodamage. Plant Physiology, 151(1), 88–99.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Douchi, D., Qu, Y., Longoni, P., Legendre-Lefebvre, L., Johnson, X., Schmitz-Linneweber, C., & Goldschmidt-Clermont, M. (2016). A nucleus-encoded chloroplast phosphoprotein governs expression of the photosystem I subunit PsaC in Chlamydomonas reinhardtii. Plant Cell, 28(5), 1182–1199.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Duanmu, D., Casero, D., Dent, R. M., Gallaher, S., Yang, W., Rockwell, N. C., Martin, S. S., Pellegrini, M., et al. (2013). Retrograde Bilin signaling enables Chlamydomonas greening and phototrophic survival. Proceedings of the National Academy of Sciences of the United States of America, 110(9), 3621–3626.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Duanmu, D., Rockwell, N. C., & Lagarias, J. C. (2017). Algal light sensing and photoacclimation in aquatic environments. Plant, Cell & Environment, 40(11), 2558–2570.

    Article  CAS  Google Scholar 

  • Emonds-Alt, B., Coosemans, N., Gerards, T., Remacle, C., & Cardol, P. (2017). Isolation and characterization of mutants corresponding to the MENA, MENB, MENC and MENE enzymatic steps of 5′-monohydroxyphylloquinone biosynthesis in Chlamydomonas reinhardtii. The Plant Journal, 89(1), 141–154.

    Article  CAS  PubMed  Google Scholar 

  • Ferenczi, A., Pyott, D. E., Xipnitou, A., & Molnar, A. (2017). Efficient targeted DNA editing and replacement in Chlamydomonas reinhardtii using Cpf1 ribonucleoproteins and single-stranded DNA. Proceedings of the National Academy of Sciences of the United States of America, 114(51), 13567–13572.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gabilly, S. T., Baker, C. R., Wakao, S., Crisanto, T., Guan, K., Bi, K., Guiet, E., Guadagno, C. R., et al. (2019). Regulation of photoprotection gene expression in Chlamydomonas by a putative E3 ubiquitin ligase complex and a homolog of CONSTANS. Proceedings of the National Academy of Sciences of the United States of America, 116(35), 17556–17562.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • García-Cerdán, J. G., Furst, A. L., McDonald, K. L., Schünemann, D., Francis, M. B., & Niyogi, K. K. (2019). A thylakoid membrane-bound and redox-active rubredoxin (RBD1) functions in de novo assembly and repair of photosystem II. Proceedings of the National Academy of Sciences of the United States of America, 116(33), 16631–16640.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Girolomoni, L., Ferrante, P., Berteotti, S., Giuliano, G., Bassi, R., & Ballottari, M. (2016). The function of LHCBM4/6/8 antenna proteins in Chlamydomonas reinhardtii. Journal of Experimental Botany, 68(3), 627–641.

    PubMed Central  Google Scholar 

  • Girolomoni, L., Cazzaniga, S., Pinnola, A., Perozeni, F., Ballottari, M., & Bassi, R. (2019). LHCSR3 is a nonphotochemical quencher of both photosystems in Chlamydomonas reinhardtii. Proceedings of the National Academy of Sciences of the United States of America, 116(10), 4212–4217.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Greiner, A., Kelterborn, S., Evers, H., Kreimer, G., Sizova, I., & Hegemann, P. (2017). Targeting of photoreceptor genes in Chlamydomonas reinhardtii via zinc-finger nucleases and CRISPR/Cas9. Plant Cell, 29(10), 2498–2518.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Grewe, S., Ballottari, M., Alcocer, M., D’Andrea, C., Blifernez-Klassen, O., Hankamer, B., Mussgnug, J. H., Bassi, R., et al. (2014). Light-harvesting complex protein LHCBM9 is critical for photosystem II activity and hydrogen production in Chlamydomonas reinhardtii. Plant Cell, 26(4), 1598–1611.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Grossman, A. R., Lohr, M., & Im, C. S. (2004). Chlamydomonas reinhardtii in the landscape of pigments. Annual Review of Genetics, 38, 119–173.

    Article  CAS  PubMed  Google Scholar 

  • Grossman, A., Sanz-Luque, E., Yi, H., & Yang, W. (2019). Building the GreenCut2 suite of proteins to unmask photosynthetic function and regulation. Microbiology, 165(7), 697–718.

    Article  CAS  PubMed  Google Scholar 

  • Heinnickel, M., Kim, R. G., Wittkopp, T. M., Yang, W., Walters, K. A., Herbert, S. K., & Grossman, A. R. (2016). Tetratricopeptide repeat protein protects photosystem I from oxidative disruption during assembly. Proceedings of the National Academy of Sciences of the United States of America, 113(10), 2774–2779.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hertle, A. P., Blunder, T., Wunder, T., Pesaresi, P., Pribil, M., Armbruster, U., & Leister, D. (2013). PGRL1 is the elusive ferredoxin-plastoquinone reductase in photosynthetic cyclic electron flow. Molecular Cell, 49(3), 511–523.

    Article  CAS  PubMed  Google Scholar 

  • Houille-Vernes, L., Rappaport, F., Wollman, F. A., Alric, J., & Johnson, X. (2011). Plastid terminal oxidase 2 (PTOX2) is the major oxidase involved in chlororespiration in Chlamydomonas. Proceedings of the National Academy of Sciences of the United States of America, 108(51), 20820–20825.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Idoine, A. D., Boulouis, A., Rupprecht, J., & Bock, R. (2014). The diurnal logic of the expression of the chloroplast genome in Chlamydomonas reinhardtii. PLoS One, 9(10), e108760.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Im, C. S., Eberhard, S., Huang, K., Beck, C. F., & Grossman, A. R. (2006). Phototropin involvement in the expression of genes encoding chlorophyll and carotenoid biosynthesis enzymes and LHC apoproteins in Chlamydomonas reinhardtii. The Plant Journal, 48(1), 1–16.

    Article  CAS  PubMed  Google Scholar 

  • Iwai, M., Takizawa, K., Tokutsu, R., Okamuro, A., Takahashi, Y., & Minagawa, J. (2010). Isolation of the elusive supercomplex that drives cyclic electron flow in photosynthesis. Nature, 464(7292), 1210–1213.

    Article  CAS  PubMed  Google Scholar 

  • Kato, Y., Sun, X., Zhang, L., & Sakamoto, W. (2012). Cooperative D1 degradation in the photosystem II repair mediated by Chloroplastic proteases in Arabidopsis. Plant Physiology, 159(4), 1428–1439.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kato, Y., Hyodo, K., & Sakamoto, W. (2018). The photosystem II repair cycle requires FtsH turnover through the EngA GTPase. Plant Physiology, 178(2), 596–611.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kawakami, K., Tokutsu, R., Kim, E., & Minagawa, J. (2019). Four distinct trimeric forms of light- harvesting complex II isolated from the green alga Chlamydomonas reinhardtii. Photosynthesis Research. https://doi.org/10.1007/s11120-019-00669-y.

  • Kim, E., Akimoto, S., Tokutsu, R., Yokono, M., & Minagawa, J. (2017). Fluorescence lifetime analyses reveal how the high light–responsive protein LHCSR3 transforms PSII light-harvesting complexes into an energy-dissipative state. The Journal of Biological Chemistry, 292(46), 18951–18960.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kono, M., Noguchi, K., & Terashima, I. (2014). Roles of the cyclic electron flow around PSI (CEF-PSI) and O2-dependent alternative pathways in regulation of the photosynthetic electron flow in short-term fluctuating light in Arabidopsis thaliana. Plant & Cell Physiology, 55(5), 990–1004.

    Article  CAS  Google Scholar 

  • Kosuge, K., Tokutsu, R., Kim, E., Akimoto, S., Yokono, M., Ueno, Y., & Minagawa, J. (2018). LHCSR1- dependent fluorescence quenching is mediated by excitation energy transfer from LHCII to photosystem I in Chlamydomonas reinhardtii. Proceedings of the National Academy of Sciences of the United States of America, 115(14), 3722–3727.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kottke, T., Oldemeyer, S., Wenzel, S., Zou, Y., & Mittag, M. (2017). Cryptochrome photoreceptors in green algae: Unexpected versatility of mechanisms and functions. Journal of Plant Physiology, 217, 4–14.

    Article  CAS  PubMed  Google Scholar 

  • Krech, K., Ruf, S., Masduki, F. F., Thiele, W., Bednarczyk, D., Albus, C. A., Tiller, N., Hasse, C., et al. (2012). The plastid genome-encoded Ycf4 protein functions as a nonessential assembly factor for photosystem I in higher plants. Plant Physiology, 159(2), 579–591.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kubota-Kawai, H., Burton-Smith, R. N., Tokutsu, R., Song, C., Akimoto, S., Yokono, M., Ueno, Y., Kim, E., et al. (2019). Ten antenna proteins are associated with the core in the supramolecular organization of the photosystem I supercomplex in Chlamydomonas reinhardtii. The Journal of Biological Chemistry, 294(12), 4304–4314.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kukuczka, B., Magneschi, L., Petroutsos, D., Steinbeck, J., Bald, T., Powikrowska, M., Fufezan, C., Finazzi, G., et al. (2014). Proton gradient Regulation5-Like1-mediated cyclic Electron flow is crucial for acclimation to anoxia and complementary to nonphotochemical quenching in stress adaptation. Plant Physiology, 165(4), 1604–1617.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Le Quiniou, C., Tian, L., Drop, B., Wientjes, E., van Stokkum, I. H. M., van Oort, B., & Croce, R. (2015). PSI–LHCI of Chlamydomonas reinhardtii: Increasing the absorption cross section without losing efficiency. Biochimica et Biophysica Acta, 1847(4–5), 458–467.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lefebvre-Legendre, L., Rappaport, F., Finazzi, G., Ceol, M., Grivet, C., Hopfgartner, G., & Rochaix, J. D. (2007). Loss of Phylloquinone in Chlamydomonas affects Plastoquinone Pool size and photosystem II synthesis. The Journal of Biological Chemistry, 282(18), 13250–13263.

    Article  CAS  PubMed  Google Scholar 

  • Lefebvre-Legendre, L., Choquet, Y., Kuras, R., Loubéry, S., Douchi, D., & Goldschmidt-Clermont, M. (2015). A nucleus-encoded chloroplast protein regulated by Iron availability governs expression of the photosystem I subunit PsaA in Chlamydomonas reinhardtii. Plant Physiology, 167(4), 1527–1540.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li, X., Patena, W., Fauser, F., Jinkerson, R. E., Saroussi, S., Meyer, M. T., Ivanova, N., Robertson, J. M., et al. (2019). A genome-wide algal mutant library and functional screen identifies genes required for eukaryotic photosynthesis. Nature Genetics, 51(4), 627–635.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Maruyama, S., Tokutsu, R., & Minagawa, J. (2014). Transcriptional regulation of the stress-responsive light harvesting complex genes in Chlamydomonas reinhardtii. Plant & Cell Physiology, 55(7), 1304–1310.

    Article  CAS  Google Scholar 

  • Maul, J. E., Lilly, J. W., Cui, L., dePamphilis, C. W., Miller, W., Harris, E. H., & Stern, D. B. (2002). The Chlamydomonas reinhardtii plastid chromosome: Islands of genes in a sea of repeats. Plant Cell, 14(11), 2659–2679.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McCarthy, S. S., Kobayashi, M. C., & Niyogi, K. K. (2004). White mutants of Chlamydomonas reinhardtii are defective in phytoene synthase. Genetics, 168(3), 1249–1257.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mehler, A. H. (1951). Studies on reactions of illuminated chloroplasts. II. Stimulation and inhibition of the reaction with molecular oxygen. Archives of Biochemistry and Biophysics, 34(2), 339–351.

    Article  CAS  PubMed  Google Scholar 

  • Merchant, S. S., Prochnik, S. E., Vallon, O., Harris, E. H., Karpowicz, S. J., Witman, G. B., Terry, A., Salamov, A., et al. (2007). The Chlamydomonas genome reveals the evolution of key animal and plant functions. Science, 318(5848), 245–250.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mosebach, L., Heilmann, C., Mutoh, R., Gäbelein, P., Steinbeck, J., Happe, T., Ikegami, T., Hanke, G., et al. (2017). Association of Ferredoxin:NADP(+) oxidoreductase with the photosynthetic apparatus modulates electron transfer in Chlamydomonas reinhardtii. Photosynthesis Research, 134(3), 291–306.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Munekage, Y., Hashimoto, M., Miyake, C., Tomizawa, K., Endo, T., Tasaka, M., & Shikanai, T. (2004). Cyclic electron flow around photosystem I is essential for photosynthesis. Nature, 429(6991), 579–582.

    Article  CAS  PubMed  Google Scholar 

  • Mussgnug, J. H., Wobbe, L., Elles, I., Claus, C., Hamilton, M., Fink, A., Kahmann, U., Kapazoglou, A., et al. (2005). NAB1 is an RNA binding protein involved in the light-regulated differential expression of the light-harvesting antenna of Chlamydomonas reinhardtii. Plant Cell, 17(12), 3409–3421.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nawrocki, W. J., Tourasse, N. J., Taly, A., Rappaport, F., & Wollman, F. A. (2015). The plastid terminal oxidase: Its elusive function points to multiple contributions to plastid physiology. Annual Review of Plant Biology, 66, 49–74.

    Article  CAS  PubMed  Google Scholar 

  • Nawrocki, W. J., Bailleul, B., Cardol, P., Rappaport, F., Wollman, F. A., & Joliot, P. (2019). Maximal cyclic electron flow rate is independent of PGRL1 in Chlamydomonas. Biochimica et Biophysica Acta – Bioenergetics, 1860(5), 425–432.

    Article  CAS  PubMed  Google Scholar 

  • Nellaepalli, S., Ozawa, S., Kuroda, H., & Takahashi, Y. (2018). The photosystem I assembly apparatus consisting of Ycf3-Y3IP1 and Ycf4 modules. Nature Communications, 9(1), 2439.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ohnishi, N., & Takahashi, Y. (2008). Chloroplast-encoded PsbT is required for efficient biogenesis of photosystem II complex in the green alga Chlamydomonas reinhardtii. Photosynthesis Research, 98(1–3), 315–322.

    Article  CAS  PubMed  Google Scholar 

  • Ossenbühl, F., Göhre, V., Meurer, J., Krieger-Liszkay, A., Rochaix, J., & Eichacker, L. A. (2004). Efficient assembly of photosystem II in Chlamydomonas reinhardtii requires Alb3.1p, a homolog of Arabidopsis ALBINO3. Plant Cell, 16(7), 1790–1800.

    Article  PubMed  PubMed Central  Google Scholar 

  • Ozawa, S., Kosugi, M., Kashino, Y., Sugimura, T., & Takahashi, Y. (2012). 5′-monohydroxyphylloquinone is the dominant naphthoquinone of PSI in the green alga Chlamydomonas reinhardtii. Plant & Cell Physiology, 53(1), 237–243.

    Article  CAS  Google Scholar 

  • Peers, G., Truong, T. B., Ostendorf, E., Busch, A., Elrad, D., Grossman, A. R., Hippler, M., & Niyogi, K. K. (2009). An ancient light-harvesting protein is critical for the regulation of algal photosynthesis. Nature, 462(7272), 518–521.

    Article  CAS  PubMed  Google Scholar 

  • Rea, G., Antonacci, A., Lambreva, M. D., & Mattoo, A. K. (2018). Features of cues and processes during chloroplast-mediated retrograde signaling in the alga Chlamydomonas. Plant Science, 272, 193–206.

    Article  CAS  PubMed  Google Scholar 

  • Reinbothe, C., El Bakkouri, M., Buhr, F., Muraki, N., Nomata, J., Kurisu, G., Fujita, Y., & Reinbothe, S. (2010). Chlorophyll biosynthesis: Spotlight on protochlorophyllide reduction. Trends in Plant Science, 15(11), 614–624.

    Article  CAS  PubMed  Google Scholar 

  • Richter, A. S., Hochheuser, C., Fufezan, C., Heinze, L., Kuhnert, F., & Grimm, B. (2016). Phosphorylation of GENOMES UNCOUPLED 4 alters stimulation of mg Chelatase activity in angiosperms. Plant Physiology, 172(3), 1578–1595.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rockwell, N. C., Su, Y. S., & Lagarias, J. C. (2006). Phytochrome structure and signaling mechanisms. Annual Review of Plant Biology, 57, 837–858.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Salomé, P. A., & Merchant, S. S. (2019). A series of fortunate events: Introducing Chlamydomonas as a reference organism. Plant Cell, 31(8), 1682–1707.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Santabarbara, S., Casazza, A. P., Ali, K., Economou, C. K., Wannathong, T., Zito, F., Redding, K. E., Rappaport, F., et al. (2013). The requirement for carotenoids in the assembly and function of the photosynthetic complexes in Chlamydomonas reinhardtii. Plant Physiology, 161(1), 535–546.

    Article  CAS  PubMed  Google Scholar 

  • Shen, L., Huang, Z., Chang, S., Wang, W., Wang, J., Kuang, T., Han, G., Shen, J., et al. (2019). Structure of a C2S2M2N2-type PSII–LHCII supercomplex from the green alga Chlamydomonas reinhardtii. Proceedings of the National Academy of Sciences of the United States of America, 116(42), 21246–21255.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Steinbeck, J., Ross, I. L., Rothnagel, R., Gäbelein, P., Schulze, S., Giles, N., Ali, R., Drysdale, R., et al. (2018). Structure of a PSI-LHCI-cyt b6f supercomplex in Chlamydomonas reinhardtii promoting cyclic electron flow under anaerobic conditions. Proceedings of the National Academy of Sciences of the United States of America, 115(41), 10517–10522.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Strenkert, D., Schmollinger, S., Gallaher, S. D., Salomé, P. A., Purvine, S. O., Nicora, C. D., Mettler-Altmann, T., Soubeyrand, E., et al. (2019). Multiomics resolution of molecular events during a day in the life of Chlamydomonas. Proceedings of the National Academy of Sciences of the United States of America, 116(6), 2374–2383.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Su, X., Ma, J., Pan, X., Zhao, X., Chang, W., Liu, Z., Zhang, X., & Li, M. (2019). Antenna arrangement and energy transfer pathways of a green algal photosystem-I-LHCI supercomplex. Nature Plants, 5(3), 273–281.

    Article  CAS  PubMed  Google Scholar 

  • Suga, M., Ozawa, S., Yoshida-Motomura, K., Akita, F., Miyazaki, N., & Takahashi, Y. (2019). Structure of the green algal photosystem I supercomplex with a decameric light-harvesting complex I. Nature Plants, 5(6), 626–636.

    Article  PubMed  Google Scholar 

  • Takahashi, H., Schmollinger, S., Lee, J. H., Schroda, M., Rappaport, F., Wollman, F. A., & Vallon, O. (2016). PETO interacts with other effectors of cyclic Electron flow in Chlamydomonas. Molecular Plant, 9(4), 558–568.

    Article  CAS  PubMed  Google Scholar 

  • Tanaka, R., & Tanaka, A. (2007). Tetrapyrrole biosynthesis in higher plants. Annual Review of Plant Biology, 58, 321–346.

    Article  CAS  PubMed  Google Scholar 

  • Terashima, M., Petroutsos, D., Hüdig, M., Tolstygina, I., Trompelt, K., Gäbelein, P., Fufezan, C., Kudla, J., et al. (2012). Calcium-dependent regulation of cyclic photosynthetic electron transfer by a CAS, ANR1, and PGRL1 complex. Proceedings of the National Academy of Sciences of the United States of America, 109(43), 17717–17722.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tokutsu, R., & Minagawa, J. (2013). Energy-dissipative supercomplex of photosystem II associated with LHCSR3 in Chlamydomonas reinhardtii. Proceedings of the National Academy of Sciences of the United States of America, 110(24), 10016–10021.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tokutsu, R., Kato, N., Bui, K. H., Ishikawa, T., & Minagawa, J. (2012). Revisiting the supramolecular Organization of Photosystem II in Chlamydomonas reinhardtii. The Journal of Biological Chemistry, 287(37), 31574–31581.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Trebst, A., & Depka, B. (1997). Role of carotene in the rapid turnover and assembly of photosystem II in Chlamydomonas reinhardtii. FEBS Letters, 400(3), 359–362.

    Article  CAS  PubMed  Google Scholar 

  • Uniacke, J., & Zerges, W. (2007). Photosystem II assembly and repair are differentially localized in Chlamydomonas. Plant Cell, 19(11), 3640–3654.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ãœnlü, C., Drop, B., Croce, R., & van Amerongen, H. (2014). State transitions in Chlamydomonas reinhardtii strongly modulate the functional size of photosystem II but not of photosystem I. Proceedings of the National Academy of Sciences of the United States of America, 111(9), 3460–3465.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wang, F., Johnson, X., Cavaiuolo, M., Bohne, A. V., Nickelsen, J., & Vallon, O. (2015). Two Chlamydomonas OPR proteins stabilize chloroplast mRNAs encoding small subunits of photosystem II and cytochrome b6 f. The Plant Journal, 82(5), 861–873.

    Article  CAS  PubMed  Google Scholar 

  • Wilde, A., HÓ“rtel, H., Hübschmann, T., Hoffmann, P., Shestakov, S. V., & BÓ§rner, T. (1995). Inactivation of a Synechocystis sp strain PCC 6803 gene with homology to conserved chloroplast open reading frame 184 increases the photosystem II-to-photosystem I ratio. Plant Cell, 7(5), 649–658.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wobbe, L., Blifernez, O., Schwarz, C., Mussgnug, J. H., Nickelsen, J., & Kruse, O. (2009). Cysteine modification of a specific repressor protein controls the translational status of nucleus-encoded LHCII mRNAs in Chlamydomonas. Proceedings of the National Academy of Sciences of the United States of America, 106(32), 13290–13295.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xue, H., Tokutsu, R., Bergner, S. V., Scholz, M., Minagawa, J., & Hippler, M. (2015). PHOTOSYSTEM II SUBUNIT R is required for efficient binding of LIGHT-HARVESTING COMPLEX STRESS-RELATED PROTEIN3 to photosystem II-light-harvesting Supercomplexes in Chlamydomonas reinhardtii. Plant Physiology, 167(4), 1566–1578.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang, H., Liu, J., Wen, X., & Lu, C. (2015). Molecular mechanism of photosystem I assembly in oxygenic organisms. Biochimica et Biophysica Acta, 1847(9), 838–848.

    Article  CAS  PubMed  Google Scholar 

  • Zhang, W., Zhong, H., Lu, H., Zhang, Y., Deng, X., Huang, K., & Duanmu, D. (2018). Characterization of ferredoxin-dependent Biliverdin reductase PCYA1 reveals the dual function in retrograde Bilin biosynthesis and interaction with light-dependent Protochlorophyllide oxidoreductase LPOR in Chlamydomonas reinhardtii. Frontiers in Plant Science, 9, 676.

    Article  PubMed  PubMed Central  Google Scholar 

  • Zones, J. M., Blaby, I. K., Merchant, S. S., & Umen, J. G. (2015). High-resolution profiling of a synchronized diurnal transcriptome from Chlamydomonas reinhardtii reveals continuous cell and metabolic differentiation. Plant Cell, 27(10), 2743–2769.

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

The research in our laboratory was supported by the National Natural Science Foundation of China (31570233 and 31870220) and the Fundamental Research Funds for the Central Universities (Program No. 2662015PY171).

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Lu, H., Li, Z., Li, M., Duanmu, D. (2020). Photosynthesis in Chlamydomonas reinhardtii: What We Have Learned So Far?. In: Wang, Q. (eds) Microbial Photosynthesis. Springer, Singapore. https://doi.org/10.1007/978-981-15-3110-1_6

Download citation

Publish with us

Policies and ethics