Skip to main content

Recent Progress on the LH1-RC Complexes of Purple Photosynthetic Bacteria

  • Chapter
  • First Online:
Microbial Photosynthesis
  • 1118 Accesses

Abstract

Photosynthetic bacteria have been proven to be excellent model organisms because they own the relatively simplified model systems for us to study the reactions that occurs at the initial stage of photosynthesis, compared with the oxygen-evolving cyanobacteria, algae, and higher plants. In purple bacteria, there are usually two kinds of light-harvesting (LH) complexes, named LH1 and LH2, respectively. LH2 is the peripheral antenna complex, and LH1 is the core antenna complex that surrounds the reaction center (RC) to form the LH1-RC supercomplex. Solar energy is first absorbed by the LH complex and then transferred rapidly and efficiently to the RC, where the charge separation and electron transfer take place. Several high-resolution structures are available for the RC and LH2 for a long time; for LH1-RC complex, its structure was solved and improved to an atomic resolution recently with a thermophilic purple photosynthetic bacterium Thermochromatium tepidum. The high-resolution structure provided much more detailed structural information of this supercomplex including the arrangements of protein subunits, pigments, and cofactors; a much more intact RC complex due to the protection of LH1 complex; the detailed coordination of the Ca2+ ions in the LH1 that are important for the absorption maximum at 915 nm as well as for the enhanced thermostability; the possible ubiquinone exchange pathway in the closed LH1 ring; and so on. In addition, the dynamic processes involved in this complex were also discussed. All these results greatly advance our understanding on the molecular mechanism of bacterial photosynthesis, which could be essential for designing artificial photoelectronic conversion materials with enhanced performance.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Akahane, J., Rondonuwu, F. S., Fiedor, L., Watanabe, Y., & Koyama, Y. (2004). Dependence of singlet-energy transfer on the conjugation length of carotenoids reconstituted into the LH1 complex from Rhodospirillum rubrum G9. Chemical Physics Letters, 393(1–3), 184–191.

    CAS  Google Scholar 

  • Allen, J. P., Feher, G., Yeates, T. O., Komiya, H., & Rees, D. C. (1988). Structure of the reaction center from Rhodobacter sphaeroides R-26: Protein-cofactor (quinones and Fe2+) interactions. Proceedings of the National Academy of Sciences of the United States of America, 85(22), 8487–8491.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Campillo, A. J., Hyer, R. C., Monger, T. G., Parson, W. W., & Shapiro, S. L. (1977). Light collection and harvesting processes in bacterial photosynthesis investigated on a picosecond time scale. Proceedings of the National Academy of Sciences of the United States of American, 74(5), 1997–2001.

    CAS  Google Scholar 

  • Cogdell, R. J., Howard, T. D., Bittl, R., Schlodder, E., Geisenheimer, I., & Lubitz, W. (2000). How carotenoids protect bacterial photosynthesis. Philosophical Transactions of the Royal Society B-Biological Sciences, 355(1402), 1345–1349.

    CAS  PubMed Central  Google Scholar 

  • Deisenhofer, J., Epp, O., Miki, K., Huber, R., & Michel, H. (1985). Structure of the protein subunits in the photosynthetic reaction Centre of Rhodopseudomonas viridis at 3A resolution. Nature, 318(6047), 618–624.

    CAS  PubMed  Google Scholar 

  • Imanishi, M., Takenouchi, M., Takaichi, S., Nakagawa, S., Saga, Y., Takenaka, S., Madigan, M. T., Overmann, J., Wang-Otomo, Z.-Y., & Kimura, Y. (2019). A dual role for Ca2+ in expanding the spectral diversity and stability of light-harvesting 1 reaction Center Photocomplexes of purple phototrophic Bacteria. Biochemistry, 58(25), 2844–2852.

    CAS  PubMed  Google Scholar 

  • Jakob-Grun, S., Radeck, J., & Braun, P. (2012). Ca(2+)-binding reduces conformational flexibility of RC-LH1 core complex from thermophile Thermochromatium tepidum. Photosynthesis Research, 111(1-2), 139–147.

    CAS  PubMed  Google Scholar 

  • Jamieson, S. J., Wang, P., Qian, P., Kirkland, J. Y., Conroy, M. J., Hunter, C. N., & Bullough, P. A. (2002). Projection structure of the photosynthetic reaction Centre-antenna complex of Rhodospirillum rubrum at 8.5 A resolution. EMBO Journal, 21(15), 3927–3935.

    CAS  PubMed  Google Scholar 

  • Jordanides, X. J., Scholes, G. D., & Fleming, G. R. (2001). The mechanism of energy transfer in the bacterial photosynthetic reaction center. Journal of Physical Chemistry B, 105(8), 1652–1669.

    CAS  Google Scholar 

  • Kamran, M., Friebe, V. M., Delgado, J. D., Aartsma, T. J., Frese, R. N., & Jones, M. R. (2015). Demonstration of asymmetric electron conduction in Pseudosymmetrical photosynthetic reaction centre proteins in an electrical circuit. Nature Communications, 6, 6530.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kimura, Y., Hirano, Y., Yu, L. J., Suzuki, H., Kobayashi, M., & Wang, Z. Y. (2008). Calcium ions are involved in the unusual red shift of the light-harvesting 1 Qy transition of the core complex in thermophilic purple sulfur bacterium Thermochromatium tepidum. The Journal of Biological Chemistry, 283(20), 13867–13873.

    CAS  PubMed  Google Scholar 

  • Kimura, Y., Yu, L. J., Hirano, Y., Suzuki, H., & Wang, Z. Y. (2009). Calcium ions are required for the enhanced thermal stability of the light-harvesting-reaction center Core complex from Thermophilic purple sulfur bacterium Thermochromatium tepidum. The Journal of Biological Chemistry, 284(1), 93–99.

    CAS  PubMed  Google Scholar 

  • Koepke, J., Hu, X., Muenke, C., Schulten, K., & Michel, H. (1996). The crystal structure of the light-harvesting complex II (B800-850) from Rhodospirillum molischianum. Structure, 4(5), 581–597.

    CAS  PubMed  Google Scholar 

  • Kulathila, R., Kulathila, R., Indic, M., & van den Berg, B. (2011). Crystal structure of Escherichia coli CusC, the outer membrane component of a heavy metal efflux pump. PLoS One, 6(1), e15610.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ma, F., Kimura, Y., Yu, L.-J., Wang, P., Ai, X.-C., Wang, Z.-Y., & Zhang, J.-P. (2009). Specific Ca2+-binding motif in the LH1 complex from photosynthetic bacterium Thermochromatium tepidum as revealed by optical spectroscopy and structural Modeling. FEBS Journal, 276(6), 1739–1749.

    CAS  PubMed  Google Scholar 

  • Ma, F., Yu, L. J., Wang-Otomo, Z. Y., & van Grondelle, R. (2015). The origin of the unusual Qy red shift in LH1-RC complexes from purple bacteria Thermochromatium tepidum as revealed by stark absorption spectroscopy. Biochimica et Biophysica Acta, 1847(12), 1479–1486.

    CAS  PubMed  Google Scholar 

  • Ma, F., Yu, L. J., Wang-Otomo, Z. Y., & van Grondelle, R. (2016). Temperature dependent LH1→RC energy transfer in purple bacteria Tch. tepidum with shiftable LH1-Q band: A natural system to investigate thermally activated energy transfer in photosynthesis. Biochimica et Biophysica Acta, 1857(4), 408–414.

    CAS  PubMed  Google Scholar 

  • Ma, F., Yu, L.-J., Llansola-Portoles, M. J., Robert, B., Wang-Otomo, Z.-Y., & van Grondelle, R. (2017a). Metal Cations induced αβ-BChl a heterogeneity in LH1 as revealed by temperature-dependent fluorescence splitting. ChemPhysChem, 18(16), 2295–2301.

    CAS  PubMed  Google Scholar 

  • Ma, F., Yu, L.-J., Hendrikx, R., Wang-Otomo, Z.-Y., & van Grondelle, R. (2017b). Excitonic and vibrational coherence in the excitation relaxation process of two LH1 complexes as revealed by two-dimensional electronic spectroscopy. Journal of Physical Chemistry Letters, 8(12), 2751–2756.

    CAS  PubMed  Google Scholar 

  • Ma, F., Yu, L.-J., Hendrikx, R., Wang-Otomo, Z.-Y., & van Grondelle, R. (2017c). Direct observation of energy detrapping in LH1-RC complex by two-dimensional electronic spectroscopy. Journal of the American Chemical Society, 139(2), 591–594.

    CAS  PubMed  Google Scholar 

  • Ma, F., Swainsbury, D. J. K., Jones, M. R., & van Grondelle, R. (2017d). Photoprotection through ultrafast charge recombination in photochemical reaction centres under oxidizing conditions. Philosophical Transactions of the Royal Society B-Biological Sciences, 372(1730), 20160378.

    PubMed Central  Google Scholar 

  • Ma, F., Romero, R., Jones, M. R., Novoderezhkin, V. I., & van Grondelle, R. (2018). Vibronic coherence in the charge separation process of the Rhodobacter sphaeroides reaction center. Journal of Physical Chemistry Letters, 9(8), 1827–1832.

    CAS  PubMed  Google Scholar 

  • Ma, F., Romero, R., Jones, M. R., Novoderezhkin, V. I., & van Grondelle, R. (2019). Both electronic and vibrational coherences are involved in primary electron transfer in bacterial reaction Center. Nature Communications, 10, 933.

    PubMed  PubMed Central  Google Scholar 

  • Mcdermott, G., Prince, S. M., Freer, A. A., Hawthornthwaitelawless, A. M., Papiz, M. Z., Cogdell, R. J., & Isaacs, N. W. (1995). Crystal structure of an integral membrane light-harvesting complex from photosynthetic bacteria. Nature, 374(6522), 517–521.

    CAS  Google Scholar 

  • Monshouwer, R., Baltushka, A., van Mourik, F., & van Grondelle, R. (1998). Time-resolved absorption difference spectroscopy of the LH-1 antenna of Rhodopseudomonas viridis. Journal of Physical Chemistry A, 102(23), 4360–4371.

    CAS  Google Scholar 

  • Nagashima, K. V. P., Sasaki, M., Hashimoto, K., Takaichi, S., Nagashima, S., Yu, L. J., Abe, Y., Gotou, K., Kawakami, T., Takenouchi, M., Shibuya, Y., Yamaguchi, A., Ohno, T., Shen, J. R., Inoue, K., Madigan, M. T., Kimura, Y., & Wang-Otomo, Z. Y. (2017). Probing structure-function relationships in early events in photosynthesis using a chimeric photocomplex. Proceedings of the National Academy of Sciences of the United States of America, 114(41), 10906–10911.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Niwa, S., Yu, L. J., Takeda, K., Hirano, Y., Kawakami, T., Wang-Otomo, Z. Y., & Miki, K. (2014). Structure of the LH1-RC complex from Thermochromatium tepidum at 3.0 A. Nature, 508(7495), 228–232.

    CAS  PubMed  Google Scholar 

  • Nogi, T., Fathir, I., Kobayashi, M., Nozawa, T., & Miki, K. (2000). Crystal structures of photosynthetic reaction center and high-potential iron-sulfur protein from Thermochromatium tepidum: Thermostability and electron transfer. Proceedings of the National Academy of Sciences of the United States of America, 97(25), 13561–13566.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Novoderezhkin, V. I., Monshouwer, R., & van Grondelle, R. (1999). Disordered exciton model for the Core light-harvesting antenna of Rhodopseudomonas viridis. Biophysical Journal, 77(2), 666–681.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Paleček, D., Edlund, P., Westenhoff, S., & Zigmantas, D. (2017). Quantum coherence as a witness of vibronically hot energy transfer in bacterial reaction center. Science Advances, 3, e1603141.

    PubMed  PubMed Central  Google Scholar 

  • Permentier, H. P., Neerken, S., Schmidt, K. A., Overmann, J., & Amesz, J. (2000). Energy transfer and charge separation in the purple non-sulfur bacterium Roseospirillum parvum. Biochimica et Biophysica Acta, 1460(2-3), 338–345.

    CAS  PubMed  Google Scholar 

  • Polívka, T., & Sundström, V. (2003). Ultrafast dynamics of carotenoid excited states-from solution to natural and artificial systems. Chemical Reviews, 104(4), 2021–2071.

    Google Scholar 

  • Qian, P., Bullough, P. A., & Hunter, C. N. (2008). Three-dimensional reconstruction of a membrane-bending complex: The RC-LH1-PufX core dimer of Rhodobacter sphaeroides. The Journal of Biological Chemistry, 283(20), 14002–14011.

    CAS  PubMed  Google Scholar 

  • Qian, P., Papiz, M. Z., Jackson, P. J., Brindley, A. A., Ng, I. W., Olsen, J. D., Dickman, M. J., Bullough, P. A., & Hunter, C. N. (2013). Three-dimensional structure of the Rhodobacter sphaeroides RC-LH1-PufX complex: Dimerization and quinone channels promoted by PufX. Biochemistry, 52(43), 7575–7585.

    CAS  PubMed  Google Scholar 

  • Qian, P., Siebert, C. A., Wang, P., Canniffe, D. P., & Hunter, C. N. (2018). Cryo-EM structure of the Blastochloris viridis LH1-RC complex at 2.9 A. Nature, 556(7700), 203–208.

    CAS  PubMed  Google Scholar 

  • Romero, E., Augulis, R., Novoderezhkin, V. I., Ferretti, M., Thieme, J., Zigmantas, D., & van Grondelle, R. (2014). Quantum coherence in photosynthesis for efficient solar energy conversion. Nature Physics, 10(9), 676–682.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Roszak, A. W., Howard, T. D., Southall, J., Gardiner, A. T., Law, C. J., Isaacs, N. W., & Cogdell, R. J. (2003). Crystal structure of the RC-LH1 core complex from Rhodopseudomonas palustris. Science, 302(5652), 1969–1972.

    CAS  PubMed  Google Scholar 

  • Roszak, A. W., Moulisova, V., Reksodipuro, A. D., Gardiner, A. T., Fujii, R., Hashimoto, H., Isaacs, N. W., & Cogdell, R. J. (2012). New insights into the structure of the reaction Centre from Blastochloris viridis: Evolution in the laboratory. The Biochemical Journal, 442(1), 27–37.

    CAS  PubMed  Google Scholar 

  • Ruban, A. V., Berera, R., Ilioaia, C., van Stokkum, I. H. M., Kennis, J. T. M., Pascal, A. A., van Amerongen, H., Robert, B., Horton, P., & van Grondelle, R. (2007). Identification of a mechanism of photoprotective energy dissipation in higher plants. Nature, 450(7169), 575–578.

    CAS  PubMed  Google Scholar 

  • Steffen, M. A., Lao, K., & Boxer, S. G. (1994). Dielectric asymmetry in the photosynthetic reaction center. Science, 264(5160), 810–816.

    CAS  PubMed  Google Scholar 

  • Sturgis, J. N., & Robert, B. (1997). Pigment binding-site and electronic properties in light-harvesting proteins of purple bacteria. Journal of Physical Chemistry B, 101(37), 7227–7231.

    CAS  Google Scholar 

  • Sumi, H. (2004). Uphill energy trapping by reaction center in bacterial photosynthesis. 2. Unistep charge separation, virtually mediated by special pair, by photoexcitation in place of excitation transfer from the antenna system. Journal of Physical Chemistry B, 108(31), 11792–11801.

    CAS  Google Scholar 

  • van Grondelle, R., & Novoderezhkin, V. I. (2006). Energy transfer in photosynthesis: Experimental insights and quantitative models. Physical Chemistry Chemical Physics, 8(7), 793–807.

    PubMed  Google Scholar 

  • Visscher, K. J., Bergström, H., Sundström, V., Hunter, C. N., & van Grondelle, R. (1989). Antenna BChl-896 to the reaction center in Rhodospirillum rubrum, Rhodobacter sphaeroides (W.T. and M21 mutant) from 77 to 177 K, studied by picosecond absorption spectroscopy. Photosynthesis Research, 22(3), 211–217.

    CAS  PubMed  Google Scholar 

  • Visser, H. M., Somsen, O. J. G., van Mourik, F., Lin, S., van Stokkum, I. H. M., & van Grondelle, R. (1995). Direct observation of sub-picosecond equilibration of excitation energy in the light-harvesting antenna of Rhodospirillum rubrum. Biophysical Journal, 69(3), 1083–1099.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Vos, M. H., Rappaport, F., Lambry, J.-C., Breton, J., & Martin, J.-L. (1993). Visualization of coherent nuclear motion in a membrane protein by femtosecond spectroscopy. Nature, 363(6427), 320–325.

    CAS  Google Scholar 

  • Wang-Otomo, Z.-Y. (2016). Recent understanding on the photosystem of purple photosynthetic bacteria. In Solar to chemical energy conversion (pp. 379–390). Cham: Springer.

    Google Scholar 

  • Weyer, K. A., Schafer, W., Lottspeich, F., & Michel, H. (1987). The cytochrome subunit of the photosynthetic reaction center from Rhodopseudomonas viridis is a lipoprotein. Biochemistry, 26(10), 2909–2914.

    CAS  Google Scholar 

  • Wohlleben, W., Buckup, T., Herek, J. L., Cogdell, R. J., & Motzkus, M. (2003). Multichannel carotenoid deactivation in photosynthetic light harvesting as identified by an evolutionary target analysis. Biophysical Journal, 85(1), 442–450.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wohri, A. B., Wahlgren, W. Y., Malmerberg, E., Johansson, L. C., Neutze, R., & Katona, G. (2009). Lipidic sponge phase crystal structure of a photosynthetic reaction center reveals lipids on the protein surface. Biochemistry, 48(41), 9831–9838.

    PubMed  Google Scholar 

  • Xin, Y., Shi, Y., Niu, T., Wang, Q., Niu, W., Huang, X., Ding, W., Yang, L., Blankenship, R. E., Xu, X., & Sun, F. (2018). Cryo-EM structure of the RC-LH core complex from an early branching photosynthetic prokaryote. Nature Communications, 9(1), 1568.

    PubMed  PubMed Central  Google Scholar 

  • Xu, Q., Axelrod, H. L., Abresch, E. C., Paddock, M. L., Okamura, M. Y., & Feher, G. (2004). X-ray structure determination of three mutants of the bacterial photosynthetic reaction centers from Rb. sphaeroides; altered proton transfer pathways. Structure, 12(4), 703–715.

    CAS  PubMed  Google Scholar 

  • Yu, L. J., Kato, S., & Wang, Z. Y. (2010). Examination of the putative Ca2+-binding site in the light-harvesting complex 1 of thermophilic purple sulfur bacterium Thermochromatium tepidum. Photosynthesis Research, 106(3), 215–220.

    CAS  PubMed  Google Scholar 

  • Yu, L. J., Kawakami, T., Kimura, Y., & Wang-Otomo, Z. Y. (2016). Structural basis for the unusual Qy red-shift and enhanced thermostability of the LH1 complex from Thermochromatium tepidum. Biochemistry, 55(47), 6495–6504.

    CAS  PubMed  Google Scholar 

  • Yu, L. J., Suga, M., Wang-Otomo, Z. Y., & Shen, J. R. (2018a). Structure of photosynthetic LH1-RC supercomplex at 1.9 A resolution. Nature, 556(7700), 209–213.

    CAS  PubMed  Google Scholar 

  • Yu, L. J., Suga, M., Wang-Otomo, Z. Y., & Shen, J. R. (2018b). Novel features of LH1-RC from Thermochromatium tepidum revealed from its atomic resolution structure. The FEBS Journal, 285(23), 4359–4366.

    CAS  PubMed  Google Scholar 

  • Zerlauskiene, O., Trinkunas, G., Gall, A., Robert, B., Urboniene, V., & Valkunas, L. (2008). Static and dynamic protein impact on electronic properties of light-harvesting complex LH2. Journal of Physical Chemistry B, 112(49), 15883–15892.

    CAS  Google Scholar 

Download references

Acknowledgments

In particular, the authors would like to thank Profs. Zheng-Yu Wang-Otomo, Jian-Ren Shen, Jian-Ping Zhang and Rienk van Grondelle for initiating the related research projects and their general encouragement and helpful hints along the way. This documentation was supported by the National Key R&D Program of China (No. 2019YFA0904600) and the National Natural Science Foundation of China (Project Grant No. 21903086).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Long-Jiang Yu or Fei Ma .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Yu, LJ., Ma, F. (2020). Recent Progress on the LH1-RC Complexes of Purple Photosynthetic Bacteria. In: Wang, Q. (eds) Microbial Photosynthesis. Springer, Singapore. https://doi.org/10.1007/978-981-15-3110-1_3

Download citation

Publish with us

Policies and ethics