Skip to main content

Application of Olfactory Detection Systems in Sensing Technologies

  • Chapter
  • First Online:
Insect Sex Pheromone Research and Beyond

Part of the book series: Entomology Monographs ((ENTMON))

  • 498 Accesses

Abstract

Insects are equipped with a sophisticated olfactory detection system that enables high sensitivity and selectivity detection of various types of environmental odorants. Recently, the olfactory mechanisms of insects have been better elucidated to the extent to which they can be implemented for sensing technologies. The sensing technologies reported in this chapter, which utilize living insects or their antennae, showed that moth-derived sex pheromones and plant-derived general odorants can be detected in the field. In addition, many olfactory receptors have been identified in various insect species, each exhibiting a different response profile to different odorants. With the recent advancement in genetic engineering technologies, we have been able to reconstruct these insect olfactory receptors in protein expression systems for use as sensing elements in odorant sensors. In this chapter, we briefly introduce the mechanisms of olfaction in insects and summarize their applications in sensing technologies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abuin L, Bargeton B, Ulbrich MH, Isacoff EY, Kellenberger S, Benton R (2011) Functional architecture of olfactory ionotropic glutamate receptors. Neuron 69:44–60

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ai M, Min S, Grosjean Y, Leblanc C, Bell R, Benton R, Suh GS (2010) Acid sensing by the Drosophila olfactory system. Nature 468:691–695

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bakalyar HA, Reed RR (1990) Identification of a specialized adenylyl cyclase that may mediate odorant detection. Science 250:1403–1406

    Article  CAS  PubMed  Google Scholar 

  • Baker TC, Haynes KF (1989) Field and laboratory electroantennographic measurements of pheromone plume structure correlated with oriental fruit moth behavior. Physiol Entomol 14:1–12

    Article  Google Scholar 

  • Ben-Arie N, Lancet D, Taylor C, Khen M, Walker N, Ledbetter DH, Carrozzo R, Patel K, Sheer D, Lehrach H (1994) Olfactory receptor gene cluster on human chromosome 17: possible duplication of an ancestral receptor repertoire. Hum Mol Genet 3:229–235

    Article  CAS  PubMed  Google Scholar 

  • Benton R, Sachse S, Michnick SW, Vosshall LB (2006) Atypical membrane topology and heteromeric function of Drosophila odorant receptors in vivo. PLoS Biol 4:e20

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Benton R, Vannice KS, Gomez-Diaz C, Vosshall LB (2009) Variant ionotropic glutamate receptors as chemosensory receptors in Drosophila. Cell 136:149–162

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bromenshenk JJ, Henderson CB, Smith GC (2003) Biological system (paper II), pp 273–283

    Google Scholar 

  • Bromenshenk JJ, Henderson CB, Seccomb RA, Welch PM, Debnam SE, Firth DR (2015) Bees as biosensors: chemosensory ability, honey bee monitoring systems, and emergent sensor technologies derived from the pollinator syndrome. Biosensors 5:678–711

    Article  PubMed  PubMed Central  Google Scholar 

  • Buck LB, Axel R (1991) A novel multigene family may encode odorant receptors: a molecular basis for odor recognition. Cell 65:175–187

    Article  CAS  PubMed  Google Scholar 

  • Carey AF, Wang G, Su CY, Zwiebel LJ, Carlson JR (2010) Odorant reception in the malaria mosquito Anopheles gambiae. Nature 464:66–71

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Clyne PJ, Warr CG, Freeman MR, Lessing D, Kim J, Carlson JR (1999) A novel family of divergent seven-transmembrane proteins: candidate odorant receptors in Drosophila. Neuron 22:327–338

    Article  CAS  PubMed  Google Scholar 

  • Du L, Wu C, Liu Q, Huang L, Wang P (2013) Recent advances in olfactory receptor-based biosensors. Biosens Bioelectron 42:570–580

    Article  CAS  PubMed  Google Scholar 

  • Fox AN, Pitts RJ, Robertson HM, Carlson JR, Zwiebel LJ (2001) Candidate olfactory receptors from the malaria vector mosquito Anopheles gambiae and evidence of down-regulation in response to blood feeding. Proc Natl Acad Sci U S A 98:14693–14697

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Galizia CG, Münch D, Strauch M, Nissler A, Ma S (2010) Integrating heterogeneous odor response data into a common response model: a DoOR to the complete olfactome. Chem Senses 35:551–563

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gao Q, Chess A (1999) Identification of candidate Drosophila olfactory receptors from genomic DNA sequence. Genomics 60:31–33

    Article  CAS  PubMed  Google Scholar 

  • Glatz R, Bailey-Hill K (2011) Mimicking nature’s noses: from receptor deorphaning to olfactory biosensing. Prog Neurobiol 93:270–296

    Article  PubMed  Google Scholar 

  • Hallem EA, Carlson JR (2006) Coding of odors by a receptor repertoire. Cell 125:143–160

    Article  CAS  PubMed  Google Scholar 

  • Hamada S, Tabuchi M, Toyota T, Sakurai T, Hosoi T, Nomoto T, Nakatani K, Fujinami M, Kanzaki R (2014) Giant vesicles functionally expressing membrane receptors for an insect pheromone. Chem Commun 50:2958–2961

    Article  CAS  Google Scholar 

  • Hildebrand JG, Shepherd GM (1997) Mechanisms of olfactory discrimination: converging evidence for common principles across phyla. Annu Rev Neurosci 20:595–631

    Article  CAS  PubMed  Google Scholar 

  • Hill CA, Fox AN, Pitts RJ, Kent LB, Tan PL, Chrystal MA, Cravchik A, Collins FH, Robertson HM, Zwiebel LJ (2002) G protein-coupled receptors in Anopheles gambiae. Science 298:176–178

    Article  CAS  PubMed  Google Scholar 

  • Jacquin-Joly E, Merlin C (2004) Insect olfactory receptors: contributions of molecular biology to chemical ecology. J Chem Ecol 30:2359–2397

    Article  CAS  PubMed  Google Scholar 

  • Jones DT, Reed RR (1989) Golf: an olfactory neuron specific-G protein involved in odorant signal transduction. Science 244:790–795

    Article  CAS  PubMed  Google Scholar 

  • Kaiser L, Graveland-Bikker J, Steuerwald D, Vanberghem M, Herlihy K, Zhang SG (2008) Efficient cell-free production of olfactory receptors: detergent optimization, structure, and ligand binding analyses. Proc Natl Acad Sci U S A 105:15726–15731

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kanzaki R, Nakatani K, Sakurai T, Misawa N, Mitsuno H (2016) Physiology of chemical sense and its biosensor application. In: Nakamoto T (ed) Essentials of machine olfaction and taste. Wiley, New York

    Google Scholar 

  • Karg G, Sauer AE (1995) Spatial distribution of pheromone in vineyards treated for mating disruption of the grape vine moth Lobesia botrana measured with electroantennograms. J Chem Ecol 21:1299–1314

    Article  CAS  PubMed  Google Scholar 

  • Keil TA (1999) In: Hansson BS (ed) Morphology and development of the peripheral olfactory organs, Insect olfaction, Springer, pp 5–48

    Google Scholar 

  • Khadka R, Aydemir N, Carraher C, Hamiaux C, Colbert D, Cheema J, Malmström J, Kralicek A, Travas-Sejdic J (2019) An ultrasensitive electrochemical impedance-based biosensor using insect odorant receptors to detect odorants. Biosens Bioelectron 126:207–213

    Article  CAS  PubMed  Google Scholar 

  • Kiely A, Authier A, Kralicek AV, Warr CG, Newcomb RD (2007) Functional analysis of a Drosophila melanogaster olfactory receptor expressed in Sf9 cells. J Neurosci Methods 159:189–194

    Article  CAS  PubMed  Google Scholar 

  • Kramer E (1975) Orientation of the male silkmoth to the sex attractant bombykol. In: Denton DA, Coghlan JP (eds) Olfaction and taste, vol 5. Academic Press, New York, pp 329–335

    Chapter  Google Scholar 

  • Kuwana Y, Shimoyama I (1998) A pheromone-guided mobile robot that behaves like a silkworm moth with living antennae as pheromone sensors. Int J Robot Res 17:924–933

    Article  Google Scholar 

  • Kuwana Y, Nagasawa S, Shimoyama I, Kanzaki R (1999) Synthesis of the pheromone-orientated behaviour of silkworm moths by a mobile robot with moth antennae as pheromone sensors. Biosens Bioelectron 14:195–202

    Article  CAS  Google Scholar 

  • Lundin C, Kall L, Kreher SA, Kapp K, Sonnhammer EL, Carlson JR, Heijine G, Nilsson I (2007) Membrane topology of the Drosophila OR83b odorant receptor. FEBS Lett 581:5601–5604

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Milli R, Koch UT, de Kramer JJ (1997) EAG measurement of pheromone distribution in apple orchards treated for mating disruption of Cydia pomonella. Entomol Exp Appl 82:289–297

    Article  Google Scholar 

  • Misawa N, Mitsuno H, Kanzaki R, Takeuchi S (2010) Highly sensitive and selective odorant sensor using living cells expressing insect olfactory receptors. Proc Natl Acad Sci U S A 107:15340–15344

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mitsuno H, Sakurai T, Namiki S, Mitsuhashi H, Kanzaki R (2015) Novel cell-based odorant sensor elements based on insect odorant receptors. Biosens Bioelectron 65C:287–294

    Article  CAS  Google Scholar 

  • Mujiono T, Sukekawa Y, Nakamoto T, Mitsuno H, Termtanasombat M, Kanzaki R, Misawa N (2017) Sensitivity improvement by applying lock-in technique to fluorescent instrumentation for cell-based odor sensor. Sens Mater 29:65–76

    Google Scholar 

  • Münch D, Galizia CG (2016) DoOR 2.0--comprehensive mapping of Drosophila melanogaster odorant responses. Sci Rep 6:21841

    Google Scholar 

  • Myrick AJ, Park KC, Hetling JR, Baker TC (2009) Detection and discrimination of mixed odor strands in overlapping plumes using an insect-antenna-based chemosensor system. J Chem Ecol 35:118–130

    Article  CAS  PubMed  Google Scholar 

  • Myrick AJ, Park KC, Hetling JR, Baker TC (2011) Locating a compact odor source using a four-channel insect electroantennogram sensor. Bioinspir Biomim 6:016002

    Article  CAS  PubMed  Google Scholar 

  • Nakagawa T, Sakurai T, Nishioka T, Touhara K (2005) Insect sex pheromone signals mediated by specific combinations of olfactory receptors. Science 307:1638–1642

    Article  CAS  PubMed  Google Scholar 

  • Nakagawa T, Pellegrino M, Sato K, Vosshall LB, Touhara K (2012) Amino acid residues contributing to function of the Heteromeric insect olfactory receptor complex. PLoS One 7:e32372

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nef S, Allaman I, Fiumelli H, De Castro E, Nef P (1996) Olfaction in bird: differential embryonic expression of nine putative odorant receptor genes in the avian olfactory system. Mech Dev 55:65–77

    Article  CAS  PubMed  Google Scholar 

  • Neuhaus EM, Gisselmann G, Zhang W, Dooley R, Stortkuhl K, Hatt H (2005) Odorant receptor heterodimerization in the olfactory system of Drosophila melanogaster. Nat Neurosci 8:15–17

    Article  CAS  PubMed  Google Scholar 

  • Ngai J, Dowling MM, Buck L, Axel R, Chess A (1993) The family of genes encoding odorant receptors in the channel catfish. Cell 72:657–666

    Article  CAS  PubMed  Google Scholar 

  • Park KC, Ochieng SA, Zhu J, Baker TC (2002) Odor discrimination using insect electroantennogram responses from an insect antennal array. Chem Senses 27:343–352

    Article  PubMed  Google Scholar 

  • Robertson HM, Wanner KW (2006) The chemoreceptor superfamily in the honey bee, Apis mellifera: expansion of the odorant, but not gustatory, receptor family. Genome Res 16:1395–1403

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rumbo ER, Suckling DM, Karg G (1995) Measurement of airborne pheromone concentrations using electroantennograms: interactions between environmental volatiles and pheromone. J Insect Physiol 41:465–471

    Article  CAS  Google Scholar 

  • Sachse R, Dondapati SK, Fenz SF, Schmidt T, Kubick S (2014) Membrane protein synthesis in cell-free systems: from bio-mimetic systems to bio-membranes. FEBS Lett 588:2774–2781

    Article  CAS  PubMed  Google Scholar 

  • Sakurai T, Nakagawa T, Mitsuno H, Mori H, Endo Y, Tanoue S, Yasukochi Y, Touhara K, Nishioka T (2004) Identification and functional characterization of a sex pheromone receptor in the silkmoth Bombyx mori. Proc Natl Acad Sci U S A 101:16653–16658

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sakurai T, Mitsuno H, Haupt SS, Uchino K, Yokohari F, Nishioka T, Kobayashi I, Sezutsu H, Tamura T, Kanzaki R (2011) A single sex pheromone receptor determines chemical response specificity of sexual behavior in the silkmoth Bombyx mori. PLoS Genet 7:e1002115

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sakurai T, Mitsuno H, Mikami A, Uchino K, Tabuchi M, Zhang F, Sezutsu H, Kanzaki R (2015) Targeted disruption of a single sex pheromone receptor gene completely abolishes in vivo pheromone response in the silkmoth. Sci Rep 5:11001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sato K, Takeuchi S (2014) Chemical vapor detection using a reconstituted insect olfactory receptor complex. Angew Chem Int Ed 53:11798–11802

    Article  CAS  Google Scholar 

  • Sato K, Pellegrino M, Nakagawa T, Nakagawa T, Vosshall LB, Touhara K (2008) Insect olfactory receptors are heteromeric ligand-gated ion channels. Nature 452:1002–1006

    Article  CAS  PubMed  Google Scholar 

  • Sato K, Tanaka K, Touhara K (2011) Sugar-regulated cation channel formed by an insect gustatory receptor. Proc Natl Acad Sci U S A 108:11680–11685

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sauer AE, Karg G, Koch UT, de Kramer JJ, Milli R (1992) A portable EAG system for the measurement of pheromone concentrations in the field. Chem Senses 17:543–553

    Article  CAS  Google Scholar 

  • Schneider D (1957) Elektrophysiologische Untersuchungen von Chemound Mechanoreceptoren de Antenne des Seidenspinners Bombyx mori L. Z Vergl Physiol 40:8–41

    Article  Google Scholar 

  • Schoning MJ, Schutz S, Schroth P, Weißbecker B, Steffen A, Kordos P, Hummel HE, Luth H (1998) A BioFET on the basis of intact insect antennae. Sensors Actuators B 47:234–237

    Google Scholar 

  • Schroth P, Schoning MJ, Kordos P, Luth H, Schutz S, Weißbecker B, Hummel HE (1999) Insect-based BioFets with improved signal characteristics. Biosens Bioelectron 14:303–308

    Article  CAS  PubMed  Google Scholar 

  • Schutz S, Schoning MJ, Riemer A, Weißbecker B, Kordos P, Luth H, Hummel HE (1997) Field effect transistor–insect antenna junction. Naturwissenschaften 84:86–88

    Article  Google Scholar 

  • Schutz S, Weißbecker B, Koch UT, Hummel HE (1999) Detection of volatiles released by diseased potato tubers using a biosensor on the basis of intact insect antennae. Biosens Bioelectron 14:221–228

    Article  CAS  Google Scholar 

  • Schutz S, Schoning MJ, Schroth P, Malkoc U, Weißbecker B, Kordos P, Luth H, Hummel HE (2000) An insect-based BioFET as a bioelectronic nose. Sensors Actuators B 65:291–295

    Article  CAS  Google Scholar 

  • Smart R, Kiely A, Beale M, Vargas E, Carraher C, Kralicek AV, Christie DL, Chen C, Newcomb RD, Warr CG (2008) Drosophila odorant receptors are novel seven transmembrane domain proteins that can signal independently of heterotrimeric G proteins. Insect Biochem Mol Biol 38:770–780

    Article  CAS  PubMed  Google Scholar 

  • Steinbrecht RA (1999) Olfactory receptors. In: Eguchi E, Tominaga Y (eds) Atlas of arthropod sensory receptors-dynamic morphology in relation to function. Springer, Tokyo, pp 155–176

    Google Scholar 

  • Suckling DM, Karg G, Bradley SJ, Howard CR (1994) Field electroantennogram and behavioral responses of Epiphyas postvittana (Lepidoptera: Tortricidae) under low pheromone and inhibitor concentrations. J Econ Entomol 87:1477–1487

    Article  CAS  Google Scholar 

  • Takeuchi H, Kurahashi T (2003) Identification of second messenger mediating signal transduction in the olfactory receptor cell. J Gen Physiol 122:557–567

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tamura T, Thibert C, Royer C, Kanda T, Abraham E, Kamba M, Komoto N, Thomas JL, Mauchamp B, Chavancy G, Shirk P, Fraser M, Prudhomme JC, Couble P (2000) Germline transformation of the silkworm Bombyx mori L. using a piggyBac transposon-derived vector. Nat Biotechnol 18:81–84

    Article  CAS  PubMed  Google Scholar 

  • Tanada N, Sakurai T, Mitsuno H, Bakkum DJ, Kanzaki R, Takahashi H (2012) Dissociated neuronal culture expressing ionotropic odorant receptors as a hybrid odorant biosensor—proof-of-concept study. Analyst 137:3452–3458

    Article  CAS  PubMed  Google Scholar 

  • Termtanasombat M, Mitsuno H, Misawa N, Yamahira S, Sakurai T, Yamaguchi S, Nagamune T, Kanzaki R (2016) Cell-based odorant sensor Array for odor discrimination based on insect odorant receptors. J Chem Ecol 42:716–724

    Article  CAS  PubMed  Google Scholar 

  • Troemel ER, Chou JH, Dwyer ND, Colbert HA, Bargmann CI (1995) Divergent seven transmembrane receptors are candidate chemosensory receptors in C. elegans. Cell 83:207–218

    Article  CAS  PubMed  Google Scholar 

  • van der Pers JNC, Minks AK (1998) A portable electroantennogram sensor for routine measurements of pheromone concentrations in greenhouses. Entomol Exp Appl 87: 209–215

    Article  Google Scholar 

  • Vogt RG, Riddiford LM (1981) Pheromone binding and inactivation by moth antennae. Nature 293:161–163

    Article  CAS  PubMed  Google Scholar 

  • Vogt RG, Prestwich GD, Lerner MR (1991) Odorant-binding-protein subfamilies associate with distinct classes of olfactory receptor neurons in insects. J Neurobiol 22:74–84

    Article  CAS  PubMed  Google Scholar 

  • Vosshall LB, Amrein H, Morozov PS, Rzhetsky A, Axel R (1999) A spatial map of olfactory receptor expression in the Drosophila antennae. Cell 96:725–736

    Article  CAS  PubMed  Google Scholar 

  • Wang G, Carey AF, Carlson JR, Zwiebel LJ (2010) Molecular basis of odor coding in the malaria vector mosquito Anopheles gambiae. Proc Natl Acad Sci U S A 107:4418–4423

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wanner KW, Anderson AR, Trowell SC, Theilmann DA, Robertson HM, Newcomb RD (2007) Female-biased expression of odourant receptor genes in the adult antennae of the silkworm, Bombyx mori. Insect Mol Biol 16:107–119

    Article  CAS  PubMed  Google Scholar 

  • Wetzel CH, Behrendt HJ, Gisselmann G, Stortkuhl KF, Hovemann B, Hatt H (2001) Functional expression and characterization of a Drosophila odorant receptor in a heterologous cell system. Proc Natl Acad Sci U S A 98:9377–9380

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hidefumi Mitsuno .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Mitsuno, H., Sakurai, T., Kanzaki, R. (2020). Application of Olfactory Detection Systems in Sensing Technologies. In: Ishikawa, Y. (eds) Insect Sex Pheromone Research and Beyond. Entomology Monographs. Springer, Singapore. https://doi.org/10.1007/978-981-15-3082-1_11

Download citation

Publish with us

Policies and ethics