Skip to main content

Tectonic Domains and Tectonic Units in Asian Continent

  • Chapter
  • First Online:
The Tectonics and Metallogenesis of Asia
  • 703 Accesses

Abstract

The Siberian tectonic domain (Fig. 2.1) is located in the northern part of Asian continent. The center is Siberian plate [1], around which there are several blocks and collision zones, such as Southern margin of East Siberian Sea Jurassic collision zone (200–135 Ma) [2], Verkhojansk–Chersky Jurassic accretion–collision zone (200–135 Ma) [3], Kolyma–Omolon plate (~850 Ma) [4] and Transbaikalia (or Mongolia–Okhotsk) Jurassic accretion–collision zone (~170 Ma) [5].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Acton G D (1999) Apparent polar wander of India since the Cretaceous with implication for regional tectonics and true polar wander. In: Radhakrishna T (ed.), The Indian Subcontinent and Gondwana: A Paleomagnetic and Rock Magnetic Perspective. Geol. Soc. India Mem., 44: 129–175.

    Google Scholar 

  • Aitchison J C, Davis A M (2001) When did the India–Asia collision really happen? In: International Symposium and Field Workshop on the Assembly and Breakup of Rodinia, Gondwana and Growth of Asia. Osaka City University, Japan. Gondwana Research, 4: 560–561.

    Google Scholar 

  • Aitchison J C, Jason R A, Davis A M (2007) When and where did India and Asia collide? J. G. R., 112: B05423.

    Google Scholar 

  • All China Commission on Stratigraphy (2000) Direction of China Strata and its Instructions. Beijing: Geological Publishing House. 1–59 (in Chinese).

    Google Scholar 

  • All China Commission on Stratigraphy (2002) Direction of China Strata and its Instructions. Beijing: Geological Publishing House. 1–72 (in Chinese).

    Google Scholar 

  • Allègre C J, Courtillot V, Tapponnier P et al. (1984) Structure and evolution of the Himalaya–Tibet orogenic belt. Nature, 307: 17–22.

    Google Scholar 

  • Allen M, Windley B, Zhang C (1992) Paleozoic collisional tectonics and magmatism of the Chinese Tianshan, Central Asia. Tectonophysics, 220: 89–115.

    Google Scholar 

  • Al-Shanti M S (2009) Geology of the Arabian Shield of Saudi Arabia. Scientific Publishing Center, King Abdulaziz University, 1–190.

    Google Scholar 

  • Arallokay, Ma J H (1997) Early Mesozoic subduction in the eastern Mediterranean Sea: The evidences of Triassic ophiolite in Northwestern Turkey. Oceanic Geology Trends, (11):13–15 (in Chinese).

    Google Scholar 

  • Bai J, Huang X G, Wang H C et al. (1996) The Precambrian Crustal Evolution of China (2nd.) Beijing: Geological Publishing House. 1–223 (in Chinese with English abstract).

    Google Scholar 

  • Bai M X (1993) The neo-tectonics characteristics in the Tianshan, China. In: Collection of Workshop for Commemoration of Centenary Birthday for Prof. Yuan F L (December 21–23, 1993) Beijing: Earthquake Press, 179–184 (in Chinese).

    Google Scholar 

  • Bally A, and Albert W (eds.) (1989) The Geology of North America: An Overview. Boulder, Colo: Geological Society of America, 1–629.

    Google Scholar 

  • Bartolini A, Larson R L (2001) The Pacific Microplate and Pangea Supercontinent in the Early to Middle Jurassic. Geology, 29(8), 735–738.

    Google Scholar 

  • Bea F, Fershtater G B, Montero P (2002) Granitoids of the Uralides: Implications for the evolution of the Orogen. In: Mountain Building in the Uralides: Pangea to the Present Geophysical Monograph. 132. The American Geophysical Union, 211–232.

    Google Scholar 

  • Besse J, Courtillot V (2002) Apparent and true polar wander and the geometry of the geomagnetic field over the last 200 Myr. J. Geophys. Res., 108 (B10): 2469.

    Google Scholar 

  • Besse J, Courtillot V, Pozzi J P et al. (1984) Paleomagnetic estimates of crustal shortening in the Himalayan thrusts and Yarlung Zangbo suture. Nature, 311 (5987): 621–626.

    Google Scholar 

  • Beydoun Z R, Xu J L, Yang W D et al. (2000) Why is the oil-gas so rich and high production in Arabian Plate? Oil and Gas Exploration in Abroad, (1): 4–13, 65 (in Chinese).

    Google Scholar 

  • Brenchley P J, Rowson P E (2006) The Geology of England and Wales (2nd Edition). The Geological Society of London.

    Google Scholar 

  • Briais A, Patriat P, Tapponnier P (1993) Updated interpretation of magnetic anomalies and seafloor spreading stages in the South China Sea: Implications for the Tertiary tectonics of Southeast Asia. Journal of Geophysical Research, 98 (B4): 6299–6328.

    Google Scholar 

  • Brookfield M E (2000) Geological development and Phanerozoic crustal accretion in the western segment of the south Tien Shan (Kyrgyzstan, Uzbekistan and Tajikistan). Tectonophysics, 328: 1–14.

    Google Scholar 

  • Bureau of Geology and Mineral Resources of Henan (1989) Regional Geology of Henan. Beijing: Geological Publishing House, 1– 772 (in Chinese with English abstract).

    Google Scholar 

  • Bureau of Geology and Mineral Resources of Fujian (1992) Regional Geology of Taiwan. Beijing: Geological Publishing House. 1–244 (in Chinese with English abstract).

    Google Scholar 

  • Bureau of Geology and Mineral Resources of Fujian Province (1985) Regional Geology of Fujian Province. Beijing: Geological Publishing House, 1–671 (in Chinese with English abstract).

    Google Scholar 

  • Bureau of Geology and Mineral Resources of Gansu (1989) Regional Geology of Gansu. Beijing: Geological Publishing House, 1– 691 (in Chinese with English abstract).

    Google Scholar 

  • Bureau of Geology and Mineral Resources of Ningxia (1990) Regional Geology of Ningxia. Beijing: Geological Publishing House. 1–522 (in Chinese with English abstract).

    Google Scholar 

  • Bureau of Geology and Mineral Resources of Xizang (1993) Regional Geology of Xizang. Beijing: Geological Publishing House. 1–707 (in Chinese with English abstract).

    Google Scholar 

  • Buslov M M, Watanabe T, Fujiwara Y et al. (2004) Late Paleozoic faults of the Altai region, Central Asia: Tectonic pattern and model of formation. Journal of Asian Earth Sciences, 23: 655–671.

    Google Scholar 

  • Cai X L (1965) The geological structure of Pre-Sinian in Dabieshan area: Also discussing the structural features of gneiss dome. In: Beijing College of Geology. Papers on Scientific Research. No.4 (Special of Structure Geology and Regional Geology), 15–26 (in Chinese).

    Google Scholar 

  • Cai X L (1978) Preliminary research on early structure behaviors during crustal development. In: Teaching Group of Exploring Geology, Chengdu College of Geology. Papers on Structure Geology, 69–84, Geological Society of China (in Chinese).

    Google Scholar 

  • Cai X L, Zhu J S, Cao J M et al. (2002) Structure and dynamics of lithosphere and asthenosphere in the gigantic East Asian–West Pacific rift system. Geology in China, 29 (3): 234–245 (in Chinese with English Abstract).

    Google Scholar 

  • Carroll A R, Liang Y H, Graham S A et al. (1990) Junggar basin, Northwest China: Trapped Late Paleozoic ocean. Tectonophysics, 18:1–14.

    Google Scholar 

  • Cavazza W, Roure F M, Spakman W et al. (2004) The Transmed Atlas: The Mediterranean Region, from Crust to Mantle. Berlin, Heidelberg: Springer, 1–141.

    Google Scholar 

  • Chang J H (2015) Yellow Sea Transform fault (YSTF) and the development of Korean Peninsula. TИXO OКEAHCКAЯ ГEOЛOГИЯ, 34(2): 3–7.

    Google Scholar 

  • Charvet J, Shu L S, Laurent-Charvet S (2007) Paleozoic structural and geodynamic evolution of eastern Tianshan (NW China): Welding of the Tarim and Junggar Plates. Episodes, 30: 163–186.

    Google Scholar 

  • Che Z C, Liu H F, Liu L (1994) The Formation and Evolution of Middle Tianshan Orogeny. Beijing: Geological Publishing House. 1–135 (in Chinese with English abstract).

    Google Scholar 

  • Chen B W, Chen T Y (2007) The main characteristics and metallogene in Trans-Asia super-tectonic zone. Acta Petrologica Sinica, 23(5): 865–876 (in Chinese with English abstract).

    Google Scholar 

  • Chen H (1991) Preliminary research of collision orogenic belt of Early Neoproterozoic in Northwest Zhejiang. Geological Review, 37 (3): 203–213 (in Chinese).

    Google Scholar 

  • Chen P R (2004) Geodynamic setting of Mesozoic magmatism and its relationship to uranium metallogenesis in Southeastern China. Uranium Geology, 20(5): 266–270.

    Google Scholar 

  • Chen S S, Liu J Q, Guo Z F et al. (2015) The Geochemical characteristics of volcanic rocks from site 794, Yamoto Basin: Implications for deep mantle processes of the Japan Sea. Acta Geologica Sinica, 89 (4): 1189–1212.

    Google Scholar 

  • Chen Y Q, Liu J L, Feng Q L et al. (2010) Southeast Asia Indochina Peninsula Geology and Ore Deposits related to Granites. Beijing:Geological Publishing House, 1–192 (in Chinese).

    Google Scholar 

  • Chen Z L, Zhang Y Q, Chen X H et al. (2001) The sedimentary respond of middle section of Altun Fault in Late Cenozoic strike-slip. Science in China, D31 (supplement): 90–96.

    Google Scholar 

  • Cheng S D, Liu T, Wang S W (2010) Resume of tectonic unit division for five countries in Central Asia. Geology of Xinjiang, 28(1): 16–21 (in Chinese).

    Google Scholar 

  • Cheng Y Q (chief editor) (1994) The Introduction of China Regional Geology. Beijing: Geological Publishing House. 1–517 (in Chinese with English abstract).

    Google Scholar 

  • Chi J S, Lu F X, Zhao L et al. (1996) The Kimberlite in North China Platform and the characteristics of Paleozoic lithosphere mantle. Beijing:Science Press, 1–29 (in Chinese).

    Google Scholar 

  • China Geological Academy (1980) Asian Geological Map. Beijing: China Geography Publishing House (in Chinese).

    Google Scholar 

  • Clarke M H (2006) Oman’s Geological Heritage (Second edition). Oman: Petroleum Development Oman, 1–247.

    Google Scholar 

  • Cohen K M, Finney S, Gibbard P L (2013) International Chronostratigraphic Chart, International Commission on Stratigraphy. http://www.stratigraphy.org/ICSchart/ChronostratigraphicChart2013.01.pdf.

  • Condie K C (ed.) (1994) Archean Crustal Evolution. Amsterdam: Elsevier Scientific Publishers.

    Google Scholar 

  • Condie K C (1997) Plate Tectonics and Crustal Evolution (4th Edition). Oxford, UK: Butterwoth–Heinemann, 1–282.

    Google Scholar 

  • Condie K C (2001) Mantle Plumes and Their Record in Earth History. Cambridge University Press, 1–306.

    Google Scholar 

  • Condie K C, Richard C A (2009) Zircon age periodicity and growth of continental crust. EOS, Transactions American Geophysical Union, 90 (41): 364, https://doi.org/10.1029/2009eo410003.

  • Cooper A K, Scholl D W, Marlow M S (1976) Plate tectonic model for the evolution of the eastern Bering Sea Basin. Bulletin of Geological Society of America, 87(8): 1119–1126.

    Google Scholar 

  • Copeland P, Harrison T M (1990) Episodic rapid uplift in the Himalaya revealed by 40Ar/39Ar analysis of detrital K-feldspar and muscovite, Bengal Fan. Geology (Boulder), 18 (4): 354–357.

    Google Scholar 

  • Copeland P, Harrison T M, Parrish R R et al. (1987) Constraints on the age of normal faulting, north face of Mt. Everest: Implications for Oligo-Miocene uplift. Eos Transactions, 68 (44): 1444. A G U. Washington, DC, USA.

    Google Scholar 

  • Corrigan J D, Crowley K D (1992) Unroofing of the Himalayas: A view from apatite fission-track analysis of Bengal Fan sediments. Geophysical Research Letters, 19 (23): 2345–2348.

    Google Scholar 

  • Czamanske G, Gurevitch E, Fedorenko V et al. (1998) Demise of the Siberian plume: Paleogeographic and paleotectonic reconstruction from the prevolcanic and volcanic record, north-central Siberia. International Geology Review, 40: 95–11.

    Google Scholar 

  • Delvaux D, Barth A (2009) Second and third order African stress pattern from formal inversion of focal mechanisms data. Implications for rifting dynamics Royal Museum for Central Africa, Geology - Mineralogy, Tervuren, Belgium; Geophysical Institute, University of Karlsruhe, Germany, (03): 11∶7480.

    Google Scholar 

  • Deng J F, Wu Z X, Zhao G C et al. (1999) Precambrian granites, continental crust evolution and the formation of Craton. Acta Petrologica Sinica, 15(2): 190–198 (in Chinese).

    Google Scholar 

  • Deng J, Wang Q F, Li G J et al. (2014a) Tethys tectonic evolution and its bearing on the distribution for important mineral deposits in the Sanjiang region, SW China. Gondwana Research, 26: 419–437.

    Google Scholar 

  • Deng J, Wang Q F, Li G J et al. (2014b) Cenozoic tectono-magmatic and metallogenic processes in the Sanjiang region, southwest China. Earth-Science Reviews, 138: 268–299

    Google Scholar 

  • Deng Y, Lv H T, Yu B L et al. (2011) The Seismological data disposed, explained and their effect for complex structure in the southern Junggar Basin. Sino Petrological Exploration (Z1): 31–36, +8 (in Chinese with English abstract).

    Google Scholar 

  • Ding W J (1929) Orogenic movements of China. Journal of Geological Society of China, 8(2): 151–170.

    Google Scholar 

  • Dixon J M (1987) Mantled gneiss domes, that first used by Professor Pentti Eskola in 1949. Springer, 10.1007/3-540-31080-0_63.

  • Dobretsov N L (2003) Evolution of structures of the Urals, Kazakhstan, Tien Shan, and Altai-Sayan region within the Ural-Mongolian fold belt (Paleo-Asian Ocean). Russian Geology and Geophysics, 44(1–2): 5–27. UDC 551.242.51.

    Google Scholar 

  • Dobretsov N L, Kirdyashkin A A, Kirdyashkin A G et al. (2008) Modelling of thermochemical plumes and implications for the origin of the Siberian traps. Lithos, 100: 66–92.

    Google Scholar 

  • Domeier M, Torsvik T H (2014) Plate tectonics in the Late Paleozoic. Geoscience Frontiers, 5(3):303–350.

    Google Scholar 

  • Dong Y P, Zhang G W, Lai S C et al. (1999) Determining the ophiolite complex in Huashan, Suizhou, and its tectonic significance. Science in China, D 29 (3): 222–231 (in Chinese with English abstract).

    Google Scholar 

  • Dong Y P, Zhao X (2002) Pre-Cambrian magmatism-tectonic event and crust growth in South Qinling. Journal of Northwest University, (2): 172–176 (in Chinese with English abstract).

    Google Scholar 

  • Duan J Y, Ge X H (1992) Discussion on the Tarim-Yangtze plate and its paleogeography framework. Journal of Changchun Geological Institute, 22 (3): 260–268 (in Chinese).

    Google Scholar 

  • Engebretson D C, Cox A, Gordon R G (1985) Relative motions between oceanic and continental plates in the Pacific basin. The Geological Society of America (Special Paper 206), 1–59.

    Google Scholar 

  • Ernst R E, Buchan W, (2001) Evidence from magnetic fabric for the flow pattern of magma in the Mackenzie giant radiating dyke swarm. Nature, 356: 511–513

    Google Scholar 

  • Eyuboglu Y, Santosh M, Dudas F O et al. (2013) The nature of transition from adakitic to non-adakitic magmatism in a slab window setting: A synthesis from the eastern Pontides, NE Turkey. Geoscience Frontiers, 4(4): 353–375.

    Google Scholar 

  • Fan L K, Cai Y P, Liang H C et al. (2009) Eastern Kunlun geological structure and geodynamic evolution. Geological Survey and Research, 33(3): 181–186 (in Chinese with English abstract).

    Google Scholar 

  • Fan T T, Zhou X H, Liu Y Q (2012) The basalt zircon U-Pb age and its geological sense in Northwestern boundary of Junggar Basin and Buksal. Acta of Northwest University (Nature Science), 42(6): 989–994 (in Chinese with English abstract).

    Google Scholar 

  • Fang D J, Guo Y P, Wang Z L et al. (1988) The tectonic significance of Triassic, Jurassic Paleomagnetism results in Ningwu basin, Shanxi. Science Bulletin, 33(2): 133–135 (in Chinese).

    Google Scholar 

  • Faure M, Trap Pierre, Lin W et al. (2007) Polyorogenic evolution of the Paleoproterozoic Trans-North China Belt: New insights from the Lüliangshan–Hengshan–Wutaishan and Fuping massifs. Episodes, 30(2): 95–107.

    Google Scholar 

  • Feng Y M (1995) Geochemistry research in North Qilian ophiolite. Acta Petrologica Sinica, 11(Ophiolite Special Issue): 125–146 (in Chinese).

    Google Scholar 

  • Ferrara G, Ricci C A, Rita F et al. (1978) Isotopic age and tectono-metamorphic history of metamorphic basement of North-Eastern Sardinia. Contribution of Mineral and Petrology, 68: 99–106.

    Google Scholar 

  • Gao J W, Wu S G, Peng X C et al. (2015) The tectonic characters of conjugation passive continental boundary ocean-continent transition zone. Geotectonica et Metallogenia, 39(4): 555–570 (in Chinese with English abstract).

    Google Scholar 

  • Gao L Z, Zhang C H, Yin C Y et al. (2008) The SHRIMP zircon age for Meso-Neoproterozoic strata frame in North China ancient continent. Earth Science, 29 (3): 366–376 (in Chinese with English abstract).

    Google Scholar 

  • Gao L Z, Zhang C H, Liu P J et al. (2009a) New recognition of Meso-Neoproterozoic strata frames of North China and South Yangtze areas. Journal of Earth, 30 (4): 433–446 (in Chinese with English abstract).

    Google Scholar 

  • Gao L Z, Zhang C H, Liu P J et al. (2009b) Reclassification of the Mesoproterozoic-Neoproterozoic chronostratigraphy of North China by SHRIMP zircon ages. Acta Geologica Sinica, 83(6): 1074–1084.

    Google Scholar 

  • Gao L Z, Ding X Z, Pan W H et al. (2011) The revise of China Meso-Neoproterozoic strata – Restrained by the zircon U-Pb age. Journal of Stratigraphy, 35 (1):1–7 (in Chinese with English abstract).

    Google Scholar 

  • Gao R, Wang H Y, Zhang Z J et al. (2011) Crust and upper mantle, discovery continent deep structure and resource environment effects: Deep exploration technique experiment and integration (Sino Probe-02). Journal of Earth, 32 (S1): 34–48 (in Chinese with English abstract).

    Google Scholar 

  • Gao S L, Ma Q Y (2013) LA-ICPMS zircon U-Pb age and geochemistry characteristics of Autaukerxi granite in Kalameli, Junggar. Xinjiang Geology, 31(1):1–5 (in Chinese with English abstract).

    Google Scholar 

  • Gao Z J, Wu S Z (1983) The tectonic evolution of Xinjiang Tarim ancient continent. Science Bulletin, 28 (23): 1448–1450 (in Chinese).

    Google Scholar 

  • Garfunkel Z, Ben-Avraham Z, Kagan E (eds.) (2014) Dead Sea Transform Fault System: Reviews Series, Modern Approaches in Solid Earth Sciences, Vol. 61–359. Dordrecht: Springer, DOI. 1007/978-94- 017-8872- 4-1.

    Google Scholar 

  • Garson M S, Miroslav K R S (1976) Geophysical and geological evidence of the relationship of Red Sea transverse tectonics to ancient fractures. GSA Bulletin, 87(2): 169–181.

    Google Scholar 

  • Garzanti E, Gaetani M (2002) Unroofing history of Late Paleozoic magmatic arc within the “Turan Plate” (Tuarkyr, Turkmenistan). Sedimentary Geology, 151: 67–87.

    Google Scholar 

  • Ge M C, Zhou W X, Yu Y et al. (2011) The dismantle of Xilingule complex and determined the age of surface crust rock system in Inner Mongolia. Earth Science Frontier, 18(5):182–190 (in Chinese with English abstract).

    Google Scholar 

  • Ge X H (1989) The formation history of North China orogeny. Geological Review, 35(3): 254–261 (in Chinese).

    Google Scholar 

  • Ge X H, Duan J Y, Li C et al. (1990) The formation and evolution of Qaidam Basin. Qinhai Bureau of Petrology, Changchun Geological College, 1–151 (in Chinese with English abstract).

    Google Scholar 

  • Ge X H, Zhang M S, Liu Y J et al. (1998) The science problem and research thinking for Altun fault. Geoscience, 12 (3): 295–301 (in Chinese with English abstract).

    Google Scholar 

  • Ge X H, Liu J L (2000) Be dismembered “Xiyu Craton”. Acta Petrologica Sinica, 16 (1): 59–66 (in Chinese).

    Google Scholar 

  • Ge X H, Liu J L, Ren S M et al. (2014) Eastern China Mesozoic-Cenozoic tectonic formation and evolution. Geology in China, (1): 19–28 (in Chinese with English abstract).

    Google Scholar 

  • Ge X H, Ma W P (2014) China Regional Tectonics Course. Beijing: Geological Publishing House, 1–466 (in Chinese).

    Google Scholar 

  • Gebhardt A C, Niessen F, Kopsch C (2006) Central ring structure identified in one of the world’s best-preserved impact craters. Geology, 34: 145–148.

    Google Scholar 

  • Gee D G, Fossen H, Henriksen N et al. (2008) From the Early Paleozoic platforms of Baltica and Laurentia to the Caledonide orogen of Scandinavia and Greenland. Episodes, 31(1): 44–51.

    Google Scholar 

  • Gen Y S, Wang X S, Sheng Q H et al. (2002) The discovery and its geological significance for deformed granite in Neoproterozoic of Alxa area. Journal of Petrology and Mineralogy, 21 (4): 413–420 (in Chinese with English abstract).

    Google Scholar 

  • Gen Y S, Wang X S, Sheng Q H et al. (2007) The preliminary research for the formation of Precambrian metamorphic system. China Geology, 34 (2): 251–261 (in Chinese with English abstract).

    Google Scholar 

  • Gen Y S, Zhou X W (2012) Early Permian Magmatism-thermal event in Alxa metamorphic basement: The evidence come from isotopic age. Acta Petrologica Sinica, (9): 3–21(in Chinese).

    Google Scholar 

  • Gilder S A, Gill J B, Coe R S et al. (1996) Isotopic and paleomagnetic constraints on the Mesozoic tectonic evolution of South China. J. Geophys. Res. 101 (B7): 16,137–16,155.

    Google Scholar 

  • Gladkochub D P, Donskaya T (2009) Overview of geology and tectonic evolution of the Baikal–Tuva. Prog. Mol. Subcell Biol., 47: 3–26.

    Google Scholar 

  • Glass B P (1982) Tektites. In: Introduction to Planetary Geology. Cambridge University Press, 145–172.

    Google Scholar 

  • Glukhovaky M Z (2009) Paleoproterozoic thermo-tectogenesis: A rotation-plume model of the formation of the Aldan Shield. Geotektonika, (3): 51–78.

    Google Scholar 

  • Grabau A W (1940) The Rhythm of the Ages. Beijing: H. Wetch, 1–561.

    Google Scholar 

  • Granath G, Strengbom J, Rydin H (2011) Direct physiological effects of nitrogen on Sphagnum: A greenhouse experiment. Functional Ecology, 26(2). https://doi.org/10.1111/j.1365-2435.2011.01948.x

  • Guan H, Sun M, Wilde S A et al. (2002) SHRIMP U-Pb zircon geochronology of the Fuping Complex: Implications for formation and assembly of the North China craton. Precambrian Res., 113: 1–18.

    Google Scholar 

  • Guan Z N, An Y L, Wu C J (1987) Magnetic surface inversion and North China deep geological structure. In: Wang M J, Cheng J Y (eds.), The Research Special Issue for Regional Geophysics in Eastern China, No. 6. Beijing: Geological Publishing House, 80–101 (in Chinese).

    Google Scholar 

  • Guo F X (1998) The tectonic characters of Meso-Cenozoic in South China and the folding process of South China orogenic belt. Acta Geologica Sinica, 72 (1): 22–33 (in Chinese).

    Google Scholar 

  • Guo T Y, Liang D Y, Zhang Y Z et al. (1991) Geology of Ali. Wuhan: China University of Geosciences Press. 1–464 (In Chinese with English abstract).

    Google Scholar 

  • Hall R, Blundell D J (1995) Reconstructing Cenozoic SE Asia. Geological Society Special Publications, 106: 153–184.

    Google Scholar 

  • Hall R, Ali J R, Anderson C D (1995) Cenozoic motion of the Philippine Sea Plate: Paleomagnetic evidence from Eastern Indonesia. Tectonics, 14(5): 1117–1132.

    Google Scholar 

  • Hall R, Cottam M A, Wilson M E J (eds.) (2011) The SE Asian gateway: History and tectonics of Australia–Asia collision. Geological Society of London, Special Publication, 355: 1–381.

    Google Scholar 

  • Han B F, He G Q, Wang S G et al. (1998) Post-collision magmatism with mantle source and continental crust longitudinal direction grow. Geological Review, 44(4): 396–406 (in Chinese).

    Google Scholar 

  • Han B F, He G Q, Wang S G (1999) Post-collision magmatism with mantle source, underplating and the characteristics of Junggar Basin basement. Science in China (D), 29 (1): 16–21 (in Chinese).

    Google Scholar 

  • Han B F, He G Q, Wang X C et al. (2011) Late Carboniferous collision between the Tarim and Kazakhstan-Yili terranes in the western segment of South Tian Shan Orogen, Central Asia, and implications for the Northern Xinjiang, Western China. Earth-Science Reviews, 109: 74–93.

    Google Scholar 

  • He B Z, Jiao C L, Cai Z H et al. (2011) The new explain for Aero-magnetic anomaly zone in Tarim Basin. China Geology, 38(4): 961–969 (in Chinese).

    Google Scholar 

  • He D F, Fan C, Lei G L et al. (2011) The chronology and tectonic sense for Tugermin anticline core schist. China Geology, 38(4): 809–819 (in Chinese).

    Google Scholar 

  • He G Y, Zhao Q, Li S X et al. (2006) Mesozoic prototype analysis of Tarim Kuche basin. Geological Science, 41 (1):44–53 (in Chinese with English abstract).

    Google Scholar 

  • He H (2009) Geology-Geochemistry Compose and their Evolution in Wandashan Orogeny. Master thesis in the Jilin University, 1–77 (in Chinese with English abstract).

    Google Scholar 

  • He W G, Mei L F, Zhu G H et al. (2011) The research on tectonics and evolution characters of Andaman Sea Basin. Oil and Gas in Fault Block, (2): 46–50.

    Google Scholar 

  • He Y H, Zhao G C, Sun M et al. (2009) SHRIMP and LA-ICP-MS zircon geochronology of the Xiong’er volcanic rocks: Implications for the Paleo-Mesoproterozoic evolution of the southern margin of the North China Craton. Precambrian Research, 168: 213–222.

    Google Scholar 

  • Hong D W, Xie X L, Zhang J S (2002) Discussion of the geological significance for High εNd granite zone in Hangzhou-Zhuguangshan-Huashan. Journal of Geology, 21 (6): 348–354 (in Chinese with English Abstract).

    Google Scholar 

  • Hou G T (2012) The Basic Swan in North China. Beijing: Science Press, 1–177 (in Chinese).

    Google Scholar 

  • Hsu K J (1981) Thin-skinned plate-tectonic model for collision-type orogenesis. Scientia Sinica, Vol., XXIV, (1): 100–110.

    Google Scholar 

  • Hsu K J (1988) Relict back-arc basins: principles of recognition and possible new examples from China, New perspective in Basin Analysis. In: Kleinpell K L, Paola C (eds.), New York: Springer Verlag, 245–263.

    Google Scholar 

  • Hu A Q, Wei G J (2003) On the discussion of basement forming period of Junggar Basin: According to the result of isotopic age. Xinjiang Geology, 21(4): 398–406 (in Chinese).

    Google Scholar 

  • Huang B C, Yang Z Y, Otofuji Y et al. (1999) Early Paleozoic paleomagnetic poles from the western part of the North China Block and their implications. Tectonophysics, 308: 377–402.

    Google Scholar 

  • Huang T K (Jiqing) (1945) On the Major Structural Forms of China. Geological Memoirs, A (20): 1–165. (in English with Chinese summary of 11 pages)

    Google Scholar 

  • Huang J Q (1960) Basic characteristics of China geological structure: Preliminary summarize. Acta Geologica Sinica, 40(1):1–37 (in Chinese).

    Google Scholar 

  • Huang J Q, Jiang C F (1962) Preliminary investigation of the evolution of the Earth’s crust from the point of the view of polycyclic tectonic movement. Scientia Sinica, 11(10): 1377–1442 (in Chinese).

    Google Scholar 

  • Huang J Q, Yin Z X (1965) Some commons for the nomination of China crust movement. Geological Review, 23(supplement): 2–4 (in Chinese).

    Google Scholar 

  • Hutchison C S, Tan D N K (eds.) (2009) Geology of Peninsular Malaysia. Kuala Lumpur: Murphy. The University of Malaya and the Geological Society of Malaysia, 1–479.

    Google Scholar 

  • Jayananda M, Moyen J F, Martin H et al. (2000) Late Archaean (2550–2500 Ma) juvenile magmatism in the Eastern Dharwar craton: Constraints from geochronology, Nd-Sr isotopes and whole rock geochemistry. Precambrian Research, 99: 225–254.

    Google Scholar 

  • Jayananda M, Kano T, Peucat J-J et al. (2008) 3.35 Ga komatiite volcanism in the western Dharwar craton: Constraints from Nd isotopes and whole rock geochemistry. Precambrian Research, Elsevier. doi: 10.1016 / J. precamres. 2007.07.010, v.162: 160–179.

    Google Scholar 

  • Jiang C F (1984) The connection of plate tectonics and geosyncline-platform theory is the recent development orientation. China Geology, (11): 28-30 (in Chinese).

    Google Scholar 

  • Jiang G M (2008) The detail structure research of subduction plate in Western Pacific. The Ph D thesis of China University of Geosciences, 1–125.

    Google Scholar 

  • Jin X C, Wang J, Ren L D (1999) Some problems of geological structure for Western Kunlun. In: Ma Z J et al. (eds.), Research Progress of Structure-lithosphere Dynamics. Beijing: Seismology Press, 105–113 (in Chinese).

    Google Scholar 

  • Jin Z J, Zheng H R, Cai L G et al. (2010) The structure-sedimentation condition of China Pre-Mesozoic marine source rock development. Journal of Sedimentary, (5): 875–883 (in Chinese).

    Google Scholar 

  • Jolivet L (1994) Japan Sea, opening history and mechanism: A synthesis. J. Geophys. Res., 99: 22237–22259.

    Google Scholar 

  • Jolivet L, Tamaki K (1992) Neocene kinematics in Japan Sea region and the volcanic activity of the northeast Japan arc. Proc. Ocean Drill, Program Sci. Results, 127–128: 1311–1331.

    Google Scholar 

  • Ju W, Hou G T (2014) Late Permian to Triassic intraplate orogeny of the southern Tianshan and adjacent regions NW China. Geoscience Frontiers, 5(1): 83–93.

    Google Scholar 

  • Karaoğlan F, Parlak O, Klötzli U et al. (2013) Age and duration of intra-oceanic arc volcanism built on a suprasubduction zone type oceanic crust in southern Neotethys, SE Anatolia. Geoscience Frontiers, 4(4): 399–408.

    Google Scholar 

  • Karplus M S, Zhao W J, Klemperer S L et al. (2011) Injection of Tibetan crust beneath the south Qaidam Basin: Evidence from INDEPTH IV wide-angle seismic data. J. Geophys. Res., 116, B07301. 10.102/2010 JB007911.

    Google Scholar 

  • Karsakov L P, Zhao C J, Malyshev Y et al. (2008) Tectonics, Deep Structure, Metallogeny of the Central Asian–Pacific Belts Junction Area (Explanatory Notes to the Tectonic Map Scale of 1∶1 500 000). Beijing: Geological Publishing House, 1–213.

    Google Scholar 

  • Kaygusuz A, Sipahi F, Ilbeyli N et al. (2013) Petrogenesis of the Cretaceous Turnagöl intrusion in the eastern Pontides: Implications for magma genesis in the arc setting. Geoscience Frontiers, 4(4): 423–438.

    Google Scholar 

  • Kennedy W Q (1964) The structural differentiation of Africa in the Pan-African (500 m.y.) tectonic episode. Res. Inst. Ar. Geol., University of Leeds, 8th Ann. Rep., 48–49.

    Google Scholar 

  • Khain E V, Bibikova E V, Salnikova E B et al. (2003) The Palaeo-Asian Ocean in the Neoproterozoic and early Palaeozoic: New geochronologic data and palaeotectonic reconstructions. Precambrian Research, 122: 329–358.

    Google Scholar 

  • Khramov A N, Petrova G N, Peckersky D M (1981) Paleomagnetism of Soviet Union. In: McElhinny M W, Valencio D A (eds.), Paleoconstruction of the Continents. Geodynamic Series. Boulder, Colorado: Geological Society of America, 177–194.

    Google Scholar 

  • Kim J, Cho M (2003) Low-pressure metamorphism and leucogranite magmatism, northeastern Yeongnam Massif, Korea: Implication for Paleoproterozoic crustal evolution. Precambrian Research, 122: 235–251.

    Google Scholar 

  • Klootwijk C T, Gee J S, Peirce J W et al. (1992) An early India-Asia contact: Paleomagnetic constraints from Ninety east ridge, ODP leg 121. Geology, 20: 395–398.

    Google Scholar 

  • Klootwijk C T, Radhakrichnamurty (1981) Phanerozoic paleomagnetism of the Indian Plate and India–Asia collision. In: McElhinny M W, Valencio D A (eds.), Paleoconstruction of the Continents. Geodynamics Series. Boulder, Colorado: Geological Society of America, 93–105.

    Google Scholar 

  • Kojima S (1989) Mesozoic terrane accretion in Northeast China, Sikhote-Alin and Japan regions. Palaeogeography, Palaeoclimatology, Palaeoecology, 69: 213–232.

    Google Scholar 

  • Kopp H (2011) The Java convergent margin: Structure seismogenesis and subduction process. In: Hall R et al. (ed.), The SE Asian Gateway: History and Tectonics of the Australia–Asia Collision. London: The Geological Society of London Special Publication, 355: 111–137.

    Google Scholar 

  • Koppers A P, Morgan J P, Morgan J W et al. (2001) Testing the fixed hotspot hypothesis using 40Ar/ 39Ar age progressions along seamount trails. Earth and Planetary Science Letters, 185: 237–252.

    Google Scholar 

  • Koppers A P, Staudigel H, Duncan R A (2003) High-resolution 40Ar/ 39Ar dating of the oldest oceanic basement basalts in the western Pacific basin. Geochemistry Geophysics Geosystems, 4 (11): 8914.

    Google Scholar 

  • Kröner A, Greiling R (1984) Precambrian tectonics illustrated. Stuttgart, 1–419.

    Google Scholar 

  • Kunugiza K, Tsujimori T, Kano T (2001) Evolution of the Hida and Hida marginal belt. In: ISRGA Field Workshop (FW-A), Geotraverse across the Major Geologic Unit of SW Japan, 75–131.

    Google Scholar 

  • Kwon Y W, Oh C W, Kim H S (2003) Granulite-facies metamorphism in the Punggi area, northeastern Yeongnam Massif, Korea and its tectonic implications for east Asia. Precambrian Research, 122: 253–273

    Google Scholar 

  • Lan C Y, Chung S L, Long T V et al. (2003) Geochemical and Sr-Nd isotopic constraints from the Kontum massif, central Vietnam on the crustal evolution of the Indochina block. Precambrian Research, 122: 7–27.

    Google Scholar 

  • Laurent R, Dion C, Thibault Y (1991) Structural and petrological features of peridotite intrusions from the Troodos ophiolite, Cyprus. Petrology and Structural Geology, 5:175–194.

    Google Scholar 

  • Layer P W, Newberry R, Fujita K (2001) Tectonic setting of the plutonic belts of Yakutia, northeast Russia, based on 40Ar/39Ar geochronology and trace element geochemistry. Geology, 29: 167.

    Google Scholar 

  • Lee S R, Cho M Cheong C S et al. (2003) Age, geochemistry, and tectonic significance of Neoproterozoic alkaline granitoids in the northwestern margin of Gyeonggg massif, South Korea. Precambrian Research, 122: 297–310.

    Google Scholar 

  • Lee T Y, Lawver L A (1995) Cenozoic plate reconstruction of Southeast Asia. Tectonophysics, 251 (1–4): 85–138.

    Google Scholar 

  • Li C (1997) 40Ar/39Ar dating for Glaucophane in the blueschist and its geological significance. Science Bulletin, 42 (4):488 (in Chinese).

    Google Scholar 

  • Li C, Zhao Q G, Chen W et al. (2006) Ar-Ar dating for eclogite in Middle Qiangtang, Qingzang Plateau. Acta Petrologica Sinica, 22 (12): 2843–2849 (in Chinese with English abstract).

    Google Scholar 

  • Li C Y, Wang Q, Liu X A et al. (1982) Asian Tectonic Map (1∶8 000 000, attached explanation). Beijing: Geography Publishing House (in Chinese).

    Google Scholar 

  • Li D, He D F, Fan C et al. (2012) Geochemistry characteristics and its tectonic significance for Carboniferous basalt in Klameili, Junggar Basin. Acta Petrologica Sinica, 28 (3): 981–992 (in Chinese).

    Google Scholar 

  • Li H B, Yang J S, Xu Z Q et al. (2001)The geology and chronology evidences for Altun fault zone in Triassic strike-slip. Science Bulletin, 16 (16):1333–1338 (in Chinese).

    Google Scholar 

  • Li J C, Jin Z J (1998) The sedimentary-erosion process and related to oil-gas in Tarim Basin. Acta Sedimentary, 16 (1): 81–86 (in Chinese with English abstract).

    Google Scholar 

  • Li J Y, Wang K Z, Li W Q et al. (2002a) The tectonic and mineralization exploration since Late Paleozoic in Eastern Tianshan. Xinjiang Geology, 20 (4): 295–301 (in Chinese).

    Google Scholar 

  • Li Q Y, Wang K Z, Li W Q et al. (2002b) Eastern Tianshan tectonic and miniral deposits exploration since Late Palaeozoic. Xinjiang Geology, 20 (4): 295–301 (in Chinese).

    Google Scholar 

  • Li S G, Zhang Z M, Zhang Q D et al. (1993) Zircon U-Pb age for Qindao eclogite and Jiaonan Group gneiss. Science Bulletin, 38 (19): 1773–1777 (in Chinese).

    Google Scholar 

  • Li S G, Jagoutz E (1996) Super high pressure metamorphic chronology in Dabieshan-Sulu block (I): Sm-Nd isotopic system. Science in China, D 26 (3): 249–257 (in Chinese).

    Google Scholar 

  • Li S G, Li H M, Chen Y Z et al. (1997) Super high pressure metamorphic chronology in Dabieshan-Sulu block(II), Zircon U-Pb isotopic system. Science in China, D 27(3): 200–206 (in Chinese).

    Google Scholar 

  • Li S G, Huang F, Li H (2001) Lithosphere detachment after the collision of Dabie-Sulu orogenic belt. Science Bulletin, 46 (17): 1487–1491(in Chinese).

    Google Scholar 

  • Li T D, Chen B W, Dai W S et al. (2010) Tectonic Map of Qingzang Plateau and its adjacent (1∶ 3 500 000). In: Atlas of Qingzang Plateau Geology. Guangzhou: Guangdong Science and Technology (in Chinese).

    Google Scholar 

  • Li T D, Uzhkenov B S, Mazorov A K et al. (2008) Central Asia and Adjacent Geological Map (1∶2 500 000). Beijing: Geological Publishing House (in Chinese with English abstract).

    Google Scholar 

  • Li W F, Wang C S, Gao Z Z et al. (2000) Mesozoic sedimentary evolution in Kuche depression, Tarim Basin. Acta Sedimentary, 18 (4): 514–538 (in Chinese with English abstract).

    Google Scholar 

  • Li Y A, Li Q, Zhang H (1991) Jurassic-Cretaceous Paleomagnetism research in Junggar Block. In: Collection of Seventh Conference of China Geophysical Society, 171. http://cpfd.cnki.com.cn/Area/CPFDCONFArticle List- ZGDW199110001.htm (in Chinese).

  • Li Y J, Sun L D, Hu S L et al. (2003) 40Ar/39Ar age of granodiorite and diorite in Tacan1. Acta Petrologica Sinica, 19 (3): 530–536 (in Chinese).

    Google Scholar 

  • Li Y P, Li J Y, Sun G H et al. (2007) Discussion on the basement of Junggar basin: The evidences come from detrital zircon in Devonian Calameli formation sandstone. Acta Petrologica Sinica, 23: 1577–1590 (in Chinese).

    Google Scholar 

  • Li Z S (1994) New recognition for metamorphic system in Dunhuang Block. China Regional Geology, (2):131–134 (in Chinese).

    Google Scholar 

  • Li Z X (1998) Tectonic history of the major East Asia lithospheric blocks since the mid-Proterozoic: A synthesis. In: Flower M F J et al. (eds.), Mantle Dynamics and Plate interactions in East Asia, Geodynamics Series. Washington D C: AGU. Vol 27, 221–243.

    Google Scholar 

  • Li Z X, Zhang L, Powell C M (1996) South China in Rodinia: Part of the missing link between Australia-East Antarctic and Laurentia? Geology, 23: 407–410.

    Google Scholar 

  • Li Z X, Cho M, Li X H (2003) Precambrian tectonics of East Asia and relevance to Supercontinent evolution. Precambrian Research, 122: 1–6.

    Google Scholar 

  • Li Z X, Li X H (2007) Formation of the 1300-km-wide intracontinental orogeny and post-orogenic magmatic province in Mesozoic South China: A flat-slab subduction model. Geology, 35: 179–182.

    Google Scholar 

  • Liao L, Cheng X G, Wang B Q et al. (2010) The Mesozoic sedimentary paleo-environment recovery, in southwest ward of Tarim Basin. Acta Geologica Sinica, 84(8): 1195–1207 (in Chinese).

    Google Scholar 

  • Lin S L, Cong F, Gao Y J et al. (2012) LA-ICP-MS zircon U-Pb ages in Tengchong block, SE side of Gaoligong Mountains Group gneiss and its geological significance. Science Bulletin, 31(2–3):258–263 (in Chinese).

    Google Scholar 

  • Lin W, Li Q L, Su W et al. (2011) SIMS U-Pb rutile age of low-temperature eclogites from southwestern Chinese Tianshan, NW China. Xinjiang Geology, 10, doi:1016/j.lithos.2010.11.007 (in Chinese).

  • Liu B G, Zheng G C, Chen S S et al. (1995) The zircon U-Pb isotopic age and its implication in Precambrian volcanic rock of western Zhejiang. Science Bulletin, 40(21): 2015–2016 (in Chinese).

    Google Scholar 

  • Liu B P, Feng Q L, Fang N Q (1991) Tectonic evolution of the Paleo-Tethys in Changning–Menglian and Lancangjiang belts, Western Yunnan. In: Proceedings of 1st International Symposium on Gondwana Dispersion and Asian Accretion (IGCP Project 321), Kunming, China. Beijing: Geological Publishing House, 189–192.

    Google Scholar 

  • Liu B P, Feng Q L, Fang N Q et al. (1993) The tectonic evolution of Paleo-Tethys multiple islands ocean in Changning-Menlian and Lanchangjiang Zones, Western Yunnan. Earth Science, 18 (5): 529–539 (in Chinese with English abstract).

    Google Scholar 

  • Liu F, Yang J S, Li T F et al. (2011) Late Carboniferous volcanic geochemistry characteristics and its geological significance in Shawan area, North Tianshan, Xinjiang. China Geology, 38(4): 859–889 (in Chinese with English abstract).

    Google Scholar 

  • Liu F L, Wang F, Liu C H (2013) Multiple metamorphic events revealed by zircons from the Diancang Shan–Alao Shan metamorphic complex, southeastern Tibetian Plateau. Gondwana Research, 24: 429–450.

    Google Scholar 

  • Liu G H, Zhang S G, You Z D et al. (1993) Main Metamorphic Group and its Evolution in Qinling Orogenic Belt. Beijing: Geological Publishing House, 1–190 (in Chinese with English abstract).

    Google Scholar 

  • Liu J S (2012) Exploration history and geological characteristics in the Monyuwa copper ore field, in Burma. http://blog.sina.com.cn/yuelugj. 2012-11-2 (in Chinese).

  • Liu L, Che Z C, Wang Y et al. (1998) Sm-Nd isochronism age evidence in Early Paleozoic ophiolite at Manya area, Altun. Science Bulletin, 43(8): 880–883 (in Chinese).

    Google Scholar 

  • Liu L F (2006) Oil-gas reservoir system research in Tabei uplift. PhD thesis of China University of Geosciences (Beijing), 1–138 (in Chinese with English abstract).

    Google Scholar 

  • Liu S W, Pan P M, Li J H et al. (2002) Geological and isotopic geochemical constrains on the evolution of the Fuping Complex, North China Craton. Precambrian Research, 117: 41–56.

    Google Scholar 

  • Lu F X, (2010) Multi geological events in the paleo-lithosphere mantle for North China Craton: The evidences come from the peridotite xenolith in the kimberlite. Petrologica Acta Sinica, 26 (11): 3177–3188 (in Chinese).

    Google Scholar 

  • Lu F X, Zheng J P, Shao J A et al. (2006) The asthenosphere uplift and lithosphere thinner in Late Mesozoic–Cenozoic for Eastern North China. Earth Science Frontier, 13(2): 86–92 (in Chinese).

    Google Scholar 

  • Lu H J, Wang R C et al. (2011) Geochemistry and genesis on saturated hydrocarbon of crude oils in Gas Hure Oilfield in Qaidam. Global Geology, (1). Supported by the National Natural Science Foundation of China (No. 40973041) (in Chinese).

    Google Scholar 

  • Lu S N (2001) From Rodinia to Gondwana: Some problems thinking for Neoproterozoic supercontinent research. Earth Science Frontier, 8 (4): 441–448 (in Chinese).

    Google Scholar 

  • Lu Y H (1976) The Biological strata and ancient animal geography in the China. In: Collected papers of Nanjing Paleontology Institute, Academy of China, No. 7 (in Chinese).

    Google Scholar 

  • Luo J H, Zhou X Y, Qiu B et al. (2005) The Oil-gas geological characteristics and regional geological evolution, in Tarim-Karakum areas. Geological Review, (4): 409–415 (in Chinese with English abstract).

    Google Scholar 

  • Luo M F, Mo X X, Yu X H et al. (2015) LA-ICP-MS zircon U-Pb dating for Late Permian granodiorite in Wulong Gou, Eastern Kunlun and its significance. Earth Science Frontier, 22(5): 182–195 (in Chinese with English abstract).

    Google Scholar 

  • Ma X Y, Cai X L (1965) Structural deformation in Early Archean, Eastern China. In: The China Tectonics. Beijing: Science Press, 141–150 (in Chinese).

    Google Scholar 

  • Ma X H, Yang Z Y (1993) The collision of three plate in China and reconstruction of Paleo-Eurasia Continent. Acta Geophysica Sinica, 36(4): 476–488 (in Chinese).

    Google Scholar 

  • Ma Z J, Zhu W, Wang X et al. (1999) Crustal motion of Chinese Mainland monitoring by GPS. Science in China, Series D, 43(4): 394 (in Chinese).

    Google Scholar 

  • Ma Z P, Li X M, Xu X Y et al. (2011) La-ICP-MS zircon U-Pb isotopic age and its significance for Qingshuiquan mafic-ultramafic intrusion in the South Altun. Geology in China, 38(4): 1071–1078 (in Chinese with English abstract).

    Google Scholar 

  • Mansour Ghorbani (2013) The Economic Geology of Iran, Mineral Deposits and Natural Resources. Springer: 1–450.

    Google Scholar 

  • Marlow M S, Cooper A K Scholl D W et al. (1982) Ancient plate boundaries in the Bering Sea region. Geological Society, London, Special Publications, 10: 201–211. https://doi.org/10.1144/gsl.sp.1982.010.01.13.

  • Martin S, Godard G, Rebay G (2004) The subducted Tethys in the Aosta Valley (Italian Western Alps). In: The 32nd International Geological Congress, Pre-Congress Field Trip Guide Book– B02, 1–18.

    Google Scholar 

  • Maruyama S, Isozaki Y, Kimura G et al. (1997) Paleogeographic map of the Japan Islands: Plate tectonic synthesis from 750 Ma to the present. The Island Arc, 6: 121–142.

    Google Scholar 

  • McElduff B, Stumpfl E F(1990) Platinum-group minerals from the Troodos ophiolite, Cyprus. Mineralogy and Petrology, 42(1–4): 211–232.

    Google Scholar 

  • Metcalfe I (1991) Gondwana dispersion amalgamation and accretion of Southeast Asian terrenes: Progress, problems and prospects. In: Proceedings of 1st International Symposium on Gondwana Dispersion and Asian Accretion (IGCP Project 321), Kunming, China. Beijing: Geological Publishing House, 199–204.

    Google Scholar 

  • Metcalfe I (1995) Gondwana dispersion and Asian accretion. In: Proceedings of the IGCP Symposium on Geology of SE Asia, Hanoi (Vietnam), XI / 1995. Journal of Geology (B), (5–6): 223–266.

    Google Scholar 

  • Metcalfe I (2011) Paleozoic-Mesozoic History of SE Asia. In: Hall R et al. (eds.), The SE Asian Gateway: History and Tectonics of the Australia-Asia Collision. London: The Geological Society of London Special Publication, 355: 7–36.

    Google Scholar 

  • Mishra D C, Kumar M R (2014) Proterozoic orogenic belt and rifting of Indian cratons: Geophysical constraints. Geoscience Frontiers, 5(1): 25–41.

    Google Scholar 

  • Mizutani S, Kojima S, Shao J A et al. (1986) Mesozoic radiolarians from the Nadanhada area, Northeast China. Proc. Japan Acad. 62 (B): 337–340.

    Google Scholar 

  • Mo X X, Zhao Z D, Yu X H et al. (2009) Cenozoic Collision–Post Collision Volcanic Rocks in Qingzang Plateau. Beijing: Geological Publishing House, 1–396 (in Chinese with English abstract).

    Google Scholar 

  • Moore G W (1989) Mesozoic and Cenozoic paleogeographic development of the Pacific region. Abstract 28th International Geological Congress, Washington D C, USA. 2, 455–456.

    Google Scholar 

  • Moralev V M, Glukhovsky M Z (2000) Diamond-bearing kimberlite fields of the Siberian Craton and the Early Precambrian geodynamics. Ore Geology Reviews, 17 (3): 141–153.

    Google Scholar 

  • Mu E Z (1983) The type of ecology strata and bios-geographic area in Ordovician, for China. China Paleontology geography division. Beijing: Science Press, 16–31(in Chinese).

    Google Scholar 

  • Nábelek J, Hetnyi G, Vergne J et al. (2009) Underplating in the Himalaya-Tibet collision zone, Revealed by the Hi-CLIMB Experiment. Science, 325: 1371–1374.

    Google Scholar 

  • Nezafati N (2006) Au-Sn-W-Cu-Mineralization in the Astaneh-Sarband Area, West Central Iran (including a comparison of the ores with ancient bronze artifacts from Western Asia) der Geowissenschaftlichen Fakultät, der Eberhard- Karls-Universität Tübingen, 1–116.

    Google Scholar 

  • Northrup C J, Royden H, Burchfiel B C (1995) Motion of the Pacific Plate relative to Eurasia and its potential relation to Cenozoic extension along the eastern margin of Eurasia. Geology, 23: 719–722.

    Google Scholar 

  • Norton I O (1995) Plate motions in the North Pacific: The 43 Ma nonevent. Tectonics, 14 (5): 1061–1234.

    Google Scholar 

  • Oh C W (2006) A new concept on tectonic correlation between Korea, China and Japan: Histories from the Late Proterozoic to Cretaceous. Gondwana Research, 9: 47–61.

    Google Scholar 

  • Oh C W, Kim S W, Choi S G et al. (2005) First finding of eclogite facies metamorphic event in South Korea and its correlation with the Dabie-Sulu collision belt in China. The Journal of Geology, 113: 226–232.

    Google Scholar 

  • Osozawa S (1994) Plate reconstruction based upon age data of Japanese accretionary complexes. Geology, 22: 1135–1138.

    Google Scholar 

  • Osozawa S (1998) Major transform duplexing along the eastern margin of Cretaceous Eurasia. In: Flower M F J et al. (eds.), Mantle Dynamics and Plate Interactions in East Asia, Geodynamics Series, Washington D C: AGU, 27: 245–257.

    Google Scholar 

  • Oxman V S (2003) Tectonic evolution of the Mesozoic Verkhoyansk–Kolyma belt (NE Asia). Tectonophysics, 365 (1–4): 45–76.

    Google Scholar 

  • Parfenov L M, Bulgatov A N, Gordienko I V (1995a) Terranes and the history of Mesozoic orogenic belts in East Yakutia. doi:10.1080/00206819509465425.

  • Parfenov L M, Badarch G, Berzin N A et al. (2009) Summary of Northeast Asia geodynamics and tectonics, Stephan Mueller Spec. Publ. Ser., 4, 11–33.

    Google Scholar 

  • Parfenov L M, Prokopiev A V, Gaiduk V V (1995b) Cretaceous frontal thrusts of the Verkhoyansk fold belt, eastern Siberia. Tectonics, 14(2): 342–358.

    Google Scholar 

  • Pearson D G, Snyder G A, Shirey S B et al. (1994) Archaean Re-Os age for Siberian eclogites and constraints on Archaean tectonics. Nature, 374: 711–713.

    Google Scholar 

  • Pei F P, Xu W L, Yang D B et al. (2006) Zircon U-Pb age in basement metamorphism of Song-Liao Basin and its significance. Science Bulletin, 51 (24): 2881–2887 (in Chinese).

    Google Scholar 

  • Peng R M, Zhai Y S, Wang J P et al. (2010) Discovery of Neoproterozoic acid Volcanic rock in Inner Mongolia and its significance. Science Bulletin, 55(26): 2611–2620 (in Chinese).

    Google Scholar 

  • Petrov O, Leonov Y, Li T D et al. (Editors in chief) (2008) Tectonic Zoning of Central Asia and Adjacent Areas (1∶20000000). In: Atlas of Geological Maps of Central Asia and Adjacent Areas (1∶2500000),VSEGEI Cartographic Factory.

    Google Scholar 

  • Pospelov I (2008) Tectonic evolution of northeast Russia in Paleozoic. International Geological Congress, ASI-01, Geodynamic evolution of Asia - Part 2.

    Google Scholar 

  • Pubellier M (2008) Structural Map of Eastern Eurasia (1∶12500000). Paris: CGMW.

    Google Scholar 

  • Qi S J (2013) Metallogenic characteristic in the Xindukushi–Western Kunlun region. Xinjiang Geology, 31(4): 313–317(in Chinese).

    Google Scholar 

  • Qi X X, Zhu L H, Li H Q et al. (2010) LA-ICP-MS U-Pb dating for mylonitic granite in Ailaoshan-Jinsha River zone, eastern boundary of Qingzang Plateau. Acta Geologica Sinica, 84(3): 1–12 (in Chinese).

    Google Scholar 

  • Qiao X F, Gao L Z, Zhang C H (2007) The new thinking of Mesoproterozoic-Neoproterozoic age-strata and tectonic environment. Geology Bulletin, 26 (5): 503–509 (in Chinese).

    Google Scholar 

  • Qiao X F, Wang Y B (2014) The base age of Mesoproterozoic and discussion of basin character in North China. Acta Geologica Sinica, 88(9): 1623–1637 (in Chinese).

    Google Scholar 

  • Rajaram M, Anand S P (2014) Aeromagnetic signatures of Precambrian shield and suture zones of Peninsular India. Geoscience Frontiers, 5(1): 3–15.

    Google Scholar 

  • Radhakrishna B P, Naqvi S M (1986) Precambrian continental crust of India and its evolution. Jour. Geol., 94:145–166.

    Google Scholar 

  • Ravikant V (2010) Palaeoproterozoic (~1.9 Ga) extension and rifting along the eastern margin of the Eastern Dharwar Craton, SE India: New Sm-Nd isochron age constraints from anorogenic mafic magmatism in the Neoarchean Nellore greenstone belt. Journal of Asian Earth Sciences, 37(1): 67.

    Google Scholar 

  • Raymond C A, Stock J M, Cande S C (2000) Fast Paleogene motion of the Pacific hotspots from revised global plate circuit constraints. In: The History and Dynamics of Global Plate Motions. Geophysical Monographys, 121∶ 359–375.

    Google Scholar 

  • Ren J S, Wang Z X, Chen T Y et al. (2000) From Globe to Look China Tectonics: Tectonic Map and Explanation of China and Its Adjacent Areas. Beijing: Geological Publishing House, 1–50 (in Chinese).

    Google Scholar 

  • Replumaz A, Hrafnkell Karason, Rob Dvander Hilst et al. (2004) 4-D evolution of SE Asia’s mantle from geological reconstructions and seismic tomography. Earth and Planetary Science Letters, 221: 103–115.

    Google Scholar 

  • Ridd M F, Barber A J, Crow M J (2011) The Geology of Thailand. London: The Geological Society, 1–626.

    Google Scholar 

  • Rodnikov A G, Kato T et al. (1985) Sikhote-Alin-Japan Sea-Honshu-Pacific geoscience transect. Marine Geophysical Researches, 7: 379–387.

    Google Scholar 

  • Rogers J J W, Santosh M (2002) Configuration of Columbia: A Mesoproterozoic supercontinent. Gondwana Res., 5: 5–22.

    Google Scholar 

  • Rogers J J W, Santosh M (2004) Continents and Supercontinents. New York: Oxford Press, 1–289.

    Google Scholar 

  • Rojas-Agramonte, Kröner A, Demoux A et al. (2011) Detrital and xenocrystic zircon ages from Neoproterozoic to Palaeozoic arc terranes of Mongolia: Significance for the origin of crustal fragments in the Central Asian Orogenic. Gondwana Research, 19 (3): 751–763.

    Google Scholar 

  • Safanova I (2014) The Russian-Kazakh Altai orogeny: An overview and main debatable issues. Geoscience Frontiers, 5(4): 537–552.

    Google Scholar 

  • Sagong H, Cheng C S, Kwon S T (2003) Paleoproterozoic orogeny in South Korea: Evidence from Sm-Nd and Pb step-leaching garnet ages of Precambrian basement rocks. Precambrian Research, 122: 275–295.

    Google Scholar 

  • Santosh M, Sajeev K, Li J H (2006) Extreme crustal metamorphism during Columbia Supercontinent assembly: Evidence from North China Craton. Gondwana Research, 10: 256–266.

    Google Scholar 

  • Saunders A, Reichow M (2009) The Siberian Traps and the End-Permian mass extinction: A critical review. Chinese Science Bulletin, 54 (1): 20–37.

    Google Scholar 

  • Schettino A, Scotese C R (2005) Apparent polar wander paths for the major continents (200 Ma to the present day): A paleomagnetic reference frame for global plate tectonic reconstructions. Geophys. J. Int. 163: 727–759.

    Google Scholar 

  • Searle M P (1996) Cooling history, erosion, exhumation, and kinematics of the Himalaya-Karakoram-Tibet orogenic belt. In: Yin A, Harrison T M (eds.), The Tectonic Evolution of Asia. Cambridge University Press, 110–137

    Google Scholar 

  • Searle M P (2007) Geological Map of the Mount Everest-Makalu Region, Nepal-South Tibet Himalaya (Scale 1∶ 100000). Allen Hochreiter: University of Oxford.

    Google Scholar 

  • Sengör A M C, Nal’in B A, Burtman U S (1993) Evolution of the Altaid tectonic collage and Paleozoic crustal growth in Eurasia. Nature, 364, 209–304.

    Google Scholar 

  • Shao J A, Wang C Y, Tang K D (1991) Tectonic exploration in the Wusuli area. Geological Review, 38 (1): 33–39.

    Google Scholar 

  • Shao J A, Tang K D (1995) The NE China Terrain and Evolution of NE Asia Continental Boundary. Beijing: Seismology Press, 1–185 (in Chinese).

    Google Scholar 

  • Shen Q H, Gen Y S, Wang X S et al. (2005) The Precambrian amphibolite petrology, geochemistry formation environment and chronology in Alxa area. Journal of Petrology and Mineralogy, 24(1): 21–31(in Chinese with English abstract).

    Google Scholar 

  • Shi M L (1987) Some recognitions of Alxa area structural problem. China Regional Geology (3): 268–273 (in Chinese).

    Google Scholar 

  • Shu L S, Faure M, Wang B et al. (2008) Late Paleozoic-Early Mesozoic geological features of South China: Response to the Indosinian collision events in Southeast Asia. Tectonics, 340: 151–165.

    Google Scholar 

  • Shui T, Xu B T, Liang R H et al. (1986) The suture zone of Shaoxing-Jiangshan ancient land. Science Bulletin, 31 (6): 444–448 (in Chinese).

    Google Scholar 

  • Sinha-Roy S (1982) Himalayan main central thrust and its implications for Himalayan inverted metamorphism. Tectonophysics, 84 (2–4): 197–224.

    Google Scholar 

  • Sone M, Metcalfe I (2008) Parallel Tethyan sutures in mainland SE Asia: New insights for Palao-Tethys closure. Compte. Rendus. Geoscience, 340, 166–179.

    Google Scholar 

  • Steinberger B, Torsvik T H (2012) A geodynamic model of plumes from the margins of Large Low Shear Velocity Provinces. Geochem. Geophys. Geosyst.13 (1):1–17.

    Google Scholar 

  • Stephan J F, Blanchet R, Rangin C et al. (1986) Geodynamic evolution of the Taiwan-Luzon-Mindoro belt since the Late Eocene. Tectonophysics, 125(1–3): 245–268.

    Google Scholar 

  • Su Y P, Zheng J P et al. (2019) Derivation of A1-type granites by partial melting of newly underplated rocks related with the Tarim mantle plume. Geological Magazine, 156: 409–429.

    Google Scholar 

  • Sun H Q, Huang J Z, Guo L Q et al. (2012) Division of Lengjiaxi Group and isotopic age restrain in Hunan. South China Geology and Mineral Resources, (1): 22–28 (in Chinese).

    Google Scholar 

  • Sun J M, Li Y, Zhang Z Q et al. (2009) Magnetostratigraphic data on Neogene growth folding in the foreland basin of the southern Tianshan Mountains. Geology, 37(11): 1051–1054.

    Google Scholar 

  • Suo S T, San L K, Han Y Q et al. (1993) Petrology and tectonics in the Dabieshan Pre-Cambrian metamorphic block. Wuhan: China University of Geosciences Press, 1–259 (in Chinese with English abstract).

    Google Scholar 

  • Tamaki, K., Suyehiro, K., Allan, J. et al. (1992) Tectonic synthesis and implications of Japan Sea ODP drilling. Proc. Ocean Drill. Program Sci. Results, 127–128: 1333–1348.

    Google Scholar 

  • Tan Y J (1992) The Structure Deformations of Southern Border of Ordos Basin and Its Evolution. PhD thesis of China Mining Industry University, Beijing Institute, 1–145 (in Chinese with English abstract).

    Google Scholar 

  • Tang H F, Zhou X M (1997) The geochemical constraint for the origin of two basalt type in eastern Jiangnan Paleo continent. Science in China (D), 27(4): 306–311(in Chinese).

    Google Scholar 

  • Tapponnier P, Mercier J L, Proust F et al. (1981) The Tibetian side of the Indian-Eurasian collision. Nature, 294 (5840): 405–410.

    Google Scholar 

  • Tapponnier P, Peltzer G, Armijo R (1986) On the mechanics of the collision between India and Asia. In: Coward M P, Ries A C (eds.), Collision Tectonics. Geological Society Special Publications, 19. London: The Geological Society of London, 115–157.

    Google Scholar 

  • Tapponnier P, Lacassin R, Leloup P H et al. (1990) The Ailao Shan / Red River metamorphic belt: Tertiary left-lateral shear between Indochina and South China. Nature, 343 (6257): 431–437.

    Google Scholar 

  • Tarduno J A, Cottrell R D (1997) Paleomagnetic evidence for motion of the Hawaiian hotspot during formation of the Emperor seamounts, Earth Planet. Sci. Lett., 153 (3–4): 171–180.

    Google Scholar 

  • Tectonic Group, Institute of South China Sea, Academy of China (Liu Z S et al.) (1988) South China Sea Geological Structure and Continental Boundary Extension. Beijing: Science Press, 1–283 (in Chinese).

    Google Scholar 

  • Teng L S, Lin A T (2004) Cenozoic tectonics of the China continental margin: in slights from Taiwan. In: Malpas J et al. (eds.), Aspects of the Tectonic Evolution of China, 313–332. London: The Geological Society. Special Publication 226.

    Google Scholar 

  • Tessalina S, Guerrot C, Gannoun A et al. (2000) Isotopic Indicators of Subduction Process in South Urals. Journal of Conference Abstracts, Cambridge Publications, 5(2): 993.

    Google Scholar 

  • Tessensohn F, Roland N W (1998) A Preface: Third International Conference on Arctic Margins. Polarforschung, 68: 1–9.

    Google Scholar 

  • Tian D J (2007) The Geology-Geochemistry Composition and its Evolution in Wandashan Orogene. The Master thesis of Jilin University, 1–77 (in Chinese).

    Google Scholar 

  • Torsvik T H, Van der Voo R, Doubrovine P V et al. (2014) Deep mantle structure as a reference frame for movements in and on the Earth. PNAS, Cross Mark. Edited by Suppe J, National Taiwan University, Taipei, Taiwan, and approved May 8, 2014.

    Google Scholar 

  • Tsujimori T, Ishiwatari A, Banno S (2000) Ecologic glaucophane schist from the Yunotani Valley in Omi town, the Range metamorphic belt, the inner zone of southwest Japan. J. Geol. Soc. Japan, 106 (5): 353–362.

    Google Scholar 

  • Van der Voo R (1993) Paleomagnetism of the Atlantic, Tethys and Iapetus Oceans. Cambridge University Press, 1–273.

    Google Scholar 

  • Wan T F (2011a) On the collision time. Earth Science Frontier, 18(3): 48–56 (in Chinese with English abstract).

    Google Scholar 

  • Wan T F (2011b) The Tectonics of China: Data, Maps and Evolution. Beijing, Dordrecht, Heidelberg, London and New York: Higher Education Press and Springer, 1–501.

    Google Scholar 

  • Wan T F, Chu M J (1987) The listric active fault in Fujian and Taiwan. Earth Science, 12(1): 21–29 (in Chinese).

    Google Scholar 

  • Wan T F, Zeng H L (2002) The distinctive characteristics of the Sino-Korean and the Yangtze plates. Journal of Asian Earth Sciences, 20 (8): 881–888.

    Google Scholar 

  • Wan T F, Hao T Y (2010) Mesozoic-Cenozoic tectonics of the Yellow Sea and oil-gas exploration. Acta Geologica Sinica, 84 (1): 77–90.

    Google Scholar 

  • Wan T F, Lu H F (2014) The continental crust and oceanic mantle type lithosphere and its mechanics in Eastern China. Geotectonica et Metallogenia, 38 (3): 495–511 (in Chinese).

    Google Scholar 

  • Wan T F, Zhu H (2011) Chinese continental blocks in global paleo-continental reconstructions during the Paleozoic and Mesozoic. Acta Geologica Sinica, 85 (3): 581–597.

    Google Scholar 

  • Wan T F, Zhao Q L (2012) The origin of tectonic-magmatism in Eastern China. Science in China (Earth Science), 42 (2):155–163 (in Chinese).

    Google Scholar 

  • Wan T F, Yin Y H, Zhang C H (1997) On the extraterrestrial impact and plate tectonic dynamics: A possible interpretation. Proceedings of 30th International Geological Congress, VSP 26: 87–95.

    Google Scholar 

  • Wan T F, Wang Y M, Liu J L (2008) Tectonic detachment and magma origin depth in Eastern China during Yanshanian and Sichuanian Periods. Earth Science Frontier, 15(3): 1–35 (in Chinese with English abstract).

    Google Scholar 

  • Wan T F, Zhao Q L, Wang Q Q (2015) Paleozoic Tectono-Metallogeny in Tianshan-Altay Region, Central Asia. Acta Geologica Sinica (English Edition), 89 (4): 1801–1814.

    Google Scholar 

  • Wang C S, Liu Z F, He Z W (1999) Recognization and discussion on the paleo-ophiolite at Yarlung Zangbo River for Early Cretaceous in southern Xizang. Acta Geologica Sinica, 73(1): 7–14 (in Chinese with English abstract).

    Google Scholar 

  • Wang C S, Li X H, Hu X M et al. (2002) Latest marine horizon north of Qomolangma (Mt. Everest): Implications for closure of Tethys seaway and collision tectonics. Terra Nova, 14: 114–120.

    Google Scholar 

  • Wang F Z, Yang M Z, Zheng J P (2002) The geochemistry evidences for arc volcanic terrain composed basement. Journal of Petrology and Mineralogy, 21(1): 1–10 (in Chinese).

    Google Scholar 

  • Wang G H, Zhou X, Pubuziren et al. (1996) The structural deformation and its evolution in Taniantawong Mountains, Xizang. Beijing: Geological Publishing House, 1–80 (in Chinese with English abstract).

    Google Scholar 

  • Wang G Z, Wang C S (2001) The break up and age dating for Qiangtang basement metamorphic system. Science in China (D), 31 (supplement):77–82 (in Chinese).

    Google Scholar 

  • Wang H Z (1979) The main period of Asian tectonic evolution. Science in China, (12): 55–65 (in Chinese with English abstract).

    Google Scholar 

  • Wang H Z (1985) The Atlas of China Paleogeography. Beijing: Geography Publishing House (in Chinese).

    Google Scholar 

  • Wang H Z, Mo X X (1995) An outline of the tectonic evolution of China. Episodes, 18 (1–2):6–16.

    Google Scholar 

  • Wang H Z, Li X, Mei S L et al. (1997) Pangean cycles, earth rhythms and possible earth expansion. In: Wang H Z, Jahn Borming, Mei S H (eds.), Origin and History of the Earth. Proc. 30th Intern. Geol. Congr., 1: 111–128. VSP, Utrecht, The Netherland.

    Google Scholar 

  • Wang T, Wang X X, Tian W et al. (2009) North Qinling Paleozoic granite complex, magma evolution in time and space and the significance to orogeny. Science in China (D), (7): 119–141 (in Chinese).

    Google Scholar 

  • Wang T, Liang Y, Ma Z W et al. (2012) Mesozoic tectonic evolution to control the sedimentary in Yuqi areas of Tarim Basin. Popular Science and Technology, 14 (11): 48–50 (in Chinese).

    Google Scholar 

  • Wang T, Tong Y, Wu C L et al. (2014) Temporal and spatial evolution of granodiorites from the main orogenic belt in Asia and their implication for tectonism and metallogenesis. China Geological Survey, 1(2): 58–64 (in Chinese with English abstract).

    Google Scholar 

  • Wang T H (1995) Shanxi and Shaanxi tectonic evolution and oil-gas assembled, North China. Journal of Geology and Mining Industry, 10(3): 283–398 (in Chinese).

    Google Scholar 

  • Wang Y, Li J Y, Sun G H (2008) Post-collision eastward extrusion and tectonic exhumation along the eastern Tianshan orogen, Central Asia: Constraints from dextral strike-slip motion and 40Ar/39Ar geochronological evidence. Journal of Geology, 116: 599–618.

    Google Scholar 

  • Wang Y J, Fan W M, Zhang Y et al. (2003) Structural evolution and 40Ar/39Ar dating of the Zanhuang metamorphic domain in the North China Craton: Constrains on Paleoproterozoic tectonothermal overprinting. Precambrian Research, 122: 159–182.

    Google Scholar 

  • Wang Y M, Wan T F (2008) Cenozoic lithosphere tectonic detachment, magmatism and earthquake in Eastern China. Geosciences, 22(2): 207–229 (in Chinese with English abstract).

    Google Scholar 

  • Wang Y S, Chen J N (1987) The Metamorphism and Metamorphic Areas in Qinghai and Its Adjacent Area. Geological Specialty No. 6. Beijing: Geological Publishing House (in Chinese).

    Google Scholar 

  • Wang Z J, Hunag Z G, Yao J X et al. (2014) China stratigraphy explanation and its main progress. Acta Geologica Sinica, 35(3): 271–276 (in Chinese).

    Google Scholar 

  • Wang Z L, Mao J W, Zhang Z H et al. (2006) The geological characteristics of porphyry copper-molybdenum deposit, time-space distribution and its evolution of metallogene dynamic. Acta Geologica Sinica, (7): 21–33 (in Chinese).

    Google Scholar 

  • Wang Z X, Li C L, Wang D X et al. (2015) Discovery of the Early Devonian Sinistral shear in the Jiangshan- Shaoxing fault zone and its tectonic significance. Acta Geologica Sinica, 89 (4): 1412–1413.

    Google Scholar 

  • Wilde S A, Zhao G C, Sun M (2002) Development of the North China Craton during the Late Archaean and its final amalgamation at 1.8 Ga: Some speculations on its position within a global Paleoproterozoic supercontinent. Gondwana Research, 5: 85–94.

    Google Scholar 

  • Wilde S A, Wu F, Zhang X (2003) Late Pan-African magmatism in Northeastern China: SHRIMP U-Pb zircon evidence from granitoids in the Jiamusi Massif. Precamb. Res., 122: 311–327.

    Google Scholar 

  • Wilde S A, Cawood P A, Wang K et al. (2004) Determining Precambrian crustal evolution in China: a case study from Wutaishan, Shanxi Province, demonstrating the application of precise SHRIMP U-Pb geochronology. In: Malpas J et al. (eds.), Aspects of the Tectonic Evolution of China. London: The Geological Society. Special Publication, 226. 5–26.

    Google Scholar 

  • Wu F Y, Xu Y G, Gao S et al. (2008) The main discussion in the lithosphere thinner and the craton destroy. Petrologica Acta Sinica, 24: 1145–1174 (in Chinese).

    Google Scholar 

  • Wu G Y, Li Y J, Wang G L et al. (2006) The volcanic rocks of Jingning Period oceanic arc in Bachu area, Xinjiang. Geosciences, 20 (3): 361–369 (in Chinese with English abstract).

    Google Scholar 

  • Wu G H, Li H W, Xu Y L et al. (2012) The tectonic-thermal event and its structure evolution in the Tarim craton basement ancient uplift. Acta Petrologica Sinica, 28 (8): 2435–2452 (in Chinese).

    Google Scholar 

  • Wu J S, Gen Y S, Shen Q H et al. (1998) Archean Geological Character and Tectonic Evolution in Sino-Korea Ancient Continent. Beijing: Geological Publishing House, 1–212 (in Chinese with English abstract).

    Google Scholar 

  • Wu Z, Xu H Z, Yang F L et al. (2014) Extension tectonic model restrain for NE part of South China Sea lithosphere. Geotectonica et Metallogenia, 38(1): 71–81 (in Chinese with English abstract).

    Google Scholar 

  • Xia L X, Zhao F Q, Luo Z H et al. (1995) North Qilian tectonic-volcanic magma evolution dynamics. Northwest Geological Science, 16(1): 1–28 (in Chinese with English abstract).

    Google Scholar 

  • Xia X P, Sun M, Zhao GC et al. (2006) LA-ICP-MS U-Pb geochronology of detrital zircons from the Jining Complex, North China Craton and its tectonic significance. Precambrian Research. 144: 199–212.

    Google Scholar 

  • Xiao R G, Sui D C, Luo Z H et al. (1995) Discovery and its petrology research for Paleoproterozoic metamorphism system, in northern Inner Mongolia. Geosciences, (2):140–148 (in Chinese).

    Google Scholar 

  • Xiao W J, Kröner A, Windley B F (2009a) Geodynamic evolution of Central Asia in the Paleozoic and Mesozoic. International Journal of Earth Sciences, 98: 1185–1188.

    Google Scholar 

  • Xiao W J, Windley B F, Huang B C et al. (2009b) End–Permian to mid-Triassic termination of the accretionary processes of the southern Altaids: Implications for the geodynamic evolution, Phanerozoic continental growth, and metallogeny of Central Asia. International Journal of Earth Sciences, 98: 1189–1287.

    Google Scholar 

  • Xiao W J, Santosh M (2014) The western Central Asian Orogenic Belt: A window to accretionary orogenesis and continental growth. Gondwana Research, 25:1429–1444.

    Google Scholar 

  • Xiao W J, Sun M, Santosh M (2015) Continental reconstruction and metallogeny of the Circum-Junggar areas and termination of the southern Central Asian Orogenic Belt. Geoscience Frontiers, 6 (2): 137–140.

    Google Scholar 

  • Xiao X C, Tang Y Q, Feng Y M et al. (1992) The Tectonic Evolution of Northern Xinjiang and Its Adjacent. Beijing: Geological Publishing House, 1–169 (in Chinese).

    Google Scholar 

  • Xiao X C, He G Q, Xu X et al. (2010) Crust Structure and Geological Evolution in Xinjiang China. Beijing, Geological Publishing House, 1–317 (in Chinese).

    Google Scholar 

  • Xin H T, Zhao F Q, Luo Z H et al. (2011) Paleoproterozoic foundation of fine chronology and its geological significance, at Aktashitag area, southeast boundary of Tarim Basin. Acta Geologica Sinica, (12):17–33 (in Chinese).

    Google Scholar 

  • Xu Y H, Zhao T P, Peng P et al. (2007) Proterozoic Xiaoliangling Formation volcanic rock geochemistry characteristics and its geological significance in Lvliang, Shanxi. Acta Petrologica Sinica, 3(5): 1123–1132(in Chinese).

    Google Scholar 

  • Xu Z M (2011) The Ordovician Petroleum Reservoir System and Its Resource Potential. PhD thesis of China University of Geosciences (Beijing), 1–126 (in Chinese with English abstract).

    Google Scholar 

  • Xu Z Q, Xu H F, Zhang J X et al. (1994) Nanshan Caledonia subduction complex accretion terrain and its dynamic in North Qilian passage. Acta Geologica Sinica, 68(1): 1–15 (in Chinese).

    Google Scholar 

  • Xu Z Q, Yang J S, Zhang J X (1999) Compare with two sides tectonic units and shear mechanism of lithosphere in Altun Fault. Acta Geologica Sinica, 73 (3): 193–205 (in Chinese).

    Google Scholar 

  • Xu L M, Zhou L F, Zhang Y J et al. (2006) The characteristic of tectonic stress field and its tectonic background for the Ordos Basin. Geotectonica et Metallogenia, 30(4): 455–462 (in Chinese with English abstract).

    Google Scholar 

  • Xu Z Q, Yang J S, Ji S C et al. (2010) Some recognitions for China continental tectonics and its dynamics. Acta Geologica Sinica, 84 (1):1–29 (in Chinese)

    Google Scholar 

  • Xu Z Q, Yang J S, Li H B et al. (2011) India-Asia collision tectonics. Acta Geologica Sinica, 85 (1): 1–33 (in Chinese).

    Google Scholar 

  • Xu Z Q, Wang Q, Cai Z H et al. (2015) Kinematics of the Tengchong Terrane in SE Tibet from Late Eocene to Early Miocene: Insights from coeval mid-crustal detachments and strike-slip shear zones. Tectonophysics, https://doi.org/10.1016/j.tecto.2015.09.033.

  • Yan F, Chen G, Hou B et al. (2014) Research on the zircon U-Pb dating, micro-elements and Hf isotopic in volcanic clasolite of drilling in Junggar Basin. Acta Geologica Sinica, 88(6): 1068–1080 (in Chinese).

    Google Scholar 

  • Yang J S, Meng F C, Zhang J X et al. (2001) Reconsidered the age of Hongliuxia volcanic rock and its tectonic significance in the eastern Altun Fault. Science in China (D), 31 (supplement): 83–89 (in Chinese).

    Google Scholar 

  • Yang J S, Liu F L, Wu C L et al. (2003) Two super high pressure metamorphism in the Central collision zone: The chronology evidence come from zircon with coesite. Acta Geologica Sinica, 77 (4): 463–477 (in Chinese).

    Google Scholar 

  • Yang J S, Xu Z Q, Zhang J X et al. (2009) The discussion on tectonic background and subduction / return mechanics in China main high-super high pressure metamorphism zone. Acta Petrologica Sinica, (7):3–34 (in Chinese with English abstract).

    Google Scholar 

  • Yang J S, Xu Z Q, Duan X D et al. (2012) Discovery on the Jurassic SSZ type ophiolite in Mykyina, Burma. Acta Petrologica Sinica, 28 (6): 1710–1730 (in Chinese).

    Google Scholar 

  • Yang M G, Wang Y G, Li L et al. (1994) Regional geological characteristics of South China. In: Chen Y Q (eds.), Introduction of China Regional Geology. Beijing: Geological Publishing House. 313–384 (in Chinese).

    Google Scholar 

  • Yang W R, Wang G C, Jian P (2000) The Dabieshan Orogenic Belt Tectono-Chronology. Wuhan: China University of Geosciences Press, 1–141 (in Chinese with English abstract).

    Google Scholar 

  • Yang W R, Jian P, Han Y Q (2002) The super high pressure metamorphism determine and its significance in Dabie orogenic belt. Earth Science Frontier, 9(4): 273–283 (in Chinese with English abstract).

    Google Scholar 

  • Yang X, Xu X H, Qiang Y X et al. (2014) Discussion the regional deference for the forming basement of Tarim basin. Geotectonica et Metallogenia, 38(3): 544–556 (in Chinese with English abstract).

    Google Scholar 

  • Yin H F (Chief editor.) (1988) China Paleontology Geography. Wuhan: Press of China Geosciences Press, 1–329 (in Chinese).

    Google Scholar 

  • Yoon S (2001) Tectonic history of the Japan Sea region and its implications for the formation of the Japan Sea. Journal of Himalayan Geology, 22 (1): 153–184.

    Google Scholar 

  • Yoshikura S, Hada S, Isozaki Y (1990) Kurosegawa terrane. In: Ichikawa K, Mizutani S, Hara I (eds.), Pre-Cretaceous Terranes in Japan. Publication of IGCP Project No. 224, Osaka.

    Google Scholar 

  • Zhai M G (2004) Decompose the North China Craton 2.1–1.7 Ga geological events and its significance. Acta Petrologica Sinica, 20 (6):1343–1354 (in Chinese).

    Google Scholar 

  • Zhai M G (2007) North China craton Paleoproterozoic tectonic event. Acta Petrologica Sinica, 23(11): 2665–2682 (in Chinese with English abstract).

    Google Scholar 

  • Zhai M G (2010) How to form the continental crust of Earth? – Mystical and interesting Pre Cambrian geology. Nature Magazine, 32 (3): 126–129 (in Chinese).

    Google Scholar 

  • Zhai M G, Bian A G. (2000) The end of Neoarchean supercontinent cohere and Late Paleoproterozoic-Mesoproterozoic splitting action in North China Craton. Science in China (supplement), 129–137 (in Chinese).

    Google Scholar 

  • Zhai M G, Guo J H, Li Z et al. (2007) The Su–Lu orogeny extension in Korean Peninsula: Orogeny, Precambrian basement and Paleozoic sedimentary evidences and restrict. Universities Acta Geologica, 13(3): 415–428 (in Chinese with English abstract).

    Google Scholar 

  • Zhang B R, Han Y W, Xu J F et al. (1998) The geochemistry evidences for North Qinling Neoproterozoic belonging to Yangzi plate. Universities Acta Geologica, 4(4): 369–382 (in Chinese with English abstract).

    Google Scholar 

  • Zhang C L, Li H K, Wang H Y (2012) Discussion on the progress in Precambrian geology research for Tarim Block. Geological Review, 58(5): 923–936 (in Chinese).

    Google Scholar 

  • Zhang F Q, Chen H L, Dong C W et al. (2008) Precambrian basement evidence in the Northern Song-Liao Basin. Geology in China, 35 (3): 421–428 (in Chinese).

    Google Scholar 

  • Zhang G W, Zhang B R, Yuan X C (eds.) (1996) Orogenic Process of Qinling Orogenic Belt and Three Dimensional Structural Map Series of Lithosphere. Beijing: Science Press (in Chinese with English abstract).

    Google Scholar 

  • Zhang G W, Zhang B R, Yuan X C et al. (2001) Qinling Orogenic Belt and Continental Dynamics. Beijing: Science Press, 1–855 (in Chinese with English abstract).

    Google Scholar 

  • Zhang H F (2009) Interaction of peridotite-melt: The key of Craton type lithosphere mantle breakup. Science Bulletin, 54: 2008–2026 (in Chinese).

    Google Scholar 

  • Zhang H F, Luo Z P, Zhou Z G et al. (2009) Paleoproterozoic collision orogenic time in middle-northern North China: Come from ultra-aluminum Granite and the constraint of ductile shear period. Mineral and Rock, (1): 62–69 (in Chinese).

    Google Scholar 

  • Zhang J X, Xu Z Q, Chen W et al. (1997) Discussion on the period of subduction-accretion complex/volcanic arc in Middle part of North Qilian. Magazine of Petrology and Mineralogy, 16(2): 112–119 (in Chinese with English abstract).

    Google Scholar 

  • Zhang J X, Zhang Z M, Xu Z Q et al. (1999) The discovery of khondalite and the preliminary research of petrology and isotopic chronology in west Altun. Science in China, D (4): 11–18 (in Chinese).

    Google Scholar 

  • Zhang J X, Yang J S, Xu Z Q et al. (2000) U-Pb and Ar-Ar ages of eclogites from the northern margin of the Qaidam basin, northwestern China. Journal of the Geological Society of China (Taiwan), 43(1): 161–169.

    Google Scholar 

  • Zhang J X, Mattinson C G, Meng F C et al. (2009) U-Pb geochronology of paragneisses and metabasite in the Xitieshan area, north Qaidam Mountains, western China: Constraints on the exhumation of HP/UHP metamorphic rocks. Journal of Asian Earth Sciences, 35: 245–258.

    Google Scholar 

  • Zhang J X, Li H K, Meng F C et al. (2011) Multiple tectonic-thermal events recorded by “metamorphism basement” in SE boundary of Tarim (Altun): the constraint of zircon U-Pb age. Acta Petrologica Sinica, (1): 25–48 (in Chinese).

    Google Scholar 

  • Zhang J, Li J Y et al. (2012) The relationship between Alxa and North China blocks in Early Paleozoic: Got the information from Middle Ordovician clastic zircon in east border of Alxa. Acta Petrologica Sinica, 28(9): 2912–2934 (in Chinese).

    Google Scholar 

  • Zhang L F, Ai Y L, Li Q et al. (2005) The formation and evolution in super-high pressure metamorphic zone in Southwest Xinjiang. Acta Petrologica Sinica, 21 (4): 1029–1038 (in Chinese).

    Google Scholar 

  • Zhang L G (1995) Block-Geology of East Asia Lithosphere: Isotope Geochemistry and Dynamics of Upper Mantle, Basement and Granite. Beijing: Science Press, 1–252 (in Chinese with English abstract).

    Google Scholar 

  • Zhang Q, Chen Y, Zhou D J et al. (1998) Ophiolite geochemistry characteristics and its origin in Dachadaban, North Qilian. Science in China, 28(1): 30–34 (in Chinese).

    Google Scholar 

  • Zhang Y W, Jin Z J, Liu G C et al. (2000) Main unconformity formation and erosion research in around Major areas, Tarim Basin. Earth Science Frontier, 7(4): 449–457 (in Chinese with English abstract).

    Google Scholar 

  • Zhang Z C, Dong S Y, Huang H et al. (2009) The geology and geochemistry of Permian intermediate-acid intrusion in Southwest Tianshan: Rock origin and tectonic background. Geological Bulletin, 28 (12): 1827–1839 (in Chinese).

    Google Scholar 

  • Zhang Z J, Zhan Z, Qin S X et al. (2003) On the basic tectonic framework and evolution for Pre-Neoproterozoic in South China. Journal of Earth, 24(3): 197–204 (in Chinese with English abstract).

    Google Scholar 

  • Zhang Z M, Wang J L, Shen K et al. (2008) Paleozoic orogeny around the eastern Gondwana: Petrology and evidence of chronology in Namkagbawa Group, Eastern Himalaya. Acta Petrologica Sinica, 24(7): 1627–1637 (in Chinese).

    Google Scholar 

  • Zhao C J, Peng Y Q et al. (1996) The tectonics and crust evolution in the eastern Jilin and Heilongjiang. Shenyang: Liaoning University Press, 1–186.

    Google Scholar 

  • Zhao D P, Liu L (2010) Deep structure and origin of active volcanoes in China. Geoscience Frontiers, 1 (1): 31–44.

    Google Scholar 

  • Zhao G C (2001) Paleoproterozoic assembly of the North China craton. Geological Magazine, 138: 87–91.

    Google Scholar 

  • Zhao G C (2007) When did plate tectonics begin on the North China craton? Insights from metamorphism. Earth Science Frontiers, 14 (1): 19–32.

    Google Scholar 

  • Zhao G C (2014) Precambrian Evolution of the North China Craton. Amsterdam: Elsevier, 1–194.

    Google Scholar 

  • Zhao G C, Wilde SA, Cawwod P A et al. (1998) Thermal evolution of Archaean basement rocks from the eastern part of the North China Craton and its bearing on tectonic setting. International Geological Review, 40: 706–721.

    Google Scholar 

  • Zhao G C, Wilde S A, Cawood P A et al. (2002) SHRIMP U-Pb zircon ages of the Fuping Complex: Implications for accretion and assembly of the North China Craton. American Journal of Science, 302, 191–226.

    Google Scholar 

  • Zhao G C, Sun M, Widle SA (2004) Late Archaean to Paleoproterozoic evolution of the Trans-North China Orogen: In slights from synthesis of existing data of the Hengshan-Wutai-Fuping belt. In: Malpas J et al. (eds.), Aspects of the Tectonic Evolution of China. London: The Geological Society. Special Publication, 226: 27–56.

    Google Scholar 

  • Zhao G C, Sun M, Widle S A et al. (2005) Late Archean to Paleoproterozoic evolution of the North China Craton: Key issues revisited. Precambrian Research, 137: 149–172.

    Google Scholar 

  • Zhao H, Meng W B, Tian J C et al. (2011) Paleogene sedimentary phase and sedimentary evolution characteristics in Kuche depression, Tarim Basin. Journal of Sichuan Geology, 31(2):137–141 (in Chinese with English abstract).

    Google Scholar 

  • Zhao J M, Huang Y, Ma Z J et al. (2008) Discussion on the basement structure and property in northern Junggar Basin, Acta Geophysica Sinica, 51∶ 1767–1775 (in Chinese).

    Google Scholar 

  • Zhao J Z, Li Q M, Wang Q H et al. (2004) The formation and distribution of great and middle types oil and gas fields. Journal of Northwest University (Nature Science), (2): 93–98 (in Chinese with English abstract).

    Google Scholar 

  • Zhao T P, Zhai M G, Xia B et al. (2004) The Research on Xionger Group volcanic rock zircon SHRIMP age: The constraint for the original time to develop the cover of North China craton. Science Bulletin, 49 (22):2342–2349 (in Chinese).

    Google Scholar 

  • Zhao W J, Nelson K D, Xu Z X et al. (1997) Double intracontinental subduction and the characteristics of partial melting layer. Acta Geophysica Sinica, 40 (3): 325–336.

    Google Scholar 

  • Zhao W J, Xue G Q, Zhao S et al. (2004a) INDEPTH-3 seismic tomography: The evidences of North Xizang–Indian lithosphere subducted fault. Journal of Earth, 25(1): 1–10 (in Chinese).

    Google Scholar 

  • Zhao W J, Zhao X, Shi D N et al. (2004b) Progress in the study of deep profiles of Tibet and the Himalayas (INDEPTH). Acta Geologica Sinca, 78 (4): 931–939.

    Google Scholar 

  • Zhao W J, Wu Z H, Shi D N et al. (2014) Kunlunshan deep structure and orogenic mechanism. Geology in China, (1):5–22 (in Chinese with English abstract).

    Google Scholar 

  • Zheng T Y, Zhu R X, Zhao L et al. (2012) Intra-lithospheric mantle structures recorded continental subduction. J. Geophys. Res., 117: B03308, https://doi.org/10.1029/2011.jb008873.

  • Zhong D L (1998) Paleo-Tethys orogenic belt in Western Yunnan-Sichuan. Beijing: Science Press, 1–231 (in Chinese with English abstract).

    Google Scholar 

  • Zhou H Y, Mo X X, Li J J et al. (2007) The single zircon U-Pb age of mica plagioclase gneiss in Qingeletu, Alxa, Inner Mongolia. Journal of Mineral, Petrology and Geochemistry, 126 (3): 221–223 (in Chinese with English abstract).

    Google Scholar 

  • Zhou J B, Zhang X Z, Wilde S A (2011a) Determine the khondalite series ~500 Ma Pan-African period and its significance. Acta Petrologica Sinica, (4): 345–355 (in Chinese).

    Google Scholar 

  • Zhou J B, Zhang X Z, Wide S A (2011b) The determine and it means for the Pen-Africa period (500 Ma) in NE China. Acta Petrologica Sinica, 4: 345–355 (in Chinese with English abstract).

    Google Scholar 

  • Zhou X M, Zhou H B, Yang J D et al. (1989) Sm-Nd isochron age of ophiolite suite and its geological significance in Fuchuan, Xixian, Anhui Province. Chinese Science Bulletin, 34 (16): 1243–1245 (in Chinese).

    Google Scholar 

  • Zhu D C, Mo X X, Zhao Z D et al. (2010) Presence of Permian extension and arc type magmatism in Southern Tibet: Paleography implications. GSA Bulletin, 122: 979–993.

    Google Scholar 

  • Zhu G, Hu Z Q, Chen Y et al. (2008) The development of Early Cretaceous extension basin to show the craton destroy. Bulletin of Geology, 27: 1594–1604 (in Chinese with English abstract).

    Google Scholar 

  • Zhu G, Wang Y S, Liu G S et al. (2005) 40Ar-39Ar dating of strike-slip motion on the Tan-Lu fault zone, East China. Journal of Structural Geology, 27: 1379–1398.

    Google Scholar 

  • Zhu J S, Cao J M, Cai X L et al. (2002) the high resolution ratio for S-wave seismic tomography in East Asian-Western Pacific boundary seas. Acta Geologica Geophysica Sinica, 45(5): 646–664 (in Chinese).

    Google Scholar 

  • Zhu R X, Chen L, Wu F Y et al. (2011) The time, extent and mechanism for North China Craton. Science in China (Earth Science), 41: 583–592 (in Chinese).

    Google Scholar 

  • Zhu R X, Xu Y G, Zhu G et al. (2012) The destroy of North China craton. Science in China, 42 (8): 1135–1159 (in Chinese).

    Google Scholar 

  • Zhu W B, Zheng B H, Shu L S et al. (2011) Neoproterozoic tectonic evolution of the Precambrian Aksu blueschist terrane, northwestern Tarim, China: Insights from LA-ICP-MS zircon U-Pb ages and geochemical data. Precambrian Research, 185(3–4): 215–230.

    Google Scholar 

  • Zhu Y F, Xu X, Wei S N et al. (2007) The geochemistry of OIB type pillow basalt and its geological significance in Karamay, western Junggar. Acta Petrologica Sinica, 23: 1739–1748 (in Chinese).

    Google Scholar 

  • Zolin Y A, Zorina L D, Spiridonov A M (2001) Geodynamic setting of gold deposits in Eastern and Central Trans-Baikal (Chita Region, Russia). Ore Geology Reviews, 17: 215–232.

    Google Scholar 

  • Zuo G C, Liu Y K, Zhang Z C et al. (2011) Tectonic evolution and its metallogene analysis for Middle-Southern Tianshan orogeny. Geosciences, 25 (1): 1–13 (in Chinese).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tianfeng Wan .

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Geological Publishing House and Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Wan, T. (2020). Tectonic Domains and Tectonic Units in Asian Continent. In: The Tectonics and Metallogenesis of Asia. Springer, Singapore. https://doi.org/10.1007/978-981-15-3032-6_2

Download citation

Publish with us

Policies and ethics