Skip to main content

Metallotolerant Bacteria: Insights into Bacteria Thriving in Metal-Contaminated Areas

Abstract

The overall condition of the environment is inevitably linked to nature of life on the Earth. However, due to industrial revolution, the global upsurge of accumulation of toxic metals has increased enormously which is posing a serious problem to human health. In such environment, where survival of indigenous microorganisms is difficult, metallotolerant bacteria are able to thrive by tolerating high levels of heavy metals. To cope with this extreme condition, they employ diverse mechanisms to overcome the toxic effects of metals and metalloids with alteration of different genes and proteins, and these mechanisms also help their possible commercial exploitation. Hence, it is essential to understand their unique metabolic capacity or physical structure which encourages thriving in these metal-rich environments. This chapter also sheds light on evolutionary strategies that facilitate the metallotolerant bacteria to adapt to the environment and associated ecophysiological aspects.

Keywords

  • Metallotolerant bacteria
  • Bioaccumulation
  • Biotransformation

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-981-15-3028-9_9
  • Chapter length: 30 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   169.00
Price excludes VAT (USA)
  • ISBN: 978-981-15-3028-9
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   219.99
Price excludes VAT (USA)
Hardcover Book
USD   219.99
Price excludes VAT (USA)
Fig. 9.1
Fig. 9.2

Abbreviations

APX:

ascorbate peroxidase

CAT:

catalase

CDF:

cation diffusion facilitators

EPS:

exopolysaccharide

FT-IR:

Fourier-transform infrared

GC-MS:

gas chromatography-mass spectrometry

GST:

glutathione S-transferase

HGT:

horizontal gene transfer

IAA:

indole-3-acetic acid

LC-MS:

liquid chromatography-mass spectrometry

MFP:

membrane fusion protein

MIP:

major intrinsic protein

MTs:

metallothioneins

NMR:

nuclear magnetic resonance

NTPs:

nucleoside triphosphates

OMF:

outer membrane factors

PGPB:

plant growth-promoting bacteria

PMF:

proton motive force

POD:

peroxidase

RND:

resistance-nodulation-cell division

SOD:

superoxide dismutase

SRB:

sulfur-reducing bacteria

References

  • Abbas S, Ahmed I, Kudo T et al (2015) A heavy metal tolerant novel bacterium, Bacillus malikii sp. nov., isolated from tannery effluent wastewater. Antonie Van Leeuwenhoek 108(6):1319–1330

    CAS  PubMed  CrossRef  Google Scholar 

  • Al-Gheethi AAS, Lalung J, Noman EA et al (2015) Removal of heavy metals and antibiotics from treated sewage effluent by bacteria. Clean Techn Environ Policy 17:2101–2123

    CAS  CrossRef  Google Scholar 

  • Aminur R, Björn O, Jana J et al (2017) Genome sequencing revealed chromium and other heavy metal resistance genes in E. cloacae B2-Dha. J Microb Biochem Technol 9:5

    Google Scholar 

  • Ayangbenro AS, Babalola OO (2017) A new strategy for heavy metal polluted environments: a review of microbial biosorbents. Int J Environ Res Public Health 14(1)

    Google Scholar 

  • Azad MAK, Amin L, Sidik NM (2014) Genetically engineered organisms for bioremediation of pollutants in contaminated sites. Chin Sci Bull 59(8):703–714

    CAS  CrossRef  Google Scholar 

  • Bar C, Patil R, Doshi J et al (2007) Characterization of the proteins of bacterial strain isolated from contaminated site involved in heavy metal resistance-a proteomic approach. J Biotechnol 128(3):444–451

    CAS  PubMed  CrossRef  Google Scholar 

  • Barkay T, Wagner-Dobler I (2005) Microbial transformations of mercury: potentials, challenges, and achievements in controlling mercury toxicity in the environment. Adv Appl Microbiol 57:1–52

    CAS  PubMed  CrossRef  Google Scholar 

  • Benmalek Y, Fardeau ML (2017) Isolation and characterization of metal-resistant bacterial strain from wastewater and evaluation of its capacity in metal-ions removal using living and dry bacterial cells. Int J Environ Sci Technol 13:2153–2162

    CrossRef  CAS  Google Scholar 

  • Bentley R, Chasteen TG (2002) Microbial methylation of metalloids: arsenic, antimony, and bismuth. Microbiol Mol Biol Rev 66(2):250–271

    CAS  PubMed  CrossRef  PubMed Central  Google Scholar 

  • Bestawy EE, Helmy S, Hussien H et al (2013) Bioremediation of heavy metal-contaminated effluent using optimized activated sludge bacteria. Appl Water Sci 3:181–192

    CAS  CrossRef  Google Scholar 

  • Bhakta JN, Lahiri S, Bhuiyna FA et al (2018) Profiling of heavy metal(loid)-resistant bacterial community structure by metagenomic-DNA fingerprinting using PCR–DGGE for monitoring and bioremediation of contaminated environment. Energ Ecol Environ 3:102

    CrossRef  Google Scholar 

  • Bhaskar PV, Bhosle NB (2006) Bacterial extracellular polymeric substance (EPS): a carrier of heavy metals in the marine food-chain. Environ Int 32:191–198

    CAS  CrossRef  PubMed  Google Scholar 

  • Booth SC, Weljie AM, Turner RJ (2015) Metabolomics reveals differences of metal toxicity in cultures of Pseudomonas pseudoalcaligenes KF707 grown on different carbon sources. Front Microbiol 6:827

    PubMed  CrossRef  PubMed Central  Google Scholar 

  • Borremans B, Hobman JL, Provoost A et al (2001) Cloning and functional analysis of the pbr lead resistance determinant of Ralstonia metallidurans CH34. J Bacteriol 183:5651–5658

    CAS  PubMed  CrossRef  PubMed Central  Google Scholar 

  • Bosecker K (1997) Bioleaching: metal solubilization by microorganisms. FEMS Microbiol Rev 20:591–604

    CAS  CrossRef  Google Scholar 

  • Braud A, Hannauer M, Milsin GLA et al (2009) The Pseudomonas aeruginosa pyochelin-iron uptake pathway and its metal specificity. J Bacteriol 191:5317–5325

    CrossRef  CAS  Google Scholar 

  • Chojnacka K (2010) Biosorption and bioaccumulation–the prospects for practical applications. Environ Int 36:299–307

    CAS  PubMed  CrossRef  Google Scholar 

  • Coombs JM, Barkay T (2005) New findings on evolution of metal homeostasis genes: evidence from comparative genome analysis of Bacteria and Archaea. Appl Environ Microbiol 71(11):7083–7091

    CAS  PubMed  CrossRef  PubMed Central  Google Scholar 

  • Costa PS, Reis MP, Ávila MP et al (2015) Metagenome of a microbial community inhabiting a metal-rich tropical stream sediment. PLoS One 10(3):e0119465

    PubMed  CrossRef  CAS  PubMed Central  Google Scholar 

  • Crupper SS, Worrell V, Stewart GC et al (1999) Cloning and expression of cadD, a new cadmium resistance gene of Staphylococcus aureus. J Bacteriol 181:4071–4075

    CAS  PubMed  CrossRef  PubMed Central  Google Scholar 

  • Cui X, Wang Y, Liu J et al (2015) Bacillus dabaoshanensis sp. nov., a Cr(VI)-tolerant bacterium isolated from heavy-metal-contaminated soil. Arch Microbiol 197(4):513–520

    CAS  PubMed  CrossRef  Google Scholar 

  • Das S, Dash HR, Chakraborty J (2016) Genetic basis and importance of metal resistant genes in bacteria for bioremediation of contaminated environments with toxic metal pollutants. Appl Microbiol Biotechnol 100(7):2967–2984

    CAS  PubMed  CrossRef  Google Scholar 

  • Dash HR, Mangwani N, Das S (2014) Characterization and potential application in mercury bioremediation of highly mercury-resistant marine bacterium Bacillus thuringiensis PW-05. Environ Sci Pollut Res 21(4):2642–2653

    CAS  CrossRef  Google Scholar 

  • De Rore H, Top E, Houwen F et al (1994) Evolution of heavy metal resistant transconjugants in a soil environment with a concomitant selective pressure. FEMS Microbiol Ecol 14(3):263–273

    CrossRef  Google Scholar 

  • Deng X, He J, He N (2013) Comparative study on Ni2+ -affinity transport of nickel/cobalt permeases (NiCoTs) and the potential of recombinant Escherichia coli for Ni2+ bioaccumulation. Bioresour Technol 130:69–74

    CAS  PubMed  CrossRef  Google Scholar 

  • Diep P, Mahadevan R, Yakunin AF (2018) Heavy metal removal by bioaccumulation using genetically engineered microorganisms. Front Bioeng Biotechnol 6:157

    PubMed  CrossRef  PubMed Central  Google Scholar 

  • Dixit R, Wasiullah MD et al (2015) Bioremediation of heavy metals from soil and aquatic environment: an overview of principles and criteria of fundamental processes. Sustainability 7:2189–2212

    CAS  CrossRef  Google Scholar 

  • Fashola M, Ngole-Jeme V, Babalola O (2016) Heavy metal pollution from gold mines: environmental effects and bacterial strategies for resistance. Int J Environ Res Public Health 13(11):E1047

    Google Scholar 

  • Feng L, Wang W, Cheng J et al (2007) Genome and proteome of long-chain alkane degrading Geobacillus thermodenitrifi cans NG80-2 isolated from a deep-subsurface oil reservoir. Proc Natl Acad Sci 104(13):5602–5607

    CAS  PubMed  CrossRef  Google Scholar 

  • Giovanella P, Cabral L, Costa AP et al (2017) Metal resistance mechanisms in Gram-negative bacteria and their potential to remove Hg in the presence of other metals. Ecotoxicol Environ Saf 140:162–169

    CAS  PubMed  CrossRef  Google Scholar 

  • Gogada R, Singh SS, Lunavat SK et al (2015) Engineered Deinococcus radiodurans R1 with NiCoT genes for bioremoval of trace cobalt from spent decontamination solutions of nuclear power reactors. Appl Microbiol Biotechnol 99(21):9203–9213

    CAS  PubMed  CrossRef  Google Scholar 

  • González-Sánchez A, Cubillas CA, Miranda F et al (2018) The ropAe gene encodes a porin-like protein involved in copper transit in Rhizobium etli CFN42. Microbiol Open 7(3):e00573

    Google Scholar 

  • Gupta P, Diwan B (2017) Bacterial exopolysaccharide mediated heavy metal removal: a review on biosynthesis, mechanism and remediation strategies. Biotechnol Rep 13:58–71

    CrossRef  Google Scholar 

  • Gupta K, Chatterjee C, Gupta B (2012) Isolation and characterization of heavy metal tolerant gram-positive bacteria with bioremedial properties from municipal waste rich soil of Kestopur canal (Kolkata), West Bengal, India. Biologia 67(5):827–836

    CAS  CrossRef  Google Scholar 

  • Gupta A, Joia J, Sood A et al (2016) Microbes as potential tool for remediation of heavy metals: a review. J Microb Biochem Technol 8(4):364–372

    CAS  CrossRef  Google Scholar 

  • Handelsman J (2004) Metagenomics: application of genomics to uncultured microorganisms. Microbiol Mol Biol Rev 68(4):669–685

    CAS  PubMed  CrossRef  PubMed Central  Google Scholar 

  • He LY, Zhang YF, Ma HY et al (2010) Characterization of copper-resistant bacteria and assessment of bacterial communities in rhizosphere soils of copper-tolerant plants. Appl Soil Ecol 44:49–55

    CrossRef  Google Scholar 

  • Hemme CL, Green SJ, Rishishwar L et al. (2016) Lateral gene transfer in a heavy metal-contaminated-groundwater microbial community. mBio 7(2):e02234–15

    Google Scholar 

  • Higham DP, Sadler PJ, Scawen MD (1986) Cadmium-binding proteins in Pseudomonas putida: pseudothioneins. Environ Health Perspect 65:5–11

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hobman JL, Yamamoto K, Oshima T (2007) Transcriptiomic responses of bacterial cells to sublethal metal ion stress. In: Nies DH, Silver S (eds) Molecular microbiology of heavy metals. Springer, Heidelberg/Berlin, pp 73–115

    CrossRef  Google Scholar 

  • Holt JG, Krieg NR, Sneath PHA et al (1994) Bergey’s manual of determinative bacteriology, 9th edn. Lippincott Williams & Wilkins, Baltimore

    Google Scholar 

  • Huo YY, Li ZY, Cheng H et al (2014) High quality draft genome sequence of the heavy metal resistant bacterium Halomonas zincidurans type strain B6T. Stand Genomic Sci 9:30

    PubMed  CrossRef  PubMed Central  Google Scholar 

  • Ibrahim Z, Ahmad WA, Baba AB (2001) Bioaccumulation of silver and the isolation of metal-binding protein from P. diminuta. Braz Arch Biol Technol 44(3):223–225

    CAS  CrossRef  Google Scholar 

  • Igiri BE, Okoduwa SIR, Idoko GO et al (2018) Toxicity and bioremediation of heavy metals contaminated ecosystem from tannery wastewater: a review. J Toxicol 2568038:1–16

    CrossRef  CAS  Google Scholar 

  • Iyer A, Mody K, Iha B (2005) Biosorption of heavy metals by a marine bacterium. Mar Pollut Bull 50(3):340–343

    CAS  PubMed  CrossRef  Google Scholar 

  • Jeremic S, Beškoski VP, Djokic L et al (2016) Interactions of the metal tolerant heterotrophic microorganisms and iron oxidizing autotrophic bacteria from sulphidic mine environment during bioleaching experiments. J Environ Manag 172:151–161

    CAS  CrossRef  Google Scholar 

  • Kandeler E, Tscherko D, Bruce KD et al (2000) Structure and function of the soil microbial community in microhabitats of a heavy metal polluted soil. Biol Fertil Soils 32:390–400

    CAS  CrossRef  Google Scholar 

  • Karigar CS, Rao SS (2011) Role of microbial enzymes in the bioremediation of pollutants: a review. Enzyme Res 805187:1–11

    CrossRef  CAS  Google Scholar 

  • Kazy SK, Sar P, Sen AK et al (2002) Extracellular polysaccharides of a copper-sensitive and a copper-resistant Pseudomonas aeruginosa strain: synthesis, chemical nature and copper binding. World J Microbiol Biotechnol 18(6):583–588

    CAS  CrossRef  Google Scholar 

  • Kermani AJN, Ghasemi MF, Khosravan A et al (2010) Cadmium bioremediation by metal-resistant mutated bacteria isolated from active sludge of industrial effluent. Ira J Environ Health Sci Eng 7(4):279–286

    CAS  Google Scholar 

  • Koedam N, Wittouck E, Gaballa A et al (1994) Detection and differentiation of microbial siderophores by isoelectric focusing and chrome azurol S overlay. Biometals 7(4):287–291

    Google Scholar 

  • Krupp EM, Grümping R, Furchtbar URR et al (1996) Speciation of metals and metalloids in sediments with LTGC/ICP-MS. Fresenius J Anal Chem 354:546–549

    CAS  Google Scholar 

  • Li K, Pidatala VR, Shaik R et al (2014) Integrated Metabolomic and proteomic approaches dissect the effect of metal-resistant Bacteria on maize biomass and copper uptake. Environ Sci Technol 48:1184–1193

    CAS  PubMed  CrossRef  Google Scholar 

  • Lima AIG, Corticeiro SC, Figueira EMAP (2006) Glutathione-mediated cadmium sequestration in Rhizobium leguminosarum. Enzyme Microb Technol 39(4):763–769

    CAS  CrossRef  Google Scholar 

  • Lloyd JR (2003) Microbial reduction of metals and radionuclides. FEMS Microbiol Rev 27(2–3):411–425

    CAS  PubMed  CrossRef  Google Scholar 

  • Macaskie LE, Bonthrone KM, Yong P et al (2000) Enzymically mediated bioprecipitation of uranium by a Citrobacter sp.: a concerted role for exocellular lipopolysaccharide and associated phosphatase in biomineral formation. Microbiol 146:1855–1867

    CAS  CrossRef  Google Scholar 

  • Maidak BL, Cole JR, Parker CT Jr et al (1999) A new version of the RDP (ribosomal database project). Nucleic Acids Res 27:171–173

    CAS  PubMed  CrossRef  PubMed Central  Google Scholar 

  • Marzan LW, Hossain M, Mina SA et al (2017) Isolation and biochemical characterization of heavy-metal resistant bacteria from tannery effluent in Chittagong city, Bangladesh, Bioremediation viewpoint. Egypt J Aquat Res 43:65–74

    CrossRef  Google Scholar 

  • Mathiyazhagan N, Natarajan D (2011) Bioremediation on effluents from magnesite and bauxite mines using Thiobacillus spp. and Pseudomonas spp. J Bioremed Biodegrad 2:1

    Google Scholar 

  • Mishra J, Singh R, Arora NK (2017) Alleviation of heavy metal stress in plants and remediation of soil by rhizosphere microorganisms. Front Microbiol 8:1706

    PubMed  CrossRef  PubMed Central  Google Scholar 

  • Monballiu A, Cardon N, Nguyen MT et al (2015) Tolerance of chemoorganotrophic bioleaching microorganisms to heavy metal and alkaline stresses. Bioinorg Chem Appl 861874:1–9

    CrossRef  CAS  Google Scholar 

  • Mosa KA, Saadoun I, Kumar K et al (2016) Potential biotechnological strategies for the Cleanup of heavy metals and metalloids. Front Plant Sci 7:303

    PubMed  CrossRef  PubMed Central  Google Scholar 

  • Mustapha MU, Halimoon N (2015) Screening and isolation of heavy metal tolerant bacteria in industrial effluent. Procedia Environ Sci 30:33–37

    CAS  CrossRef  Google Scholar 

  • Naik MM, Pandey A, Dubey SK (2012) Pseudomonas aeruginosa strain WI-1 from Mandovi estuary possesses metallothionein to alleviate lead toxicity and promotes plant growth. Ecotoxicol Environ Safety 79:129–133

    CAS  PubMed  CrossRef  Google Scholar 

  • Navarro CA, von Bernath D, Jerez CA (2013) Heavy metal resistance strategies of acidophilic Bacteria and their acquisition: importance for biomining and bioremediation. Biol Res 46(4):363–371

    PubMed  CrossRef  Google Scholar 

  • Nies DH (2003) Efflux-mediated heavy metal resistance in prokaryotes. FEMS Microbiol Rev 27:313–339

    CAS  PubMed  CrossRef  Google Scholar 

  • Niggemyer A, Spring S, Stackebrandt E et al (2001) Isolation and characterization of a novel As(V)-reducing bacterium: implications for arsenic mobilization and the genus Desulfitobacterium. Appl Environ Microbiol 67:5568–5580

    CAS  PubMed  CrossRef  PubMed Central  Google Scholar 

  • Nongkhlaw M, Kumar R, Acharya C et al (2012) Occurrence of horizontal gene transfer of P IB -type ATPase genes among bacteria isolated from uranium rich deposit of Domiasiat in north East India. PLoS One 7(10):e48199

    CAS  PubMed  CrossRef  PubMed Central  Google Scholar 

  • Olaniran AO, Balgobind A, Pillay B (2013) Bioavailability of heavy metals in soil: impact on microbial biodegradation of organic compounds and possible improvement strategies. Int J Mol Sci 14:10197–10228

    PubMed  CrossRef  CAS  PubMed Central  Google Scholar 

  • Oliveira A, Pampulha ME, Neto MM et al (2009) Enumeration and characterization of arsenic-tolerant Diazotrophic Bacteria in a Long-term heavy-metal-contaminated soil. Water Air Soil Pollut 200:237–243

    CAS  CrossRef  Google Scholar 

  • Orell A, Navarro CA, Jerez CA (2009) Copper resistance mechanisms of biomining bacteria and archaea living under extremely high concentrations of metals. Adv Mater Res 71-73:279–282

    CAS  CrossRef  Google Scholar 

  • Ouyang J, Guo W, Li B et al (2013) Proteomic analysis of differential protein expression in Acidithiobacillus ferrooxidans cultivated in high potassium concentration. Microbiol Res 168(7):455–460

    CAS  PubMed  CrossRef  Google Scholar 

  • Oyetibo GO, Ilori MO, Obayori OS et al (2015) Metal biouptake by actively growing cells of metal-tolerant bacterial strains. Environ Monit Assess 187:525

    PubMed  CrossRef  CAS  Google Scholar 

  • Pena-Montenegro TD, Dussan J (2013) Genome sequence and description of the heavy metal tolerant bacterium Lysinibacillus sphaericus strain OT4b.31. Stand Genomic Sci 9(1):42–56

    PubMed  CrossRef  CAS  PubMed Central  Google Scholar 

  • Peng J, Miao L, Chen X et al (2018) Comparative transcriptome analysis of Pseudomonas putida KT2440 revealed its response mechanisms to elevated levels of zinc stress. Front Microbiol 9:1669

    PubMed  CrossRef  PubMed Central  Google Scholar 

  • Perry RD, Silver S (1982) Cadmium and manganese transport in Staphylococcus aureus membrane vesicles. J Bacteriol 150:973–976

    CAS  PubMed  CrossRef  PubMed Central  Google Scholar 

  • Prabhakaran P, Ashraf MA, Aqma WS (2016) Microbial stress response to heavy metals in the environment. RSC Adv 6:109862–109877

    CAS  CrossRef  Google Scholar 

  • Rainey FA, Ward-Rainey N, Kroppenstedt RM et al (1996) The genus Nocardiopsis represents a phylogenetically coherent taxon and a distinct actinomycete lineage, proposal of Nocardiopsaceae fam. nov. Int J Syst Bacteriol 46(4):1088–1092

    CAS  PubMed  CrossRef  Google Scholar 

  • Rathore SS, Shekhawat K, Dass A et al (2017) Phytoremediation mechanism in Indian mustard (Brassica juncea) and its enhancement through agronomic interventions. Proc Natl Acad Sci India Sect B Biol Sci:1–9

    Google Scholar 

  • Robinson NJ, Gupta A, Fordham-Skelton AP et al (1990) Prokaryotic metallothionein gene characterization and expression: chromosome crawling by ligation-mediated PCR. Proc R Soc London B 242:241–247

    CAS  CrossRef  Google Scholar 

  • Rodriguez-Rojas F, Tapia P, Castro-Nallar E, Undabarrena A, Muñoz-Díaz P, Arenas-Salinas M, Díaz-Vásquez W, Valdés J, Vásquez C (2016) Draft genome sequence of a multi-metal resistant bacterium Pseudomonas putida ATH-43 isolated from Greenwich Island. Antarctica Front Microbiol 7:1777

    PubMed  Google Scholar 

  • Rodriguez-Sanchez V, Guzmán-Moreno J, Rodríguez-González V et al (2017) Biosorption of lead phosphates by lead-tolerant bacteria as a mechanism for lead immobilization. World J Microbiol Biotechnol 33:150

    PubMed  CrossRef  CAS  Google Scholar 

  • Romaniuk K, Ciok A, Decewicz P et al (2018) Insight into heavy metal resistome of soil psychrotolerant bacteria originating from King George Island (Antarctica). Polar Biol 41:1319–1333

    CrossRef  Google Scholar 

  • Román-Ponce B, Ramos-Garza J, Vásquez-Murrieta MS et al (2016) Cultivable endophytic bacteria from heavy metal(loid)-tolerant plants. Arch Microbiol 198(10):941–956

    PubMed  CrossRef  CAS  Google Scholar 

  • Rossello-Mora R, Amann R (2001) The species concept for prokaryotes. FEMS Microbiol 25:39–67

    CAS  CrossRef  Google Scholar 

  • Roy S, Roy M (2015) Bioleaching of heavy metals by sulfur oxidizing bacteria: a review. Int Res J Environment Sci 4(9):75–79

    CAS  Google Scholar 

  • Roychowdhury R, Roy M, Rakshit A et al (2018) Arsenic bioremediation by indigenous heavy metal resistant bacteria of fly ash pond. Bull Environ Contam Toxicol 101(4):527–535

    CAS  PubMed  CrossRef  Google Scholar 

  • Ryan RP, Monchy S, Cardinale M et al (2009) The versatility and adaptation of bacteria from the genus Stenotrophomonas. Nat Rev Microbiol 7:514–525

    CAS  PubMed  CrossRef  Google Scholar 

  • Saier MH (2016) Transport protein evolution deduced from analysis of sequence, topology and structure. Curr Opin Struct Biol 38:9–17

    CAS  PubMed  CrossRef  PubMed Central  Google Scholar 

  • Sarma B, Acharya C, Joshi SR (2016) Characterization of metal tolerant Serratia spp. isolates from sediments of uranium ore deposit of domiasiat in Northeast India. Proc Natl Acad Sci India Sect B Biol Sci 86(2):253–260

    CAS  CrossRef  Google Scholar 

  • Schaefer JK, Rocks SS, Zheng W et al (2011) Active transport, substrate specificity, and methylation of Hg(II) in anaerobic bacteria. Proc Natl Acad Sci U S A 108:8714–8719

    CAS  PubMed  CrossRef  PubMed Central  Google Scholar 

  • Schalk IJ, Hannauer M, Braud A (2011) New roles for bacterial siderophores in metal transport and tolerance. Environ Microbiol 13(11):2844–2854

    CAS  PubMed  CrossRef  Google Scholar 

  • Schauer K, Gouget B, Carrière M et al (2007) Novel nickel transport mechanism across the bacterial outer membrane energized by the TonB/ExbB/ExbD machinery. Mol Microbiol 63(4):1054–1068

    CAS  PubMed  CrossRef  Google Scholar 

  • Shakibaie MR, Khosravan A, Frahmand A et al (2008) Application of metal resistant bacteria by mutational enhancement technique for bioremediation of copper and zinc from industrial wastes. Iran J Environ Health Sci Eng 5(4):251–256

    CAS  Google Scholar 

  • Sharma P, Kumari H, Kumar M et al (2008) From bacterial genomics to metagenomics: concept, tools and recent advances. Indian J Microbiol 48:173–194

    CAS  PubMed  CrossRef  PubMed Central  Google Scholar 

  • Sharma A, Kumar V, Handa N et al (2018) Potential of endophytic bacteria in heavy metal and pesticide detoxification. In: Egamberdieva D, Ahmad P (eds) Plant microbiome: stress response, Microorganisms for sustainability, vol 5. Springer, Singapore, pp 307–336

    CrossRef  Google Scholar 

  • Shi Y, Yang H, Zhang T et al (2014) Illumina-based analysis of endophytic bacterial diversity and space-time dynamics in sugar beet on the north slope of Tianshan mountain. Appl Microbiol Biotechnol 98(14):6375–6385

    CAS  PubMed  CrossRef  Google Scholar 

  • Shreedhar S, Devasya RP, Naregundi K et al (2014) Phosphate solubilizing uranium tolerant bacteria associated with monazite sand of a natural background radiation site in south-west coast of India. Ann Microbiol 64:1683–1689

    CAS  CrossRef  Google Scholar 

  • Singh S, Mulchandani A, Chen W (2008) Highly selective and rapid arsenic removal by metabolically engineered Escherichia coli cells expressing Fucus vesiculosus metallothionein. Appl Environ Microbiol 74:2924–2927

    CAS  PubMed  CrossRef  PubMed Central  Google Scholar 

  • Singh RP, Singh RN, Srivastava AK, Kumar S, Dubey RC, Arora DK (2011) Structural analysis and 3D-modeling of FUR protein from Bradyrhizobium japonicum. J Appl Sci Environ Sanit 6:357–366

    CAS  Google Scholar 

  • Subhashini DV, Singh RP, Manchanda G (2017) OMICS approaches: tools to unravel microbial systems. Directorate of Knowledge Management in Agriculture, Indian Council of Agricultural Research. ISBN: 9788171641703. https://books.google.co.in/books?id=vSaLtAEACAAJ

  • Teitzel GM, Geddie A, Long SK et al (2006) Survival and growth in the presence of elevated copper: transcriptional profiling of copper-stressed Pseudomonas aeruginosa. J Bacteriol 188(20):7242–7256

    CAS  PubMed  CrossRef  PubMed Central  Google Scholar 

  • Tirry N, Joutey NT, Sayel H et al (2018) Screening of plant growth promoting traits in heavy metals resistant bacteria: prospects in phytoremediation. J Genet Eng Biotechnol 16(2):613–619

    CAS  PubMed  CrossRef  PubMed Central  Google Scholar 

  • Tremaroli V, Workentine ML, Weljie AM et al (2009) Metabolomic investigation of the bacterial response to a metal challenge. Appl Environ Microbiol 75(3):719–728

    CAS  CrossRef  PubMed  Google Scholar 

  • Tse C, Ma K (2016) Growth and metabolism of extremophilic microorganisms. In: Rampelotto RH (ed) Biotechnology of extremophiles: advances and challenges. Springer, Cham

    Google Scholar 

  • Turgay OC, Görmez A, Bilen S (2012) Isolation and characterization of metal resistant-tolerant rhizosphere bacteria from the serpentine soils in Turkey. Environ Monit Assess 184:515–526

    CAS  PubMed  CrossRef  Google Scholar 

  • Tyson GW, Chapman J, Hugenholtz P et al (2004) Community structure and metabolism through reconstruction of microbial genomes from the environment. Nature 428:37–43

    CAS  PubMed  CrossRef  Google Scholar 

  • Valenzuela L, Chi A, Beard S et al (2006) Genomics, metagenomics and proteomics in biomining microorganisms. Biotechnol Adv 24(2):197–211

    CAS  PubMed  CrossRef  Google Scholar 

  • Valls M, de Lorenzo V (2002) Exploiting the genetic and biochemical capacities of bacteria for the remediation of heavy metal pollution. FEMS Microbiol Rev 26(4):327–338

    CAS  PubMed  CrossRef  Google Scholar 

  • Vartoukian SR, Palmer RM, Wade WG (2010) Strategies for culture of ‘unculturable’ bacteria. FEMS Microbiol Lett 309(1):1–7

    CAS  PubMed  Google Scholar 

  • Villadangos AF, Ordóñez E, Pedre B et al (2014) Engineered coryneform bacteria as a bio-tool for arsenic remediation. Appl Microbiol Biotechnol 98:10143–10152

    CAS  PubMed  CrossRef  Google Scholar 

  • Volpicella M, Leoni C, Manzari C et al (2017) Transcriptomic analysis of nickel exposure in Sphingobium sp. ba1 cells using RNA-seq. Sci Rep 7:8262

    Google Scholar 

  • Whiting SN, de Souza MP, Terry N (2001) Rhizosphere bacteria mobilize Zn for hyperaccumulation by Thlaspi caerulescens. Environ Sci Technol 35(15):3144–3150

    CAS  PubMed  CrossRef  Google Scholar 

  • Wu X, Monchy S, Taghavi S et al (2011) Comparative genomics and functional analysis of niche-specific adaptation in Pseudomonas putida. FEMS Microbiol Rev 35(2):299–323

    CAS  PubMed  CrossRef  Google Scholar 

  • Xie P, Hao X, Herzberg M et al (2015) Genomic analyses of metal resistance genes in three plant growth promoting bacteria of legume plants in northwest mine tailings. China J Environ Sci (China) 27:179–187

    CAS  CrossRef  Google Scholar 

  • Yang YJ, Singh RP, Lan X, Zhang CS, Sheng DH et al (2019) Synergistic effect of Pseudomonas putida II-2 and Achromobacter sp. QC36 for the effective biodegradation of the herbicide quinclorac. Ecotoxicol Environ Saf. https://doi.org/10.1016/j.ecoenv.2019.109826

  • Yu P, Yuan J, Deng X et al (2014) Subcellular targeting of bacterial CusF enhances cu accumulation and alters root to shoot cu translocation in Arabidopsis. Plant Cell Physiol 55(9):1568–1581

    CAS  PubMed  CrossRef  Google Scholar 

  • Zhai Q, Xiao Y, Zhao J et al (2017) Identification of key proteins and pathways in cadmium tolerance of Lactobacillus plantarum strains by proteomic analysis. Sci Rep 7:1182

    PubMed  CrossRef  CAS  PubMed Central  Google Scholar 

  • Zhang Z, Cai R, Zhang W, et al (2017) A novel exopolysaccharide with metal adsorption capacity produced by a marine bacterium Alteromonas sp. JL2810. Mar Drug 15(6):175

    Google Scholar 

  • Zivkovic LI, Rikalovic M, Cvijovic GG et al (2018) Cadmium specific proteomic responses of a highly resistant Pseudomonas aeruginosa san ai. RSC Adv 8:10549

    CrossRef  Google Scholar 

Download references

Acknowledgments

Financial support from the DBT-RA Program in Biotechnology and Life Sciences is gratefully acknowledged by DB. KB gratefully acknowledges the financial assistance from the Science and Engineering Research Board (SERB), Department of Science and Technology (DST), Government of India, New Delhi (Sanction No. PDF/2017/002174).

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Verify currency and authenticity via CrossMark

Cite this chapter

Barman, D., Jha, D.K., Bhattacharjee, K. (2020). Metallotolerant Bacteria: Insights into Bacteria Thriving in Metal-Contaminated Areas. In: Singh, R., Manchanda, G., Maurya, I., Wei, Y. (eds) Microbial Versatility in Varied Environments. Springer, Singapore. https://doi.org/10.1007/978-981-15-3028-9_9

Download citation