Skip to main content

Bioactive Compounds from Extremophiles

  • Chapter
  • First Online:
Microbial Versatility in Varied Environments

Abstract

Extremophiles are microorganisms that grow and survive in harsh environmental conditions (e.g., extreme temperature and pressure, variable pH, high salinity, radiation, toxic waste, and metal concentrations). Extremophilic microorganisms have developed diverse strategies in order to survive in harsh conditions and produced different types of bioactive molecules such as extremolytes, extremozymes, and cryoprotectant. These biomolecules possess extraordinary properties such as salt tolerance, thermostability, and pH adaptivity and represent unique attributes under unembellished conditions, which can be compared to existing industrial procedures. These bioactive molecules have great potential for application in various biotechnological processes including agriculture, pharmaceutical, and food industries. In recent years, due to innovative molecular biology tools, genomics, bioinformatics, data mining, and culturing approaches have given unique prospects to explore novel biomolecules of extremophiles. So, this chapter discusses the sources, properties, extraction techniques, and varieties of bioactive compounds from different extremophiles and their different industrial applications for human welfare.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abe F, Horikoshi K (2000) Tryptophan permease gene TAT2 confers high-pressure growth in Saccharomyces cerevisiae. Mol Cell Biol 20(21):8093–8102

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Anekthanakul K, Hongsthong A, Senachak J, Ruengjitchatchawalya M (2018) SpirPep: an in-silico digestion-based platform to assist bioactive peptides discovery from a genome-wide database. BMC Bioinf 19(1):149

    Article  CAS  Google Scholar 

  • Appukuttan D, Rao AS, Apte SK (2006) Engineering of Deinococcus radiodurans R1 for bioprecipitation of uranium from dilute nuclear waste. Appl Environ Microbiol 72(12):7873–7878

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Baker-Austin C, Dopson M (2007) Life in acid: pH homeostasis in acidophiles. Trends Microbiol 15:165–171

    Article  CAS  PubMed  Google Scholar 

  • Bartlett DH, Chi E, Wright ME (1993) Sequence of the ompH gene from the deep-sea bacterium Photobacterium SS9. Gene 131(1):125–128

    Article  CAS  PubMed  Google Scholar 

  • Bertoldo C, Dock C, Antranikian G (2004) Thermoacidophilic microorganisms and their novel biocatalysts. Eng Life Sci 4:521–532

    Article  CAS  Google Scholar 

  • Blin K, Kazempour D, Wohlleben W, Weber T (2014) Improved lanthipeptide detection and prediction for antiSMASH. PLoS One 9(2):e89420

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Brim H, Venkateswaran A, Kostandarithes HM, Fredrickson JK, Daly MJ (2003) Engineering Deinococcus geothermalis for bioremediation of high-temperature radioactive waste environments. Appl Environ Microbiol 69(8):4575–4582

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Burton GW, Ingold KU (1984) Beta-carotene: an unusual type of lipid antioxidant. Science 224(4649):569–573

    Article  CAS  PubMed  Google Scholar 

  • Cameron RE, Blank GB (1966) Project Mercury (U.S.). Desert algae: soil crusts and diaphanous substrata as algal habitats. Jet Propulsion Laboratory, California Institute of Technology, Pasadena

    Google Scholar 

  • Certes A (1884) Of the action of high pressure on the phenomena of putrefaction and on the vitality of microorganisms of fresh and sea water. Compt Rend 99:385–388

    Google Scholar 

  • Cole JR, Chai B, Marsh TL, Farris RJ, Wang Q et al (2003) The ribosomal database project (RDP-II): previewing a new autoaligner that allows regular updates and the new prokaryotic taxonomy. Nucleic Acids Res 31:442–443

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cragg GM, Newman DJ (2005) Biodiversity: a continuing source of novel drug leads. Pure Appl Chem 77(1):7–24

    Article  CAS  Google Scholar 

  • Crossman L, Holden M, Pain A, Parkhill J (2004) Genomes beyond compare. Nat Rev Microbiol 2:616–617

    Article  CAS  PubMed  Google Scholar 

  • Da Costa MS, Santos H, Galinski EA (1998) An overview of the role and diversity of compatible solutes in Bacteria and Archaea. Adv Biochem Eng Biotechnoloy 61:117

    Google Scholar 

  • Daly MJ (2009) A new perspective on radiation resistance based on Deinococcus radiodurans. Nat Rev Microbiol 7(3):237

    Article  CAS  PubMed  Google Scholar 

  • Daly MJ, Gaidamakova EK, Matrosova VY, Vasilenko A, Zhai M et al (2004) Accumulation of Mn (II) in Deinococcus radiodurans facilitates gamma-radiation resistance. Science 306(5698):1025–1028

    Article  CAS  PubMed  Google Scholar 

  • Danson MJ, Hough DW (1997) The structural basis of protein Halophilicity. Comp Biochem Physiol A Physiol 117(3):307–312

    Article  Google Scholar 

  • Dassarma S, Dassarma P (2015) Halophiles and their enzymes: negativity put to good use. Curr Opin Microbiol 25:120–126

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • De Philippis R, Vincenzini M (1998) Exocellular polysaccharides from cyanobacteria and their possible applications. FEMS Microbiol Rev 22(3):151–175

    Article  Google Scholar 

  • DeLong EF, Franks DG, Yayanos AA (1997) Evolutionary relationships of cultivated psychrophilic and barophilic deep-sea bacteria. Appl Environ Microbiol 63(5):2105–2108

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Deming JW (2002) Psychrophiles and polar regions. Curr Opin Microbiol 5(3):301–309

    Article  CAS  PubMed  Google Scholar 

  • DeSantis TZ, Hugenholtz P, Larsen N, Rojas M, Brodie EL et al (2006) Greengenes, a chimera-checked 16S rRNA gene database and workbench compatible with ARB. Appl Environ Microbiol 72:5069–5072

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Donia MS, Ruffner DE, Cao S, Schmidt EW (2011) Accessing the hidden majority of marine natural products through metagenomics. Chem Biochem 12:1230–1236

    CAS  Google Scholar 

  • Engler C, Marillonnet S (2014) Golden gate cloning. In: DNA cloning and assembly methods. Humana Press, Totowa, pp 119–131

    Google Scholar 

  • Eustáquio AS, Moore BS (2008) Mutasynthesis of fluorosalinosporamide, a potent and reversible inhibitor of the proteasome. Angew Chem Int Ed 47(21):3936–3938

    Article  CAS  Google Scholar 

  • Feller G (2013) Psychrophilic enzymes: from folding to function and biotechnology. Science 2013:512840. https://doi.org/10.1155/2013/512840

    Article  CAS  Google Scholar 

  • Feller G, Gerday C (2003) Psychrophilic enzymes: hot topics in cold adaptation. Nat Rev Microbiol 1(3):200

    Article  CAS  PubMed  Google Scholar 

  • Georlette D, Blaise V, Collins T, Damico S, Gratia E et al (2004) Some like it cold: biocatalysis at low temperatures. FEMS Microbiol Rev 28(1):25–42

    Article  CAS  PubMed  Google Scholar 

  • Gibson D, Young L, Chuang R, Clyde AH et al (2009) Enzymatic assembly of DNA molecules up to several hundred kilobases. Nat Method 6:343–345. https://doi.org/10.1038/nmeth.1318Giddings

    Article  CAS  Google Scholar 

  • Giddings LA, Newman D (2013) Microbial natural products: molecular blueprints for antitumor drugs. J Ind Microbiol Biotechnol 40:1181–1210

    Article  CAS  PubMed  Google Scholar 

  • Golyshina OV, Timmis KN (2005) Ferroplasma and relatives, recently discovered cell wall-lacking archaea making a living in extremely acid, heavy metal-rich environments. Environ Microbiol 7(9):1277–1288

    Article  CAS  PubMed  Google Scholar 

  • Gomes JI, Steiner W (2004) The biocatalytic potential of extremophiles and extremozymes. Food Technol Biotechnol 42(4):223–225

    CAS  Google Scholar 

  • Gomez-Escribano JP, Bibb MJ (2012) Streptomyces coelicolor as an expression host for heterologous gene clusters. Methods Enzymol 517:279–300. Academic Press

    Article  CAS  PubMed  Google Scholar 

  • Gross DS, Adams CC, Lee S, Stentz B (1993) A critical role for heat shock transcription factor in establishing a nucleosome-free region over the TATA-initiation site of the yeast HSP82 heat shock gene. EMBO J 12(10):3931–3945

    Google Scholar 

  • Hicks DB, Liu J, Fujisawa M, Krulwich TA (2010) F1F0-ATP synthases of alkaliphilic bacteria: lessons from their adaptations. Biochimica et Biophysica Acta (BBA)-Bioenergetics 1797(8):1362–1377

    Google Scholar 

  • Higo A, Katoh H, Ohmori K, Ikeuchi M, Ohmori M (2006) The role of a gene cluster for trehalose metabolism in dehydration tolerance of the filamentous cyanobacterium Anabaena sp. PCC 7120. Microbiology 152(4):979–987

    Article  CAS  PubMed  Google Scholar 

  • Horikoshi K (1999) Alkaliphiles: some applications of their products for biotechnology. Microbiol Mol Biol Rev 63(4):735–750

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Iwai S, Chai B, Sul WJ, Cole JR, Hashsham SA et al (2010) Gene-targeted-metagenomics reveals extensive diversity of aromatic dioxygenase genes in the environment. ISME J 4(2):279–285

    Article  CAS  PubMed  Google Scholar 

  • Jaenicke R, Bernhardt G, Lüdemann HD, Stetter KO (1988) Pressure-induced alterations in the protein pattern of the thermophilic archaebacterium Methanococcus thermolithotrophicus. Appl Environ Microbiol 54(10):2375–2380

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jawad A, Snelling AM, Heritage J, Hawkey PM (1998) Exceptional desiccation tolerance of Acinetobacter radioresistens. J Hosp Infect 39(3):235–240

    Article  CAS  PubMed  Google Scholar 

  • Jolivet E, Corre E, Haridon S, Forterre P, Prieur D (2004) Thermococcus marinus sp. nov. and Thermococcus radiotolerans sp. nov., two hyperthermophilic archaea from deep-sea hydrothermal vents that resist ionizing radiation. Extremophiles 8(3):219–227

    Article  CAS  PubMed  Google Scholar 

  • Kato C, Suzuki S, Hata S, Ito T, Horikoshi K (1995) The properties of a protease activated by high pressure from Sporosarcina sp. strain DSK25 isolated from deep-sea sediment. JAMSTEC R 32:7–13

    Google Scholar 

  • Kato C, Li L, Nogi Y, Nakamura Y, Tamaoka J, Horikoshi K (1998) Extremely barophilic bacteria isolated from the Mariana trench, challenger deep, at a depth of 11,000 meters. Appl Environ Microbiol 64(4):1510–1513

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Katoh H, Asthana RK, Ohmori M (2004) Gene expression in the cyanobacterium Anabaena sp. PCC7120 under desiccation. Microbial Ecol 47(2):164–174

    Article  CAS  Google Scholar 

  • Kumar S, Nussinov R (2001) How do thermophilic proteins deal with heat? Cell Mol Life Sci 58(9):1216–1233

    Article  CAS  PubMed  Google Scholar 

  • Ladenstein R, Ren B (2006) Protein disulfides and protein disulfide oxidoreductases in hyperthermophiles. FEBS J 273(18):4170–4185

    Article  CAS  PubMed  Google Scholar 

  • Langer-Safer PR, Levine M, Ward DC (1982) Immunological method for mapping genes on Drosophila polytene chromosomes. Proc Nat Acad Sci U S A 79:4381–4385

    Article  CAS  Google Scholar 

  • Larionov V, Kouprina N, Graves J, Chen XN, Korenberg JR et al (1996) Specific cloning of human DNA as yeast artificial chromosomes by transformation-associated recombination. Proc Nat Acad Sci 93(1):491–496

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li MZ, Elledge SJ (2007) SLIC sub-cloning using T4 DNA polymerase treated inserts with RecA. Protocol Exchange

    Google Scholar 

  • Limauro D, Cannio R, Fioriella G (2001) Identification and molecular characterization of an endoglucanase gene, celS, from the extremely thermophilic archaeon Sulfolobus solfataricus. Extremophiles 5(4):213–219

    Article  CAS  PubMed  Google Scholar 

  • Lipman CB (1941) The successful revival of Nostoc commune from a herbarium specimen eighty-seven years old. Bull Torrey Bot Club 1:664–666

    Article  Google Scholar 

  • López-García P (1999) DNA supercoiling and temperature adaptation: a clue to early diversification of life? J Mol Evol 49(4):439–452

    Article  PubMed  Google Scholar 

  • Lovley DR, Coates JD (1997) Bioremediation of metal contamination. Curr Opin Biotechnol 8(3):285–289

    Article  CAS  PubMed  Google Scholar 

  • Madern D, Ebel C, Zaccai G (2000) Halophilic adaptation of enzymes. Extremophiles 4(2):91–98

    Article  CAS  PubMed  Google Scholar 

  • Makarova KS, Aravind L, Wolf YI, Tatusov RL, Minton KW et al (2001) Genome of the extremely radiation-resistant bacterium Deinococcus radiodurans viewed from the perspective of comparative genomics. Microbiol Mol Biol Rev 65(1):44–79

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Margesin R, Sproer C, Schumann P, Schinner F (2003) Pedobacter cryoconitis sp. nov., a facultative psychrophile from alpine glacier cryoconite. Int J Syst Evol Microbiol 53(5):1291–1296

    Article  CAS  PubMed  Google Scholar 

  • Matzke J, Herrmann A, Schneider E, Bakker EP (2000) Gene cloning, nucleotide sequence and biochemical properties of a cytoplasmic cyclomaltodextrinase (neopullulanase) from Alicyclobacillus acidocaldarius, reclassification of a group of enzymes. FEMS Microbiol Lett 183:55–61

    Article  CAS  PubMed  Google Scholar 

  • Mazzoli R, Riedel K, Pessione E (2017) Bioactive compounds from microbes. Front Microbiol 8:392

    Article  PubMed  PubMed Central  Google Scholar 

  • Mergeay M, Monchy S, Vallaeys T, Auquier V, Benotmane A et al (2003) Ralstonia metallidurans, a bacterium specifically adapted to toxic metals: towards a catalogue of metal-responsive genes. FEMS Microbiol Rev 27(2–3):385–410

    Article  CAS  PubMed  Google Scholar 

  • Mevarech M, Frolow F, Gloss LM (2000) Halophilic enzymes: proteins with a grain of salt. Biophys Chem 86(2–3):155–164

    Google Scholar 

  • Musilova M, Wright G, Ward JM, Dartnell LR (2015) Isolation of radiation-resistant bacteria from Mars analog Antarctic Dry Valleys by preselection, and the correlation between radiation and desiccation resistance. Astrobiology 15(12):1076–1090

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nakashima K, Horikoshi K, Mizuno T (1995) Effect of hydrostatic pressure on the synthesis of outer membrane proteins in Escherichia coli. Biosci Biotechnol Biochem 59(1):130–132

    Article  CAS  PubMed  Google Scholar 

  • Nakasone K, Ikegami A, Kato C, Usami R, Horikoshi K (1998) Mechanisms of gene expression controlled by pressure in deep-sea microorganisms. Extremophiles 2(3):149–154

    Article  CAS  PubMed  Google Scholar 

  • Narumi I, Satoh K, Cui S, Funayama T, Kitayama S et al (2004) PprA: a novel protein from Deinococcus radiodurans that stimulates DNA ligation. Mol Microbiol 54(1):278–285

    Article  CAS  PubMed  Google Scholar 

  • Nenkep VN, Yun K, Li Y, Choi HD, Kang JS et al (2010) New production of haloquinones, bromochlorogentisylquinones A and B, by a halide salt from a marine isolate of the fungus Phoma herbarum. J Antibiot 63:199–201

    Article  CAS  Google Scholar 

  • Nogi Y, Kato C, Horikoshi K (1998a) Taxonomic studies of deep-sea barophilic Shewanella strains and description of Shewanella violacea sp. nov. Arch Microbiol 170(5):331–338

    Article  CAS  PubMed  Google Scholar 

  • Nogi Y, Masui N, Kato C (1998b) Photobacterium profundum sp. nov., a new, moderately barophilic bacterial species isolated from a deep-sea sediment. Extremophiles 2(1):1–8

    Article  CAS  PubMed  Google Scholar 

  • Oda K, Nakazima T, Terashita T, Suziki KA, Murao S (1987) Purification and properties of an S-PI (Pepstatin Ac) insensitive carboxyl proteinase from a Xanthomonas sp. bacterium. Agric Biol Chem 51:3073:3080

    Google Scholar 

  • Oh DC, Kauffman CA, Jensen PR, Fenical W (2007) Induced production of emericellamides A and B from the marine-derived fungus Emericella sp. in competing co-culture. J Nat Prod 70:515–520

    Article  CAS  PubMed  Google Scholar 

  • Padan E, Bibi E, Ito M, Krulwich TA (2005) Alkaline pH homeostasis in bacteria: new insights. Biochim Biophys Acta 1717(2):67–88

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Paiardini A, Gianese G, Bossa F, Pascarella S (2003) Structural plasticity of thermophilic serine hydroxymethyltransferases. Proteins Struct Funct Bioinf 50(1):122–134

    Article  CAS  Google Scholar 

  • Pal R, Rai JPN (2010) Phytochelatins: peptides involved in heavy metal detoxification. Appl Biochem Biotechnol 160(3):945–963

    Article  CAS  PubMed  Google Scholar 

  • Pebone E, Limauro D, Bartolucci S (2008) The machinery for oxidative protein folding in Thermophiles. Antioxid Redox Signal 10(1):157–169

    Google Scholar 

  • Penesyan A, Ballestriero F, Daim M, Kjelleberg S, Thomas T et al (2013) Assessing the effectiveness of functional genetic screens for the identification of bioactive metabolites. Mar Drugs 11:40–49

    Article  CAS  Google Scholar 

  • Pruesse E, Quast C, Knittel K, Fuchs BM, Ludwig W et al (2007) SILVA: a comprehensive online resource for quality checked and aligned ribosomal RNA sequence data compatible with ARB. Nucl Acids Res 35:7188–7196

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Quan J, Tian J (2014) Circular polymerase extension cloning. In: DNA cloning and assembly methods. Humana Press, Totowa, pp 103–117

    Google Scholar 

  • Rai AR, Singh RP, Sivastava AK, Dubey RC (2012) Structure prediction and evolution of a halo-acid dehalogenase of Burkholderia mallei. Bioinfo 8(22):1111–1113. https://doi.org/10.6026/97320630081111

  • Romonsellez F, Orell A, Jerez CA (2006) Copper tolerance of the thermoacidophile archaeon Sulfolobus metallicus: possible role of polyphosphate metabolism. Microbiology 152:59–66

    Article  CAS  Google Scholar 

  • Sandigursky M, Sandigursky S, Sonati P, Daly MJ, Franklin WA (2004) Multiple uracil-DNA glycosylase activities in Deinococcus radiodurans. DNA Repair 3(2):163–169

    Article  CAS  PubMed  Google Scholar 

  • Sato T, Nakamura Y, Nakashima KK, Kato C, Horikoshi K (1996) High pressure represses expression of the operon in Escherichia coli. FEMS Microbiol Lett 135(1):111–116

    Google Scholar 

  • Schleper C, Puehler G, Holz I, Gambacorta A, Janekovic D et al (1995) Picrophilus gen. nov., fam. nov.: a novel aerobic, heterotrophic, thermoacidophilic genus and family comprising archaea capable of growth around pH 0. J Bacteriol 177:7050–7059

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schroeckh V, Scherlach K, Nützmann HW, Shelest E, Schmidt HW et al (2009) Intimate bacterial-fungal interaction triggers biosynthesis of archetypal polyketides in Aspergillus nidulans. Proc Nat Acad Sci U S A 106:14558–14563

    Article  CAS  Google Scholar 

  • Serour E, Antranikian G (2002) Novel thermoactive glucoamylases from the thermoacidophilic Archaea Thermoplasma acidophilum, Picrophilus torridus and Picrophilus oshimae. Antonie Van Leeuwenhoek 81(1/4):73–83

    Article  CAS  PubMed  Google Scholar 

  • Sharma A, Kawarabayasi Y, Satyanarayana T (2011) Acidophilic bacteria and archaea: acid stable biocatalysts and their potential applications. Extremophiles 16(1):1–19

    Article  PubMed  CAS  Google Scholar 

  • Shirkey B, Kovarcik DP, Wright DJ, Wilmoth G, Prickett TF et al (2000) Active Fe-containing superoxide dismutase and abundant sodF mRNA in Nostoc commune (cyanobacteria) after years of desiccation. J Bacteriol 182(1):189–197

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shirkey B, McMaster NJ, Smith SC, Wright DJ, Rodriguez H et al (2003) Genomic DNA of Nostoc commune (cyanobacteria) becomes covalently modified during long-term (decades) desiccation but is protected from oxidative damage and degradation. Nucleic Acids Res 31(12):2995–3005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Singh H (2018) Desiccation and radiation stress tolerance in cyanobacteria. J Basic Microbiol 58(10):813–826

    Article  CAS  PubMed  Google Scholar 

  • Singh LS, Baruah I, Bora TC (2006) Actinomycetes of Loktak habitat: isolation and screening for antimicrobial activities. Biotechnology 5(2):217–221

    Article  Google Scholar 

  • Singh RP, Manchanda G, Singh RN, Srivastava AK, Dubey RC (2016) Selection of alkalotolerant and symbiotically efficient chickpea nodulating rhizobia from North-West Indo Gangetic Plains. J Basic Microbiol 56:4–25

    Google Scholar 

  • Sinha RP, Klisch M, Gröniger A, Hader DP (2001) Responses of aquatic algae and cyanobacteria to solar UV-B. In: Responses of plants to UV-B radiation. Springer, Dordrecht, pp 219–236

    Chapter  Google Scholar 

  • Slonczewski JL, Fujisawa M, Dopson M, Krulwich TA (2009) Cytoplasmic pH measurement and homeostasis in bacteria and archaea. Adv Microb Physiol 55:1–79

    Article  PubMed  CAS  Google Scholar 

  • Sterner RH, Liebl W (2001) Thermophilic adaptation of proteins. Crit Rev Biochem Mol Biol 36(1):39–106

    Article  CAS  PubMed  Google Scholar 

  • Stierle AA, Stierle DB (2014) Bioactive secondary metabolites from acid mine waste extremophiles. Nat Prod Commun 9(7):1037–1044

    CAS  PubMed  PubMed Central  Google Scholar 

  • Subhashini DV, Singh RP, Manchanda G (2017) OMICS approaches: tools to unravel microbial systems. Directorate of Knowledge Management in Agriculture, Indian Council of Agricultural Research. ISBN:9788171641703. https://books.google.co.in/books?id=vSaLtAEACAAJ

  • Tanaka Y, Hosaka T, Ochi K (2010) Rare earth elements activate the secondary metabolite–biosynthetic gene clusters in Streptomyces coelicolor A3 (2). J Antibiot 63(8):477

    Article  CAS  Google Scholar 

  • Torsvik V, Goksøyr J, Daae FL (1990) High diversity in DNA of soil bacteria. Appl Environ Microbiol 56:782–787

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Torsvik V, Daae FL, Sandaa RA, Ovreas L (1998) Novel techniques for analysing microbial diversity in natural and perturbed environments. J Biotechnol 64:53–62

    Article  CAS  PubMed  Google Scholar 

  • Venter JC, Remington K, Heidelberg JF, Halpern AL, Rusch D et al (2004) Environmental genome shotgun sequencing of the Sargasso Sea. Science 304:66–74

    Article  CAS  PubMed  Google Scholar 

  • Wang Y, Pfeifer BA (2008) 6-Deoxyerythronolide B production through chromosomal localization of the deoxyerythronolide B synthase genes in E. coli. Metab Eng 10(1):33–38

    Article  PubMed  CAS  Google Scholar 

  • Wani PA, Khan MS, Zaidi A (2007) Effect of metal tolerant plant growth promoting Bradyrhizobium sp.(vigna) on growth, symbiosis, seed yield and metal uptake by greengram plants. Chemosphere 70(1):36–45

    Article  CAS  PubMed  Google Scholar 

  • Welsh DT (2000) Ecological significance of compatible solute accumulation by micro-organisms: from single cells to global climate. FEMS Microbiol Rev 24(3):263–290

    Article  CAS  PubMed  Google Scholar 

  • Wiley PF, Sigal JMV, Weaver O, Monahan R, Gerzon K (1957) Erythromycin. XI. 1 structure of erythromycin B2. J Am Chem Soc 79(22):6070–6074

    Article  CAS  Google Scholar 

  • Yang YJ, Singh RP, Lan X, Zhang CS, Sheng DH et al (2018) Genome editing in model myxobacteria Myxococcus xanthus DK1622 by site-specific Cre/loxP recombination system. Biomol Ther 8(4):137. https://doi.org/10.3390/biom8040137

    Article  CAS  Google Scholar 

  • Yang YJ, Singh RP, Lan X, Zhang CS, Sheng DH et al (2019) Whole transcriptome analysis and gene deletion to understand the chloramphenicol resistance mechanism and develop a new bacterial tool in Myxococcus xanthus. Microb Cell Fact 18(1):123. https://doi.org/10.1186/s12934-019-1172-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yun YS, Lee YN (2004) Purification and some properties of superoxide dismutase from Deinococcus radiophilus, the UV-resistant bacterium. Extremophiles 8(3):237–242

    Article  CAS  PubMed  Google Scholar 

  • Zhu F, Lin Y (2006) Marinamide, a novel alkaloid and its methyl ester produced by the application of mixed fermentation technique to two mangrove endophytic fungi from the South China Sea. Chin Sci Bull 51:1426–1430

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Maurya, I.K., Dilawari, R., Singh, D., Singh, R.P. (2020). Bioactive Compounds from Extremophiles. In: Singh, R., Manchanda, G., Maurya, I., Wei, Y. (eds) Microbial Versatility in Varied Environments. Springer, Singapore. https://doi.org/10.1007/978-981-15-3028-9_8

Download citation

Publish with us

Policies and ethics