Skip to main content

Role of the Potent Microbial Based Bioagents and Their Emerging Strategies for the Ecofriendly Management of Agricultural Phytopathogens

  • Chapter
  • First Online:
Natural Bioactive Products in Sustainable Agriculture

Abstract

Food security is a global concern, and it is a substantial challenge to feed the ever-increasing population. The anthropological operations, abiotic and biotic stresses, have limited the crop productivity to a great extent. Phytopathogens are the major biotic constraints and pose a significant threat to food production. The extensive utility of hazardous chemicals for pathogen control is unhealthy to mankind and environment as well. In this context alternative strategies or agents that are operative in terms of cost-effectiveness, feasibility, and practicality for sustainable agricultural production are imperative. Biocontrol agents comprising of bacteria, fungi, raw plant materials, and vermicompost have become attractive in terms of pathogen control and improved crop productivity. This chapter describes the immense role of biocontrol agents in pathogen suppression and sustainable crop production. Various strategies such as production of bioactive compounds and mechanisms adopted by biocontrol agents to fight pathogens with convincing examples are discussed. Furthermore, emerging biocontrol strategies covering both conventional and biotechnological approaches that are in infancy and their emphasis as a need for improved crop production are also discussed. The major challenge is to develop cost-effective spray bio-formulations and new application methods feasible for practical applications against a broad range of phytopathogens. Undoubtedly, exploitation of biocontrol agents/strategies offers a promising ray to address food security, in particular when well optimized for a particular plant and/or soil type.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abo-Elyousr KAM, Hashem M, Ali EH (2009) Integrated control of cotton root rot disease by mixing fungal biocontrol agents and resistance inducers. Crop Prot 28:295–301. https://doi.org/10.1016/j.cropro.2008.11.004

    Article  CAS  Google Scholar 

  • Aboutorabi M (2018) A review on the biological control of plant diseases using various microorganisms. J Res Med Dent Sci 6:30–35

    Google Scholar 

  • Aktar MW, Sengupta D, Chowdhury A (2009) Impact of pesticides use in agriculture: their benefits and hazards. Interdiscip Toxicol 2:1–12

    Article  PubMed  PubMed Central  Google Scholar 

  • Alexander BJR, Stewart A (2001) Glasshouse screening for biological control agents of Phytophthora cactorum on apple (Malus domestica). N Z J Crop Hortic Sci 29:159–169

    Article  Google Scholar 

  • Ali S, Hameed S, Imran A, Iqbal M, Lazarovits G (2014) Genetic, physiological and biochemical characterization of Bacillus sp. strain RMB7 exhibiting plant growth promoting and broad spectrum antifungal activities. Microb Cell Factories 13:144

    Google Scholar 

  • Alsohim AS, Taylor TB, Barrett GA, Gallie J, Zhang XX, Altamirano-Junqueira AE, Johnson LJ, Rainey PB, Jackson RW (2014) The biosurfactant viscosin produced by Pseudomonas fluorescens SBW25 aids spreading motility and plant growth promotion. Environ Microbiol 16:2267–2281. https://doi.org/10.1111/1462-2920.12469

    Article  CAS  PubMed  Google Scholar 

  • Alström S (2001) Characteristics of bacteria from oilseed rape in relation to their biocontrol activity against Verticillium dahliae. J Phytopathol 149(2):57–64

    Google Scholar 

  • Alstrom S, Van Vurde JWL (2001) Endophytic bacteria and biocontrol of plant diseases. In: De Boer SH (ed) Plant pathogenic bacteria. Kluwer Academic Publishers, pp 60–67. https://doi.org/10.1007/978-94-010-0003-1_11

  • Amin F, Razdan VK, Mohiddin FA, Bhat KA, Sheikh PA (2010) Effect of volatile metabolites of Trichoderma species against seven fungal plant pathogens in-vitro. J Phytol 2:34–37

    Google Scholar 

  • Arrebola E, Sivakumar D, Korsten L (2010) Effect of volatile compounds produced by Bacillus strains on postharvest decay in citrus. Biol Control 53:122–128. https://doi.org/10.1016/j.biocontrol.2009.11.010

  • Aysan Y, Karatas A, Cinar O (2003) Biological control of bacterial stem rot caused by Erwinia chrysanthemi on tomato. Crop Prot 22:807–811

    Google Scholar 

  • Bai Y, Müller DB, Srinivas G, Garrido-Oter R, Potthoff E, Rott M, Dombrowski N, Münch PC, Spaepen S, Remus-Emsermann M (2015) Functional overlap of the Arabidopsis leaf and root microbiota. Nature 528:364

    Google Scholar 

  • Bais HP, Fall R, Vivanco JM (2004) Biocontrol of Bacillus subtilis against infection of Arabidopsis roots by Pseudomonas syringae is facilitated by biofilm formation and surfactin production. Plant Physiol 134:307–319

    Google Scholar 

  • Basnayake WVS, Birch RG (1995) A gene from Alcaligenes denitrificans that confers albicidin resistance by reversible antibiotic binding. Microbiology 141:551–560

    Google Scholar 

  • Berendsen RL, Pieterse CMJ, Bakker PAHM (2012) The rhizosphere microbiome and plant health. Trends Plant Sci 17:478–486

    Article  CAS  PubMed  Google Scholar 

  • Bloemberg GV, Lugtenberg BJ (2001) Molecular basis of plant growth promotion and biocontrol by rhizobacteria. Curr Opin Plant Biol 4:343–350

    Article  CAS  PubMed  Google Scholar 

  • Bloemberg GV, Lugtenberg BJJ (2003) Phenazines and their role in biocontrol of Pseudomonas spp. New Phytol 157(3):503–523

    Google Scholar 

  • Broeckling CD, Broz AK, Bergelson J, Manter DK, Vivanco JM (2008) Root exudates regulate soil fungal community composition and diversity. Appl Environ Microbiol 74:738–744

    Article  CAS  PubMed  Google Scholar 

  • Bulgarelli D, Schlaeppi K, Spaepen S, van Themaat EVL, Schulze-Lefert P (2013) Structure and functions of the bacterial microbiota of plants. Annu Rev Plant Biol 64:807–838

    Article  CAS  PubMed  Google Scholar 

  • Campos VP, Pinho RSC, Freire ES (2010) Volatiles produced by interacting microorganisms potentially useful for the control of plant pathogens. Ciênc Agrotec 34:525–535. https://doi.org/10.1590/S1413-70542010000300001

    Article  CAS  Google Scholar 

  • Cao Y, Zhang Z, Ling N, Yuan Y, Zheng X, Shen B, Shen Q (2011) Bacillus subtilis SQR 9 can control Fusarium wilt in cucumber by colonizing plant roots. Biol Fertil Soils 47:495–506

    Article  CAS  Google Scholar 

  • Carvalhais LC, Dennis PG, Fedoseyenko D, Hajirezaei MR, Borriss R, Wirén NV (2011) Root exudation of sugars, amino acids, and organic acids by maize as affected by nitrogen, phosphorus, potassium, and iron deficiency. J Plant Nutr Soil Sci 174:3–11

    Article  CAS  Google Scholar 

  • Carvalhais LC, Dennis PG, Badri DV, Tyson GW, Vivanco JM, Schenk PM (2013) Activation of the jasmonic acid plant defence pathway alters the composition of rhizosphere bacterial communities. PLoS One 8:e56457

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Carvalhais LC, Dennis PG, Badri DV, Kidd BN, Vivanco JM, Schenk PM (2015) Linking jasmonic acid signaling, root exudates, and rhizosphere microbiomes. Mol Plant-Microbe Interact 28:1049–1058

    Article  CAS  PubMed  Google Scholar 

  • Chen S, Shi L, Shan Z, Hu Q (2007) Determination of organochlorine pesticide residues in rice and human and fish fat by simplified two-dimensional gas chromatography. Food Chem 104:1315–1319

    Article  CAS  Google Scholar 

  • Chernin L, Chet I (2002) Enzymes in the environment: activity, ecology, and applications. Marcel Dekker, New York, pp 171–225

    Google Scholar 

  • Chin-A-Woeng TF, Bloemberg GV, van der Bij AJ, van der Drift KM, Schripsema J, Kroon B, Scheffer RJ, Keel C, Bakker PA, Tichy HV, de Bruijn FJ (1998) Biocontrol by phenazine-1-carboxamide-producing Pseudomonas chlororaphis PCL1391 of tomato root rot caused by Fusarium oxysporum f. sp. radicis-lycopersici. Mol Plant-Microbe Interact 11:1069–1077. https://doi.org/10.1094/MPMI.1998.11.11.1069

  • Chitra GA, Muraleedharan VR, Swaminathan T, Veeraraghavan D (2006) Use of pesticides and its impact on health of farmers in South India. Int J Occup Environ Health 12:228–233

    Article  CAS  PubMed  Google Scholar 

  • Compant S, Duffy B, Nowak J, Clément C, Barka EA (2005) Use of plant growth-promoting bacteria for biocontrol of plant diseases: principles, mechanisms of action, and future prospects. Appl Environ Microbiol 71:4951–4959. https://doi.org/10.1128/AEM.71.9.4951-4959.2005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Compant S, Duffy B, Nowak J, Clement C, Barka EA (2013) Use of plant growth promoting bacteria for biocontrol of plant diseases: principles, mechanisms of action, and future prospects. Appl Environ Microbiol 71:4951–4959

    Article  CAS  Google Scholar 

  • Cooper J (2007) Early interactions between legumes and rhizobia: disclosing complexity in a molecular dialogue. J Appl Microbiol 103:1355–1365

    Article  CAS  PubMed  Google Scholar 

  • Costa JM, Loper JE (1994) Characterization of siderophore production by the biological-control agent Enterobacter cloacae. Mol Plant-Microbe Interact 7:440–448

    Google Scholar 

  • Cumagun CJR (2014) Advances in formulation of Trichoderma for biocontrol. In: Gupta VK, Schmoll M, Herrera-Estrella A, Upadhyay RS, Druzhinina I, Tuohy M (eds) Biotechnology and biology of Trichoderma. Elsevier, Amsterdam, pp 527–531

    Google Scholar 

  • D’aes J, Hua GK, De Maeyer K, Pannecoucque J, Forrez I, Ongena M, Dietrich LE, Thomashow LS, Mavrodi DV, Höfte M (2011) Biological control of Rhizoctonia root rot on bean by phenazine- and cyclic lipopeptide-producing Pseudomonas CMR12a. Phytopathology 101:996–1004

    Google Scholar 

  • Danovaro R, Bongiorni L, Corinaldesi C, Giovannelli D, Damiani E, Astolfi P, Greci L, Pusceddu A (2008) Sunscreens cause coral bleaching by promoting viral infections. Environ Health Perspect 116:441–447

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • de Weert S, Vermeiren H, Mulders IH, Kuiper I, Hendrickx N, Bloemberg GV, Vanderleyden J, De Mot R, Lugtenberg BJ (2002) Flagella-driven chemotaxis towards exudate components is an important trait for tomato root colonization by Pseudomonas fluorescens. Mol Plant-Microbe Interact 15:1173–1180

    Google Scholar 

  • Dean R, Van Kan JA, Pretorius ZA, Hammond-Kosack KE, Di Pietro A, Spanu PD, Rudd JJ, Dickman M, Kahmann R, Ellis J (2012) The top 10 fungal pathogens in molecular plant pathology. Mol Plant Pathol 13:414–430

    Article  PubMed  PubMed Central  Google Scholar 

  • Degenhardt J, Gershenzon J, Baldwin IT et al (2003) Attracting friends to feast on foes: engineering terpene emission to make crop plants more attractive to herbivore enemies. Curr Opin Biotechnol 14:169–176

    Article  CAS  PubMed  Google Scholar 

  • Demoz BT, Korsten L (2006) Bacillus subtillis attachment, colonization, and survival on avocado flowers and its mode of action on stem-end rot pathogens. Biol Control 37:68–74

    Google Scholar 

  • Dubey RK, Tripathi V, Abhilash PC (2015) Book review: principles of plant-microbe interactions: microbes for sustainable agriculture. Front Plant Sci 6:986

    Article  PubMed Central  Google Scholar 

  • Duffy BK (2001) Encyclopedia of plant pathology. Wiley, New York, pp 243–244

    Google Scholar 

  • Dunlap CA, Bowman MJ, Schisler DA (2013) Genomic analysis and secondary metabolite production in Bacillus amyloliquefaciens AS 43.3: a biocontrol antagonist of Fusarium head blight. Biol Control 64(2):166–175

    Google Scholar 

  • Elad Y, Kirshner B, Yehuda N, Sztejnberg A (1998) Management of powdery mildew and gray mold of cucumber by Trichoderma harzianum T39 and Ampelomyces quisqualis AQ10. BioControl 43:241–251. https://doi.org/10.1023/A:1009919417481

  • Escudero N, Ferreira SR, Lopez-Moya F (2016) Chitosan enhances parasitism of Meloidogyne javanica eggs by the nematophagous fungus Pochonia chlamydosporia. Fungal Biol 120:572–585. https://doi.org/10.1016/j.funbio.2015.12.005

  • Fernando DWG, Ramarathnama R, Krishnamoorthy AS, Savchuk SC (2005) Identification and use of potential bacterial organic antifungal volatiles in biocontrol. Soil Biol Biochem 37:955–964. https://doi.org/10.1016/j.soilbio.2004.10.021

    Article  CAS  Google Scholar 

  • Frankowski J, Lorito M, Scala F et al (2001) Purification and properties of two chitinolytic enzymes of Serratia plymuthica HRO-C48. Arch Microbiol 176:421–426

    Google Scholar 

  • Fridlender M, Inbar J, Chet I (1993) Biological control of soilborne plant pathogens by a β-1,3 glucanase-producing Pseudomonas cepacia. Soil Biol Biochem 25:1211–1221

    Article  CAS  Google Scholar 

  • Giorgio A, Lo Cantore P, Shanmugaiah V, Lamorte D, Iacobellis NS (2015) Rhizobacteria isolated from common bean in southern Italy as potential biocontrol agents against common bacterial blight. Eur J Plant Pathol 144(2):297–309. https://doi.org/10.1007/s10658-015-0767-8

  • Goswami J, Pandey RK, Tewari JP, Goswami BK (2008) Management of root knot nematode on tomato through application of fungal antagonists, Acremonium strictum and Trichoderma harzianum. Arch Phytopathol Plant Protect 43(3):237–240

    Google Scholar 

  • Govindappa M, Lokesh S, Ravishankar RV, Rudra Naik V, Raju SG (2010) Induction of systemic resistance and management of safflower Macrophomina phaseolina root-rot disease by biocontrol agents. Arch Phytopathol Plant Protect 43(1):26–24

    Article  CAS  Google Scholar 

  • Gu YQ, Mo MH, Zhou JP, Zou CS, Zhang KQ (2007) Evaluation and identification of potential organic nematicidal volatiles from soil bacteria. Soil Biol Biochem 39:2567–2575. https://doi.org/10.1016/j.soilbio.2007.05.011

    Article  CAS  Google Scholar 

  • Guigon-Lopez C, Vargas-Albores F, Guerrero-Prieto V (2015) Changes in Trichoderma asperellum enzyme expression during parasitism of the cotton root rot pathogen Phymatotrichopsis omnivora. Fungal Biol 119:264–273. https://doi.org/10.1016/j.funbio.2014.12.013

  • Guo Q, Dong W, Li S, Lu X, Wang P, Zhang X, Wang Y, Ma P (2014) Fengycin produced by Bacillus subtilis NCD-2 plays a major role in biocontrol of cotton seedling damping-off disease. Microbiol Res 169:533–540

    Article  CAS  PubMed  Google Scholar 

  • Handelsman J, Parke JL (1989) Plant-microbe interactions. In: Molecular and genetic perspectives, vol 3. McGraw-Hill, New York, pp 27–61

    Google Scholar 

  • Haran S, Schickler H, Peer S, Logemann S, Oppenheim A, Chet I (1993) Increased constitutive chitinase activity in transformed Trichoderma harzianum. Biol Control 3:101–108

    Google Scholar 

  • Harman GE, Nelson EB (1994) Seed treatment: progress and prospects. BCPC, Farnham, pp 283–292

    Google Scholar 

  • Hase S, Takahashi S, Takenaka S (2008) Involvement of jasmonic acid signalling in bacterial wilt disease resistance induced by biocontrol agent Pythium oligandrum in tomato. Plant Pathol 57:870–876. https://doi.org/10.1111/j.1365-3059.2008.01858.x

  • Hashem M, Abo-Elyousr KA (2011) Management of the root-knot nematode Meloidogyne incognita on tomato with combinations of different biocontrol organisms. Crop Prot 30:285–292. https://doi.org/10.1016/j.cropro.2010.12.009

    Article  Google Scholar 

  • Heisler J, Glibert P, Burkholder J, Anderson D, Cochlan W, Dennison W, Gobler C, Dortch Q, Heil C, Humphries E, Lewitus A, Magnien R, Marshall H, Sellner K, Stockwell D, Stoecker D, Suddleson M (2008) Eutrophication and harmful algal blooms: a scientific consensus. Harmful Algae 8:3–13

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Heydari A, Pessarakli M (2010) A review on biological control of fungal plant pathogens using microbial antagonists. J Biol Sci 10:273–290

    Article  Google Scholar 

  • Hider RC, Kong X (2010) Chemistry and biology of siderophores. Nat Prod Rep 27:637–657

    Article  CAS  PubMed  Google Scholar 

  • Huang J, Wei Z, Hu J (2017) Chryseobacterium nankingense sp. nov. WR21 effectively suppresses Ralstonia solanacearum growth via intensive root exudates competition. BioControl 62:567–577. https://doi.org/10.1007/s10526-017-9812-1

  • Hussain T, Khan AA (2020) Bacillus subtilis HussainT-AMU and its antifungal activity against potato black scurf caused by Rhizoctonia solani. Biocatal Agric Biotechnol 23:101433

    Google Scholar 

  • Innocenti G, Roberti R, Piattoni F (2015) Biocontrol ability of Trichoderma harzianumstrain T22 against Fusarium wilt disease on water-stressed lettuce plants. BioControl 60:573–581. https://doi.org/10.1007/s10526-015-9662-7

  • Jagannath A, Shore RF, Walker LA, Ferns PN, Gosler AG (2008) Eggshell pigmentation indicates pesticide contamination. J Appl Ecol 45:133–140

    Article  Google Scholar 

  • Jamalizadeh M, Etebarian HR, Aminian H, Alizadeh A (2011) A review of mechanisms of action of biological control organisms against post-harvest fruit spoilage. EPPO Bull 41:65–71

    Article  Google Scholar 

  • John RP, Tyagi RD, Prévost D, Brar S, Pouleur S, Surampalli R (2010) Mycoparasitic Trichoderma viride as a biocontrol agent against Fusarium oxysporum f. sp. adzuki and Pythium arrhenomanes and as a growth promoter of soybean. Crop Prot 29:1452–1459. https://doi.org/10.1016/j.cropro.2010.08.004

  • Kageyama K, Nelson EB (2003) Differential inactivation of seed exudate stimulation of Pythium ultimum sporangium germination by Enterobacter cloacae influences biological control efficacy on different plant species. Appl Environ Microbiol 69(2003):1114–1120

    Google Scholar 

  • Kai M, Haustein M, Molina F, Petri A, Scholz B, Piechulla B (2009) Bacterial volatiles and their action potential. Appl Microbiol Biotechnol 81:1001–1012. https://doi.org/10.1007/s00253-008-1760-3

    Article  CAS  PubMed  Google Scholar 

  • Kalra A, Chandra M, Awasthi A, Singh AK, Khanuja SPS (2010) Natural compounds enhancing growth and survival of rhizobial inoculants in vermicompost based formulations. Biol Fertil Soils 46:521–524

    Article  Google Scholar 

  • Karima, Haggag HE, Nadia G EG (2012) In vitro study on Fusarium solani and Rhizoctonia solani isolates causing the damping off and root rot diseases in tomatoes. Nat Sci 10:16–25

    Google Scholar 

  • Karthikeyan V, Sankaralingam A, Akkeeran S (2007) Biological control of groundnut stem rot caused by Sclerotium rolfsii (Sacc.). Arch Phytopathol Plant Protect 39(3):215–223

    Google Scholar 

  • Kasiotis KM, Anagnostopoulos C, Anastasiadou P, Machera K (2014) Pesticide residues in honeybees, honey and bee pollen by LC-MS/MS screening: reported death incidents in honeybees. Sci Total Environ 485–486:633–642

    Article  PubMed  CAS  Google Scholar 

  • Kavitha S, Senthilkumar S, Gnanamanickam S (2005) Isolation and partial characterization of antifungal protein from Bacillus polymyxa strain VLB16. Process Biochem 40(10):3236–3243

    Article  CAS  Google Scholar 

  • Kavoo-Mwangi A, Kahangi E, Ateka E, Onguso J, Mukhongo R, Mwangi E, Jefwa J (2013) Growth effects of microorganisms based commercial products inoculated to tissue cultured banana cultivated in three different soils in Kenya. Appl Soil Ecol 64:152–162

    Article  Google Scholar 

  • Kawahara J, Horikoshi R, Yamaguchi T, Kumagai K, Yanagisawa Y (2005) Air pollution and young children’s inhalation exposure to organophosphorus pesticide in an agricultural community in Japan. Environ Int 31:1123–1132

    Article  CAS  PubMed  Google Scholar 

  • Keel C, Schnider U, Maurhofer M (1992) Suppression of root diseases by Pseudomonas fluorescens CHAO: importance of the bacterial secondary metabolite 2,4-diacetylphloroglucinol. Mol Plant-Microbe Interact 5(1992):4–13

    Article  CAS  Google Scholar 

  • Kerr A (1980) Biological control of crown gall through production of agrocin 84. Plant Dis 64:25–30

    Google Scholar 

  • Kloeppe JW, Rodríguez-Kábana R, Zehnder AW, Murphy JF, Sikora E, Fernández C (1999) Plant root-bacterial interactions in biological control of soilborne diseases and potential extension to systemic and foliar diseases. Australas Plant Pathol 28:21–26

    Article  Google Scholar 

  • Kloepper JW, Leong J, Teinize M, Schroth MN (1980) Enhanced plant growth by siderophores produced by plant growth promoting rhizobacteria. Nature 286:885–886

    Article  CAS  Google Scholar 

  • Kloepper JW, Ryu CM, Zhang S (2004) Induced systemic resistance and promotion of plant growth by Bacillus spp. Phytopathology 94:1259–1266

    Google Scholar 

  • Kokalis A, Burelle N, Vavrina CS, Rosskopf EM, Shelby RA (2002) Field evaluation of plant growth-promoting rhizobacteria amended transplant mixes and soil solarization for tomato and pepper production in Florida. Plant Soil 238:257–266

    Article  Google Scholar 

  • Korolev N, Rav David D, Elad Y (2008) The role of phytohormones in basal resistance and Trichoderma-induced systemic resistance to Botrytis cinerea in Arabidopsis thaliana. BioControl 53:667–683. https://doi.org/10.1007/s10526-007-9103-3

  • Kubicek CP, Mach RL, Peterbauer CK, Lorito M (2001) Trichoderma: from genes to biocontrol. J Plant Pathol 83:11–23

    Google Scholar 

  • Lam ST, Gaffney TD (1993) Biotechnology in plant disease control. Wiley, New York, pp 291–320

    Google Scholar 

  • Lareen A, Burton F, Schäfer P (2016) Plant root-microbe communication in shaping root microbiomes. Plant Mol Biol 90:575–587

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee S, Yap M, Behringer G, Hung R, Bennett JW (2016) Volatile organic compounds emitted by Trichoderma species mediate plant growth. Fungal Biol Biotechnol 3:7. https://doi.org/10.1186/s40694-016-0025-7

  • Leong SA, Expert D (1989) Plant-microbe interactions. In: Molecular and genetic perspectives, vol 3. McGraw-Hill, New York, pp 62–83

    Google Scholar 

  • Lim HS, Kim YS, Kim SD (1991) Pseudomonas stutzeri YPL-1 genetic transformation and antifungal mechanism against Fusarium solani, an agent of plant root rot. Appl Environ Microbiol 57:510–516

    Google Scholar 

  • Lindow SE (1987) Competitive exclusion of epiphytic bacteria by Ice-Pseudomonas syringae mutants. Appl Environ Microbiol 53:2520–2527

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu Z, Sinclair J (1990) Enhanced soybean plant growth and nodulation by Bradyrhizobium in the presence of strains of Bacillus megaterium. Phytopathology 80:1024

    Article  Google Scholar 

  • Liu W, Wu W, Zhu B, Du Y, Liu F (2008) Antagonistic activities of volatiles from four strains of Bacillus spp. and Paenibacillus spp. against soil-borne plant pathogens. Agric Sci China 7:1104–1114. https://doi.org/10.1016/S1671-2927(08)60153-4

  • Liu K, McInroy JA, Hu CH, Kloepper JW (2018) Mixtures of plant-growth-promoting rhizobacteria enhance biological control of multiple plant diseases and plant-growth promotion in the presence of pathogens. Plant Dis 102:67–72

    Article  PubMed  Google Scholar 

  • Loper JE, Buyer JS (1991) Siderophores in microbial interactions on plant surfaces. Mol Plant-Microbe Interact 4:5–13

    Article  CAS  Google Scholar 

  • Loper JE, Henkels MD (1997) Availability of iron to Pseudomonas fluorescens in rhizosphere and bulk soil evaluated with an ice nucleation reporter gene. Appl Environ Microbiol 63:99–105

    Google Scholar 

  • Lorito M, Harman GE, Hayes CK, Broadway RM, Tronsmo A, Woo SL, Di Pietro A (1993) Chitinolytic enzymes produced by Trichoderma harzianum: antifungal activity of purified endochitinase and chitobiosidase. Phytopathol 83(3):302–307

    Google Scholar 

  • Mackie AE, Wheatley RE (1999) Effects and incidence of volatile organic compound interactions between soil bacterial and fungal isolates. Soil Biol Biochem 31:375–385. https://doi.org/10.1016/S0038-0717(98)00140-0

    Article  CAS  Google Scholar 

  • Madden L, Nutter F Jr (1995) Modeling crop losses at the field scale. Can J Plant Pathol 17:124–137

    Article  Google Scholar 

  • Maheshwari DK (2012) Bacteria in agrobiology: disease management. Springer, Berlin

    Book  Google Scholar 

  • Maksimov I, Abizgil’Dina R, Pusenkova L (2011) Plant growth promoting rhizobacteria as alternative to chemical crop protectors from pathogens. Appl Biochem Microbiol 47:333–345

    Article  CAS  Google Scholar 

  • Mannaa M, Kim KD (2018) Biocontrol activity of volatile-producing Bacillus megateriumandPseudomonas protegens against AspergillusandPenicillium spp. predominant in stored rice grains: study II. Mycobiology 46:52–63. https://doi.org/10.1080/12298093.2018.1454015

  • Matny ON (2015) Fusarium head blight and crown rot on wheat & barley: losses and health risks. Adv Plants Agric Res 2:38–43

    Google Scholar 

  • Mavrodi OV, Walter N, Elateek S, Taylor CG, Okubara PA (2012) Suppression of Rhizoctonia and Pythium root rot of wheat by new strains of Pseudomonas. Biol Control 62:93–102. https://doi.org/10.1016/j.biocontrol.2012.03.013

  • Mbarga JB, Ten Hoopen GM, Kuaté J, Adiobo A, Ngonkeu MEL, Ambang Z, Akoa A, Tondje PR, Begoude BAD (2012) Trichoderma asperellum: a potential biocontrol agent for Pythium myriotylum, causal agent of cocoyam (Xanthosomas agittifolium) root rot disease in Cameroon. Crop Prot 36:18–22

    Google Scholar 

  • Meena M, Swapnil P, Zehra A, Dubey MK, Upadhyay RS (2017) Antagonistic assessment of Trichoderma spp. by producing volatile and non-volatile compounds against different fungal pathogens. Arch Phytopathol Plant Protect 50:629–648. https://doi.org/10.1080/03235408.2017.1357360

  • Mnif W, Hassine AI, Bouaziz A, Bartegi A, Thomas O, Roig B (2011) Effect of endocrine disruptor pesticides: a review. Int J Environ Res Public Health 8:2265–2303

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Morris CE, Monier JM (2003) The ecological significance of biofilm formation by plant-associated bacteria. Annu Rev Phytopathol 41:429–453

    Article  CAS  PubMed  Google Scholar 

  • Mostert D, Molina AB, Daniells J, Fourie G, Hermanto C, Chao C-P, Fabregar E, Sinohin VG, Masdek N, Thangavelu R, Li C, Yi G, Mostert L, Viljoen A (2017) The distribution and host range of the banana Fusarium wilt fungus, Fusarium oxysporumf. sp. cubense, in Asia. PLoS One 12:e0181630

    Google Scholar 

  • Neilands JB (1981) Iron absorption and transport in microorganisms. Annu Rev Nutr 1:27–46

    Article  CAS  PubMed  Google Scholar 

  • Nelson EB (1990) Exudate molecules initiating fungal responses to seeds and roots. Plant Soil 129:61–73

    Article  CAS  Google Scholar 

  • Neupane D, Jors E, Brandt L (2014) Pesticide use, erythrocyte acetylcholinesterase level and self-reported acute intoxication symptoms among vegetable farmers in Nepal: a cross-sectional study. Environ Health 13:98

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Nihorimbere V, Cawoy H, Seyer A, Brunelle A, Thonart P, Ongena M (2011) Impact of rhizosphere factors on cyclic lipopeptide signature from the plant beneficial strain Bacillus amyloliquefaciens S499. FEMS Microbiol Ecol 79:176–191

    Google Scholar 

  • O’Brien M (2000) Have lessons been learned from the UK bovine spongiform encephalopathy (BSE) epidemic? Int J Epidemiol 29:730–733

    Article  PubMed  Google Scholar 

  • O’Callaghan M, Lorenz N, Gerard EM (2006) Characterization of phylloplane and rhizosphere microbial populations using PCR and denaturing gradient gel electrophoresis (DGGE). In: Cooper JE, Rao JR (eds) Molecular approaches to soil rhizosphere and plant microorganism analysis. CABI, Oxfordshire, pp 99–115

    Chapter  Google Scholar 

  • Oclarit E, Cumagun CJR (2010) Evaluation of efficacy of Paecilomyces lilacinus as biological control agent of Meloidogyne incognita attacking tomato. J Plant Protect 49(4):337–340

    Article  Google Scholar 

  • Oku S, Komatsu A, Nakashimada Y, Tajima T, Kato J (2014) Identification of Pseudomonas fluorescens chemotaxis sensory proteins for malate, succinate, and fumarate, and their involvement in root colonization. Microbes Environ 29:413–419

    Article  PubMed  PubMed Central  Google Scholar 

  • Olmedo-Monfil V, Casas-Flores S (2014) Molecular mechanisms of biocontrol in Trichoderma spp. and their applications in agriculture. In: Gupta VK, Schmoll M, Herrera-Estrella A, Upadhyay RS, Druzhinina I, Tuohy MG (eds) Biotechnology and biology of Trichoderma. Elsevier, Waltham, pp 429–453

    Chapter  Google Scholar 

  • Ordentlich A, Elad Y, Chet I (1988) The role of chitinase of Serratia marcescens in biocontrol of Sclerotium rolfsii. Phytopathology 78:84–88

    Google Scholar 

  • Park KS, Kloepper JW (2000) Activation of PR-1a promoter by rhizobacteria that induce systemic resistance in tobacco against Pseudomonas syringae pv. tabaci. Biol Control 18:2–9

    Google Scholar 

  • Pearson DE, Callaway RM (2003) Indirect effects of host-specific biological control agents. Trends Ecol Evol 18:456–461

    Article  Google Scholar 

  • Pichersky E, Noel J, Dudareva N (2006) Biosynthesis of plant volatiles: nature’s diversity and ingenuity. Science 311:808–811. https://doi.org/10.1126/science.1118510

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Porter JR, Xie L, Challinor AJ et al (2014) Food security and food production systems. In: Climate change 2014: impacts, adaptation, and vulnerability. Part A: global and sectoral aspects. Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, pp 485–533

    Google Scholar 

  • Pozo MJ, Azcón-Aguilar C (2007) Unraveling mycorrhiza-induced resistance. Curr Opin Plant Biol 10:393–398

    Article  CAS  PubMed  Google Scholar 

  • Prashar P, Shah S (2016) Impact of fertilizers and pesticides on soil microflora in agriculture. In: Lichtfouse E (ed) Sustainable agriculture reviews 19. Springer, Dordrecht. https://doi.org/10.1007/978-3-319-26777-7_8

    Chapter  Google Scholar 

  • Prashar P, Kapoor N, Sachdeva S (2014) Rhizosphere: its structure, bacterial diversity and significance. Rev Environ Sci Biotechnol 13:63–77

    Article  CAS  Google Scholar 

  • Raaijmakers JM, Vlami M, de Souza JT (2002) Antibiotic production by bacterial biocontrol agents. Antonie Van Leeuwenhoek 81:537–547. https://doi.org/10.1023/A:1020501420831

    Article  CAS  PubMed  Google Scholar 

  • Rahman SF, Singh E, Pieterse CMJ, Schenk PM (2017) Emerging microbial biocontrol strategies for plant pathogens. Plant Sci 267:102–111

    Article  CAS  Google Scholar 

  • Ramamoorthy V, Viswanathan R, Raguchander T, Prakasam V, Samiyappan R (2001) Induction of systemic resistance by plant growth promoting rhizobacteria in crop plants against pests and diseases. Crop Prot 20:1–11

    Google Scholar 

  • Ramarathnam R, Fernando WGD, de Kievit T (2011) The role of antibiosis and induced systemic resistance, mediated by strains of Pseudomonas chlororaphis, Bacillus cereus and B. amyloliquefaciens, in controlling blackleg disease of canola. BioControl 56:225–235. https://doi.org/10.1007/s10526-010-9324-8

  • Rastogi SK, Tripathi S, Ravishanker D (2010) A study of neurologic symptoms on exposure to organophosphate pesticides in the children of agricultural workers. Indian J Occup Environ Med 14:54–57

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Redman RS, Dunigan DD, Rodriguez RJ (2001) Fungal symbiosis from mutualism to parasitism: who controls the outcome, host or invader? New Phytol 151:705–716. https://doi.org/10.1046/j.0028-646x.2001.00210.x

    Article  PubMed  Google Scholar 

  • Rice W, Olsen P, Leggett M (1995) Co-culture of Rhizobium meliloti and a phosphorus solubilizing fungus (Penicillium bilaii) in sterile peat. Soil Biol Biochem 27:703–705

    Article  CAS  Google Scholar 

  • Roberts MJ, Schimmelpfennig DE, Ashley E, Livingston MJ, Ash MS, Vasavada U (2006) The value of plant disease early-warning systems: a case study of USDA’s soybean rust coordinated framework. United States Department of Agriculture, Economic Research Service

    Google Scholar 

  • Rovira AD (1965) Interactions between plant roots and soil microorganisms. Annu Rev Microbiol 19:241–266

    Article  CAS  PubMed  Google Scholar 

  • Ryu CM, Farag MA, Hu CH, Reddy MS, Kloepper JW, Paré PW (2004) Bacterial volatiles induce systemic resistance in Arabidopsis. Plant Physiol 134:1017–1026

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sahebani N, Hadavi N (2008) Biological control of the root-knot nematode Meloidogyne javanica by Trichoderma harziannum. Soil Biol Biochem 40(8):2016–2020

    Google Scholar 

  • Scherm H, Ngugi H, Savelle A, Edwards J (2004) Biological control of infection of blueberry flowers caused by Monilinia vaccinii-corymbosi. Biol Control 29:199–206

    Article  Google Scholar 

  • Schwartz NA, von Glascoe CA, Torres V, Ramos L, Soria-Delgado C (2015) “Where they (live, work and) spray”: pesticide exposure, childhood asthma and environmental justice among Mexican-American farmworkers. Health Place 32:83–92

    Article  PubMed  Google Scholar 

  • Shapira R, Ordentlich A, Chet I et al (1989) Control of plant diseases by chitinase expressed from cloned DNA in Escherichia coli. Phytopathology 79:1246–1249

    Article  CAS  Google Scholar 

  • Shoda M (2000) Bacterial control of plant diseases. J Biosci Bioeng 89(6):515–521

    Article  CAS  PubMed  Google Scholar 

  • Smith KP, Handelsman J, Goodman RM (1999) Genetic basis in plants for interactions with disease-suppressive bacteria. Proc Natl Acad Sci 96:4786–4790

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Song M, Yun HY, Kim YH (2014) Antagonistic Bacillus species as a biological control of ginseng root rot caused by Fusarium cf. incarnatum. J Ginseng Res 38(2):136–145

    Google Scholar 

  • Strobel GA, Dirkse E, Sears J, Markworth C (2001) Volatile antimicrobials from Muscodor albus, a novel endophytic fungus. Microbiology 147:2943–2950. https://doi.org/10.1099/00221287-147-11-2943

  • Sturz AV, Christie BR (2003) Beneficial microbial allelopathies in the root zone: the management of soil quality and plant disease with rhizobacteria. Soil Tillage Res 72(2):107–123

    Article  Google Scholar 

  • Sullivan NJ, O’Gara F (1992) Traits of fluorescent Pseudomonas spp. involved in suppression of plant root pathogens. Microbiol Rev 56:662–676

    Article  Google Scholar 

  • Takahashi H (2013) Auxin biology in roots. Plant Roots 7:49–64

    Article  CAS  Google Scholar 

  • Thomashow LS, Weller DM, Bonsall RF, Pierson LS (1990) Production of the antibiotic phenazine-1-carboxylic acid by fluorescent Pseudomonas species in the rhizosphere of wheat. Appl Environ Microbiol 56:908–912

    Google Scholar 

  • Toyoda H, Utsumi R (1991) U.S. Patent 4:988,586

    Google Scholar 

  • Toyoda H, Hashimoto H, Utsumi R (1988) Detoxification of fusaric acid by a fusaric acid-resistant mutant of Pseudomonas solanacearum and its application to biological control of Fusarium wilt of tomato. Phytopathology 78:1307–1311

    Article  CAS  Google Scholar 

  • Trivedi P, Schenk PM, Wallenstein MD, Singh BK (2017) Tiny microbes, big yields: enhancing food crop production with biological solutions. Microb Biotechnol 10:999–1003

    Article  PubMed  PubMed Central  Google Scholar 

  • van Dijk K, Nelson EB (2000) Fatty acid competition as a mechanism by which Enterobacter cloacae suppresses Pythium ultimum sporangium germination and damping-off. Appl Environ Microbiol 66:5340–5347

    Google Scholar 

  • Vanitha SC, Niranjana SR, Mortensen CN, Umesha S (2009) Bacterial wilt of tomato in Karnataka and its management by Pseudomonas fluorescens. BioControl 54:685–695. https://doi.org/10.1007/s10526-009-9217-x

  • Verma M, Brar SK, Tyagi RD (2007) Antagonistic fungi, Trichoderma spp.: panoply of biological control. Biochem Eng J 37:1–20

    Article  Google Scholar 

  • Vitti A, La Monaca E, Sofo A et al (2015) Beneficial effects of Trichoderma harzianum T-22 in tomato seedlings infected by Cucumber mosaic virus (CMV). BioControl 60:135–147. https://doi.org/10.1007/s10526-014-9626-3

  • Vorholt JA (2012) Microbial life in the phyllosphere. Nat Rev Microbiol 10:828–840

    Article  CAS  PubMed  Google Scholar 

  • Walker MJ, Birch RG, Pemberton JM (1988) Cloning and characterization of an albicidin resistance gene from Klebsiella oxytoca. Mol Microbiol 2:443–454

    Google Scholar 

  • Wan MG, Li GQ, Zhang JB, Jiang DH, Huang HC (2008) Effect of volatile substances of Streptomyces platensis F-1 on control of plant fungal diseases. Biol Control 46:552–559. https://doi.org/10.1016/j.biocontrol.2008.05.015

  • Wang H, Chang KF, Hwang SF et al (2005) Fusarium root rot of coneflower seedlings and integrated control using Trichoderma and fungicides. BioControl 50:317–329. https://doi.org/10.1007/s10526-004-0457-5

  • Wei ZM, Beer SV (1996) Harpin from Erwinia amylovora induces plant resistance. Acta Hortic 411:223–225

    Article  CAS  Google Scholar 

  • Welbaum G, Sturz AV, Dong Z (2004) Fertilizing soil microorganisms to improve productivity of agroecosystems. Crit Rev Plant Sci 23:175–193

    Article  CAS  Google Scholar 

  • Weller DM, Landa BB, Mavrodi OV et al (2007) Role of 2,4-diacetylphloroglucinol-producing fluorescent Pseudomonas spp. in the defense of plant roots. Plant Biol 9(2007):4–20

    Google Scholar 

  • Wheatley RE (2002) The consequences of volatile organic compound mediated bacterial and fungal interactions. A Van Leeuw J Microb 81:357–364. https://doi.org/10.1023/A:1020592802234

    Article  CAS  Google Scholar 

  • Whipps JM (2001) Microbial interactions and biocontrol in the rhizosphere. J Exp Bot 52:487–511

    Article  CAS  PubMed  Google Scholar 

  • Wintermans PC, Bakker PA, Pieterse CM (2016) Natural genetic variation in Arabidopsis for responsiveness to plant growth-promoting rhizobacteria. Plant Mol Biol 90:623–634

    Google Scholar 

  • Zakaria H, Kassab AS, Shamseldean M, Oraby M, El-Mourshedy MMF (2013) Controlling the root-knot nematode, Meloidogyne incognita in cucumber plants using some soil bioagents and some amendments under simulated field conditions. Ann Agric Sci 58:77–82. https://doi.org/10.1016/j.aoas.2013.01.011

  • Zhang L, Birch RG (1996) Biocontrol of sugar cane leaf scald disease by an isolate of Pantoea dispersa which detoxifies albicidin phytotoxins. Lett Appl Microbiol 22:132–136

    Google Scholar 

  • Zhang L, Birch RG (1997) The gene for albicidin detoxification from Pantoea dispersa encodes an esterase and attenuates pathogenicity of Xanthomonas albilineans to sugarcane. Proc Natl Acad Sci U S A 94:9984–9989

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhou L, Yuen G, Wang Y (2016) Evaluation of bacterial biological control agents for control of root-knot nematode disease on tomato. Crop Prot 84:8–13. https://doi.org/10.1016/j.cropro.2015.12.009

    Article  CAS  Google Scholar 

  • Zou CS, Mo MH, Gu YQ, Zhou JP, Zhang KQ (2007) Possible contributions of volatile-producing bacteria to soil fungistasis. Soil Biol Biochem 39:2371–2379. https://doi.org/10.1016/j.soilbio.2007.04.009

    Article  CAS  Google Scholar 

Download references

Conflict of Interest

None of the Authors have conflict of interest.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Hussain, T., Akthar, N., Aminedi, R., Danish, M., Nishat, Y., Patel, S. (2020). Role of the Potent Microbial Based Bioagents and Their Emerging Strategies for the Ecofriendly Management of Agricultural Phytopathogens. In: Singh, J., Yadav, A. (eds) Natural Bioactive Products in Sustainable Agriculture. Springer, Singapore. https://doi.org/10.1007/978-981-15-3024-1_4

Download citation

Publish with us

Policies and ethics