Skip to main content

Biogenic Nanoparticles as Novel Sustainable Approach for Plant Protection

  • Chapter
  • First Online:
Biogenic Nano-Particles and their Use in Agro-ecosystems

Abstract

Around the world due to plant diseases, the amount of crop decreases annually. Different natural and synthetic approaches to manage and reduce damage diseases are used, out of which using nanoparticles is one of them. In the last decades, interest in research on using nanoparticles has increased because of the global concern about environmental pollution. A variety of traditional physical and chemical processes are used to produce nanoscale materials, but nowadays environment-friendly green chemistry-based techniques are available to biologically synthesize materials. Recently, nanotechnology and biology have convergence to create a new field called nanobiotechnology which incorporates the use of biological entities such as actinomycetes, algae, bacteria, fungi, viruses, yeasts, and plants in a number of processes, either biochemical or biophysical. Nanobiotechnology processes have a significant potential to boost nanoparticle production and reduce the use of harsh, toxic, and expensive chemicals that are commonly used in the conventional physical and chemical processes of production.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adams LK, Lyon DY, Alvarez PJ (2006) Comparative eco-toxicity of nanoscale TiO2, SiO2, and ZnO water suspensions. Water Res 40:3527–3532

    CAS  PubMed  Google Scholar 

  • Ahmad Z, Pandey R, Sharma S, Khuller G (2006) Alginate nanoparticles as antituberculosis drug carriers: formulation development, pharmacokinetics and therapeutic potential. Indian J Chest Dis Allied Sci 48:171–176

    PubMed  Google Scholar 

  • Alghuthaymi MA, Almoammar H, Rai M, Said-Galiev E, Abd-Elsalam KA (2015) Myconanoparticles: synthesis and their role in phytopathogens management. Biotechnol Biotechnol Equip 29:221–236

    CAS  PubMed  PubMed Central  Google Scholar 

  • Alvarez-Puebla R, Dos Santos D Jr, Aroca R (2004) Surface-enhanced Raman scattering for ultrasensitive chemical analysis of 1 and 2-naphthalenethiols. Analyst 129:1251–1256

    CAS  PubMed  Google Scholar 

  • Baek Y-W, An Y-J (2011) Microbial toxicity of metal oxide nanoparticles (CuO, NiO, ZnO, and Sb2O3) to Escherichia coli, Bacillus subtilis, and Streptococcus aureus. Sci Total Environ 409:1603–1608

    CAS  PubMed  Google Scholar 

  • Bhainsa KC, D’souza S (2006) Extracellular biosynthesis of silver nanoparticles using the fungus Aspergillus fumigatus. Colloids Surf B: Biointerfaces 47:160–164

    CAS  PubMed  Google Scholar 

  • Birla SS, Gaikwad SC, Gade AK, Rai MK (2013) Rapid synthesis of silver nanoparticles from Fusarium oxysporum by optimizing physicocultural conditions. Sci World J 2013:18

    Google Scholar 

  • Chhipa H (2019) Mycosynthesis of nanoparticles for smart agricultural practice: a green and eco-friendly approach. In: Green synthesis, characterization and applications of nanoparticles. Elsevier, Amsterdam, pp 87–109

    Google Scholar 

  • Deepak V, Kalishwaralal K, Pandian SRK, Gurunathan S (2011) An insight into the bacterial biogenesis of silver nanoparticles, industrial production and scale-up. In: Metal nanoparticles in microbiology. Springer, Berlin, pp 17–35

    Google Scholar 

  • Degrassi G, Bertani I, Devescovi G, Fabrizi A, Gatti A, Venturi V (2012) Response of plant-bacteria interaction models to nanoparticles EQA-international. J Environ Qual 8:39–50

    Google Scholar 

  • Dimkpa CO, Zeng J, McLean JE, Britt DW, Zhan J, Anderson AJ (2012) Production of indole-3-acetic acid via the indole-3-acetamide pathway in the plant-beneficial bacterium Pseudomonas chlororaphis O6 is inhibited by ZnO nanoparticles but enhanced by CuO nanoparticles. Appl Environ Microbiol 78:1404–1410

    CAS  PubMed  PubMed Central  Google Scholar 

  • Durán N, Marcato PD, Alves OL, De Souza GI, Esposito E (2005) Mechanistic aspects of biosynthesis of silver nanoparticles by several Fusarium oxysporum strains. J Nanobiotechnol 3:8

    Google Scholar 

  • Durán N, Marcato PD, Alves OL, Da Silva JP, De Souza GI, Rodrigues FA, Esposito E (2010) Ecosystem protection by effluent bioremediation: silver nanoparticles impregnation in a textile fabrics process. J Nanopart Res 12:285–292

    Google Scholar 

  • Dwivedi S, Wahab R, Khan F, Mishra YK, Musarrat J, Al-Khedhairy AA (2014) Reactive oxygen species mediated bacterial biofilm inhibition via zinc oxide nanoparticles and their statistical determination. PLoS One 9:e111289

    PubMed  PubMed Central  Google Scholar 

  • Elechiguerra JL, Burt JL, Morones JR, Camacho-Bragado A, Gao X, Lara HH, Yacaman MJ (2005) Interaction of silver nanoparticles with HIV-1. J Nanobiotechnol 3:6

    Google Scholar 

  • FAO F (2012) Agriculture Organization of the United Nations, FAOSTAT database

    Google Scholar 

  • Gajjar P, Pettee B, Britt DW, Huang W, Johnson WP, Anderson AJ (2009) Antimicrobial activities of commercial nanoparticles against an environmental soil microbe, Pseudomonas putida KT2440. J Biol Eng 3:9

    PubMed  PubMed Central  Google Scholar 

  • Ge Y, Schimel JP, Holden PA (2011) Evidence for negative effects of TiO2 and ZnO nanoparticles on soil bacterial communities. Environ Sci Technol 45:1659–1664

    CAS  PubMed  Google Scholar 

  • Ghandehari F, Fani M, Rezaee M (2018) Biosynthesis of iron oxide nanoparticles by cytoplasmic extract of bacteria Lactobacillus Fermentum. J Med Chem Sci 1:28–30

    Google Scholar 

  • Gogos A, Knauer K, Bucheli TD (2012) Nanomaterials in plant protection and fertilization: current state, foreseen applications, and research priorities. J Agric Food Chem 60:9781–9792

    CAS  PubMed  Google Scholar 

  • Gong P et al (2007) Preparation and antibacterial activity of Fe3O4@Ag nanoparticles. Nanotechnology 18:285604

    Google Scholar 

  • Goudie AS, Cuff DJ (2001) Encyclopedia of global change: environmental change and human society, vol 1. Oxford University Press, Oxford

    Google Scholar 

  • Gu H, Ho P, Tong E, Wang L, Xu B (2003) Presenting vancomycin on nanoparticles to enhance antimicrobial activities. Nano Lett 3:1261–1263

    CAS  Google Scholar 

  • Gunawan C, Teoh WY, Marquis CP, Amal R (2011) Cytotoxic origin of copper (II) oxide nanoparticles: comparative studies with micron-sized particles, leachate, and metal salts. ACS Nano 5:7214–7225

    CAS  PubMed  Google Scholar 

  • Hamad M (2019) Biosynthesis of silver nanoparticles by fungi and their antibacterial activity. Int J Environ Sci Technol 16:1015–1024

    CAS  Google Scholar 

  • Hasan S (2015) A review on nanoparticles: their synthesis and types. Res J Recent Sci 2277:9–11

    Google Scholar 

  • He S, Feng Y, Ren H, Zhang Y, Gu N, Lin X (2011) The impact of iron oxide magnetic nanoparticles on the soil bacterial community. J Soils Sediments 11:1408–1417

    CAS  Google Scholar 

  • Hu W et al (2010) Graphene-based antibacterial paper. ACS Nano 4:4317–4323

    CAS  PubMed  Google Scholar 

  • Hulkoti NI, Taranath T (2014) Biosynthesis of nanoparticles using microbes—a review. Colloids Surf B: Biointerfaces 121:474–483

    CAS  PubMed  Google Scholar 

  • Hwang ET, Lee JH, Chae YJ, Kim YS, Kim BC, Sang BI, Gu MB (2008) Analysis of the toxic mode of action of silver nanoparticles using stress-specific bioluminescent bacteria. Small 4:746–750

    CAS  PubMed  Google Scholar 

  • Ingle A, Gade A, Pierrat S, Sonnichsen C, Rai M (2008) Mycosynthesis of silver nanoparticles using the fungus Fusarium acuminatum and its activity against some human pathogenic bacteria. Curr Nanosci 4:141–144

    CAS  Google Scholar 

  • Iravani S (2014) Bacteria in nanoparticle synthesis: current status and future prospects. Int Sch Res Not 2014:18

    Google Scholar 

  • Jain J, Arora S, Rajwade JM, Omray P, Khandelwal S, Paknikar KM (2009) Silver nanoparticles in therapeutics: development of an antimicrobial gel formulation for topical use. Mol Pharm 6:1388–1401

    CAS  PubMed  Google Scholar 

  • Jain N, Bhargava A, Majumdar S, Tarafdar J, Panwar J (2011) Extracellular biosynthesis and characterization of silver nanoparticles using Aspergillus flavus NJP08: a mechanism perspective. Nanoscale 3:635–641

    CAS  PubMed  Google Scholar 

  • Jo Y-K, Kim BH, Jung G (2009) Antifungal activity of silver ions and nanoparticles on phytopathogenic fungi. Plant Dis 93:1037–1043

    CAS  PubMed  Google Scholar 

  • Joerger R, Klaus T, Granqvist CG (2000) Biologically produced silver–carbon composite materials for optically functional thin-film coatings. Adv Mater Res 12:407–409

    CAS  Google Scholar 

  • Jones N, Ray B, Ranjit KT, Manna AC (2008) Antibacterial activity of ZnO nanoparticle suspensions on a broad spectrum of microorganisms. FEMS Microbiol Lett 279:71–76

    CAS  PubMed  Google Scholar 

  • Kalimuthu K, Babu RS, Venkataraman D, Bilal M, Gurunathan S (2008) Biosynthesis of silver nanocrystals by Bacillus licheniformis. Colloids Surf B: Biointerfaces 65:150–153

    CAS  PubMed  Google Scholar 

  • Kang S, Pinault M, Pfefferle LD, Elimelech M (2007) Single-walled carbon nanotubes exhibit strong antimicrobial activity. Langmuir 23:8670–8673

    CAS  PubMed  Google Scholar 

  • Kasemets K, Ivask A, Dubourguier H-C, Kahru A (2009) Toxicity of nanoparticles of ZnO, CuO and TiO2 to yeast Saccharomyces cerevisiae. Toxicol In Vitro 23:1116–1122

    CAS  PubMed  Google Scholar 

  • Kathiresan K, Manivannan S, Nabeel M, Dhivya B (2009) Studies on silver nanoparticles synthesized by a marine fungus, Penicillium fellutanum isolated from coastal mangrove sediment. Colloids Surf B: Biointerfaces 71:133–137

    CAS  PubMed  Google Scholar 

  • Khabat V, Mansoori GA, Karimi S (2011) Biosynthesis of silver nanoparticles by fungus Trichoderma Reesei. Insciences J 1:65–79

    Google Scholar 

  • Khan MR, Rizvi TF (2014) Nanotechnology: scope and application in plant disease management. Plant Pathol J 13:214–231

    CAS  Google Scholar 

  • Khosravi A, Shojaosadati S (2009) Evaluation of silver nanoparticles produced by fungus Fusarium oxysporum. Int J Nanotechnol 6:973–983

    CAS  Google Scholar 

  • Khot LR, Sankaran S, Maja JM, Ehsani R, Schuster EW (2012) Applications of nanomaterials in agricultural production and crop protection: a review. Crop Prot 35:64–70

    CAS  Google Scholar 

  • Kim SW et al (2009) An in vitro study of the antifungal effect of silver nanoparticles on oak wilt pathogen Raffaelea sp. J Microbiol Biotechnol 19:760–764

    PubMed  Google Scholar 

  • Kim SW, Jung JH, Lamsal K, Kim YS, Min JS, Lee YS (2012) Antifungal effects of silver nanoparticles (AgNPs) against various plant pathogenic fungi. Mycobiology 40:53–58

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kumar R, Liu D, Zhang L (2008) Advances in proteinous biomaterials. J Biobased Mater Bioenergy 2:1–24

    CAS  Google Scholar 

  • Lead JR, Wilkinson KJ (2006) Aquatic colloids and nanoparticles: current knowledge and future trends. Environ Chem 3:159–171

    CAS  Google Scholar 

  • Lee SY (1996) High cell-density culture of Escherichia coli. Trends Biotechnol 14:98–105

    CAS  PubMed  Google Scholar 

  • Li Y, Leung P, Yao L, Song Q, Newton E (2006) Antimicrobial effect of surgical masks coated with nanoparticles. J Hosp Infect 62:58–63

    CAS  PubMed  Google Scholar 

  • Lin D, Xing B (2007) Phytotoxicity of nanoparticles: inhibition of seed germination and root growth. Environ Pollut 150:243–250

    CAS  PubMed  Google Scholar 

  • Liu S et al (2009) Sharper and faster “nano darts” kill more bacteria: a study of antibacterial activity of individually dispersed pristine single-walled carbon nanotube. ACS Nano 3:3891–3902

    CAS  PubMed  Google Scholar 

  • Luo K, Jung S, Park K-H, Kim Y-R (2018) Microbial biosynthesis of silver nanoparticles in different culture media. J Agric Food Chem 66:957–962

    CAS  PubMed  Google Scholar 

  • Łysakowska ME, Ciebiada-Adamiec A, Klimek L, Sienkiewicz M (2015) The activity of silver nanoparticles (Axonnite) on clinical and environmental strains of Acinetobacter spp. Burns 41:364–371

    PubMed  Google Scholar 

  • Malandrakis AA, Kavroulakis N, Chrysikopoulos CV (2019) Use of copper, silver and zinc nanoparticles against foliar and soil-borne plant pathogens. Sci Total Environ 670:292–299

    CAS  PubMed  Google Scholar 

  • Maliszewska I, Juraszek A, Bielska K (2014) Green synthesis and characterization of silver nanoparticles using ascomycota fungi Penicillium nalgiovense AJ12. J Clust Sci 25:989–1004

    CAS  Google Scholar 

  • Mandal D, Bolander ME, Mukhopadhyay D, Sarkar G, Mukherjee P (2006) The use of microorganisms for the formation of metal nanoparticles and their application. Appl Microbiol Biotechnol 69:485–492

    CAS  PubMed  Google Scholar 

  • Manjumeena R, Duraibabu D, Sudha J, Kalaichelvan P (2014) Biogenic nanosilver incorporated reverse osmosis membrane for antibacterial and antifungal activities against selected pathogenic strains: an enhanced eco-friendly water disinfection approach. J Environ Sci Health A 49:1125–1133

    CAS  Google Scholar 

  • Mann S (2001) Biomineralization: principles and concepts in bioinorganic materials chemistry, vol 5. Oxford University Press, New York. on Demand

    Google Scholar 

  • Min J-S et al (2009) Effects of colloidal silver nanoparticles on sclerotium-forming phytopathogenic fungi. Plant Pathol J 25:376–380

    CAS  Google Scholar 

  • Mitra C, Gummadidala PM, Merrifield R, Omebeyinje MH, Jesmin R, Lead JR, Chanda A (2019) Size and coating of engineered silver nanoparticles determine their ability to growth-independently inhibit aflatoxin biosynthesis in Aspergillus parasiticus. Appl Microbiol Biotechnol 103:4623–4632

    CAS  PubMed  Google Scholar 

  • Mohanpuria P, Rana NK, Yadav SK (2008) Biosynthesis of nanoparticles: technological concepts and future applications. J Nanopart Res 10:507–517

    CAS  Google Scholar 

  • Morones JR, Elechiguerra JL, Camacho A, Holt K, Kouri JB, Ramírez JT, Yacaman MJ (2005) The bactericidal effect of silver nanoparticles. Nanotechnology 16:2346–2353

    CAS  PubMed  Google Scholar 

  • Mukherjee P et al (2001) Bioreduction of AuCl4− ions by the fungus, Verticillium sp. and surface trapping of the gold nanoparticles formed. Angew Chem Int Ed 40:3585–3588

    CAS  Google Scholar 

  • Nair B, Pradeep T (2002) Coalescence of nanoclusters and formation of submicron crystallites assisted by Lactobacillus strains. Cryst Growth Des 2:293–298

    CAS  Google Scholar 

  • Naraginti S, Sivakumar A (2014) Eco-friendly synthesis of silver and gold nanoparticles with enhanced bactericidal activity and study of silver catalyzed reduction of 4-nitrophenol. Spectrochim Acta A Mol Biomol Spectrosc 128:357–362

    CAS  PubMed  Google Scholar 

  • Nayak RR, Pradhan N, Behera D, Pradhan KM, Mishra S, Sukla LB, Mishra BK (2011) Green synthesis of silver nanoparticle by Penicillium purpurogenum NPMF: the process and optimization. J Nanopart Res 13:3129–3137

    CAS  Google Scholar 

  • NVKV Prasad T, Subba Rao Kambala V, Naidu R (2011) A critical review on biogenic silver nanoparticles and their antimicrobial activity. Curr Nanosci 7:531–544

    Google Scholar 

  • Parthiban E, Manivannan N, Ramanibai R, Mathivanan N (2019) Green synthesis of silver-nanoparticles from Annona reticulata leaves aqueous extract and its mosquito larvicidal and anti-microbial activity on human pathogens. Biotechnol Rep 21:e00297

    Google Scholar 

  • Pérez-de-Luque A, Rubiales D (2009) Nanotechnology for parasitic plant control. Pest Manag Sci 65:540–545

    PubMed  Google Scholar 

  • Prakash N, Soni N (2011) Factors affecting the geometry of silver nanoparticles synthesis in Chrysosporium tropicum and Fusarium oxysporum. Am J Biochem Biotechnol 2:112–121

    Google Scholar 

  • Raghupathi KR, Koodali RT, Manna AC (2011) Size-dependent bacterial growth inhibition and mechanism of antibacterial activity of zinc oxide nanoparticles. Langmuir 27:4020–4028

    CAS  PubMed  Google Scholar 

  • Rai M, Ingle A (2012) Role of nanotechnology in agriculture with special reference to management of insect pests. Appl Microbiol Biotechnol 94:287–293

    CAS  PubMed  Google Scholar 

  • Rai M, Gade A, Yadav A (2011) Biogenic nanoparticles: an introduction to what they are, how they are synthesized and their applications. In: Metal nanoparticles in microbiology. Springer, Berlin, pp 1–14

    Google Scholar 

  • Rónavári A et al (2018) Biosynthesized silver and gold nanoparticles are potent antimycotics against opportunistic pathogenic yeasts and dermatophytes. Int J Nanomedicine 13:695

    PubMed  PubMed Central  Google Scholar 

  • Sahadan MYB et al (2019) Phomopsidione nanoparticles coated contact lenses reduce microbial keratitis causing pathogens. Exp Eye Res 178:10–14

    Google Scholar 

  • Saravanan M, Nanda A (2010) Extracellular synthesis of silver bionanoparticles from Aspergillus clavatus and its antimicrobial activity against MRSA and MRSE. Colloids Surf B: Biointerfaces 77:214–218

    CAS  PubMed  Google Scholar 

  • Schröfel A, Kratošová G, Bohunická M, Dobročka E, Vávra I (2011) Biosynthesis of gold nanoparticles using diatoms—silica-gold and EPS-gold bionanocomposite formation. J Nanopart Res 13:3207–3216

    Google Scholar 

  • Shahverdi AR, Minaeian S, Shahverdi HR, Jamalifar H, Nohi A-A (2007) Rapid synthesis of silver nanoparticles using culture supernatants of Enterobacteria: a novel biological approach. Process Biochem 42:919–923

    CAS  Google Scholar 

  • Shaligram NS, Bule M, Bhambure R, Singhal RS, Singh SK, Szakacs G, Pandey A (2009) Biosynthesis of silver nanoparticles using aqueous extract from the compactin producing fungal strain. Process Biochem 44:939–943

    CAS  Google Scholar 

  • Shameli K, Ahmad MB, Jazayeri SD, Shabanzadeh P, Sangpour P, Jahangirian H, Gharayebi Y (2012) Investigation of antibacterial properties silver nanoparticles prepared via green method. Chem Cent J 6:73

    CAS  PubMed  PubMed Central  Google Scholar 

  • Singh D, Rathod V, Ninganagouda S, Hiremath J, Singh AK, Mathew J (2014) Optimization and characterization of silver nanoparticle by endophytic fungi Penicillium sp. isolated from Curcuma longa (turmeric) and application studies against MDR E. coli and S. aureus. Bioinorg Chem Appl 2014:1–8

    Google Scholar 

  • Slawson RM, Van Dyke MI, Lee H, Trevors JT (1992) Germanium and silver resistance, accumulation, and toxicity in microorganisms. Plasmid 27:72–79

    CAS  PubMed  Google Scholar 

  • Sondi I, Salopek-Sondi B (2004) Silver nanoparticles as antimicrobial agent: a case study on E. coli as a model for gram-negative bacteria. J Colloid Interface Sci 275:177–182

    CAS  PubMed  Google Scholar 

  • Sunkar S, Nachiyar CV (2013) Endophytic fungi mediated extracellular silver nanoparticles as effective antibacterial agents. Int J Pharm Pharm Sci 5:95–100

    CAS  Google Scholar 

  • Tamayo L et al (2014) Release of silver and copper nanoparticles from polyethylene nanocomposites and their penetration into Listeria monocytogenes. Mater Sci Eng C 40:24–31

    CAS  Google Scholar 

  • Varshney R, Bhadauria S, Gaur M, Pasricha R (2011) Copper nanoparticles synthesis from electroplating industry effluent. Nano Biomed Eng 3:115–119

    CAS  Google Scholar 

  • Waddington SR, Li X, Dixon J, Hyman G, De Vicente MC (2010) Getting the focus right: production constraints for six major food crops in Asian and African farming systems. Food Sec 2:27–48

    Google Scholar 

  • Wang C, Huang X, Deng W, Chang C, Hang R, Tang B (2014) A nano-silver composite based on the ion-exchange response for the intelligent antibacterial applications. Mater Sci Eng C 41:134–141

    CAS  Google Scholar 

  • Xie Y, He Y, Irwin PL, Jin T, Shi X (2011) Antibacterial activity and mechanism of action of zinc oxide nanoparticles against Campylobacter jejuni. Appl Environ Microbiol 77:2325–2331

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yang Y, Wang J, Xiu Z, Alvarez PJ (2013) Impacts of silver nanoparticles on cellular and transcriptional activity of nitrogen-cycling bacteria. Environ Toxicol Chem 32:1488–1494

    CAS  PubMed  Google Scholar 

  • Zhang H, Zhou H, Bai J, Li Y, Yang J, Ma Q, Yuanyuan Q (2019) Biosynthesis of selenium nanoparticles mediated by fungus Mariannaea sp. HJ and their characterization. Colloids Surf A Physicochem Eng Asp 571:9–16

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mansour Ghorbanpour .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Maroufpour, N., Mousavi, M., Abbasi, M., Ghorbanpour, M. (2020). Biogenic Nanoparticles as Novel Sustainable Approach for Plant Protection. In: Ghorbanpour, M., Bhargava, P., Varma, A., Choudhary, D. (eds) Biogenic Nano-Particles and their Use in Agro-ecosystems. Springer, Singapore. https://doi.org/10.1007/978-981-15-2985-6_9

Download citation

Publish with us

Policies and ethics