Skip to main content

Time-Domain Based Fault Detection in DC Grids

  • Chapter
  • First Online:
Fault Analysis and Protection System Design for DC Grids

Part of the book series: Power Systems ((POWSYS))

  • 592 Accesses

Abstract

In this chapter, we will look into the different approach of detecting the dc fault—time-domain methods. There are three different methods to be discussed: overcurrent, rate of change and capacitive discharge. The operation of each method is explained in detail. We obtain the fault signal from the simulation model and apply these methods to evaluate their performance. While they are effective in detecting dc fault, each has their own drawbacks. (1) Overcurrentmethod is only suitable for point-to-point configuration, (2) Rate of change method can be severely affected by signal noise, and (3) Capacitive discharge method requires more signals and computationally extensive.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 16.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Tang G, Xu Z, Zhou Y (2014) Impacts of three mmc-hvdc configurations on ac system stability under dc line faults. IEEE Trans Power Syst 29(6):3030–3040. https://doi.org/10.1109/TPWRS.2014.2315666

    Article  Google Scholar 

  2. Blond SL, Bertho R, Coury D, Vieira J (2016) Design of protection schemes for multi-terminal hvdc systems. Renew. Sustain. Energy Rev. 56:965–974. https://doi.org/10.1016/j.rser.2015.12.025, http://www.sciencedirect.com/science/article/pii/S1364032115014082

  3. Gao S, Song G, Ma Z, Ma X (2015) Novel pilot protection principle for high-voltage direct current transmission lines based on fault component current characteristics. IET Gener Transm Distrib 9(5):468–474. https://doi.org/10.1049/iet-gtd.2014.0313

    Article  Google Scholar 

  4. Monadi M, Koch-Ciobotaru C, Luna A, Candela JI, Rodriguez P (2014) A protection strategy for fault detection and location for multi-terminal mvdc distribution systems with renewable energy systems. In: 2014 international conference on renewable energy research and application (ICRERA), pp 496–501. https://doi.org/10.1109/ICRERA.2014.7016434

  5. Buigues G, Valverde V, Zamora I, Larruskain DM, Abarrategui O, Iturregi A (2015) Dc fault detection in vsc-based hvdc grids used for the integration of renewable energies. In: 2015 international conference on clean electrical power (ICCEP), pp 666–673. https://doi.org/10.1109/ICCEP.2015.7177591

  6. Hajian M, Zhang L, Jovcic D (2015) Dc transmission grid with low-speed protection using mechanical dc circuit breakers. IEEE Trans Power Deliv 30(3):1383–1391. https://doi.org/10.1109/TPWRD.2014.2371618

    Article  Google Scholar 

  7. Karthikeyan M, Yeap YM, Ukil A (2014) Simulation and analysis of faults in high voltage dc (hvdc) power transmission. In: IECON 2014 - 40th annual conference of the ieee industrial electronics society, pp 1786–1791. https://doi.org/10.1109/IECON.2014.7048744

  8. Farhadi M, Mohammed OA (2015) Event-based protection scheme for a multiterminal hybrid dc power system. IEEE Trans Smart Grid 6(4):1658–1669. https://doi.org/10.1109/TSG.2015.2396995

    Article  Google Scholar 

  9. Meghwani A, Srivastava SC, Chakrabarti S (2015) A new protection scheme for dc microgrid using line current derivative. In: 2015 IEEE power energy society general meeting, pp 1–5. https://doi.org/10.1109/PESGM.2015.7286041

  10. Tang L, Ooi B (2002) Protection of vsc-multi-terminal hvdc against dc faults. In: 2002 IEEE 33rd Annual IEEE Power Electronics Specialists Conference. Proceedings (Cat. No.02CH37289), vol 2, pp 719–724. https://doi.org/10.1109/PSEC.2002.1022539

  11. Tang L, Ooi BT (2007) Locating and isolating dc faults in multi-terminal dc systems. IEEE Trans Power Deliv 22(3):1877–1884. https://doi.org/10.1109/TPWRD.2007.899276

    Article  Google Scholar 

  12. Li R, Xu L, Yao L (2017) Dc fault detection and location in meshed multiterminal hvdc systems based on dc reactor voltage change rate. IEEE Trans Power Deliv 32(3):1516–1526. https://doi.org/10.1109/TPWRD.2016.2590501

    Article  Google Scholar 

  13. Sneath J, Rajapakse AD (2016) Fault detection and interruption in an earthed hvdc grid using rocov and hybrid dc breakers. IEEE Trans Power Deliv 31(3):973–981. https://doi.org/10.1109/TPWRD.2014.2364547

    Article  Google Scholar 

  14. Yang J, Fletcher JE, O’Reilly J (2010) Multiterminal dc wind farm collection grid internal fault analysis and protection design. IEEE Trans Power Deliv 25(4):2308–2318. https://doi.org/10.1109/TPWRD.2010.2044813

    Article  Google Scholar 

  15. Yang J, Fletcher JE, O’Reilly J (2012) Short-circuit and ground fault analyses and location in vsc-based dc network cables. IEEE Trans Ind Electron 59(10):3827–3837. https://doi.org/10.1109/TIE.2011.2162712

    Article  Google Scholar 

  16. Yeap YM, Geddada N, Ukil A (2018) Capacitive discharge based transient analysis with fault detection methodology in dc system. Int J Electr Power Energy Syst 97:127–137. https://doi.org/10.1016/j.ijepes.2017.10.023, http://www.sciencedirect.com/science/article/pii/S0142061516318774

  17. Vrana TK, Yang Y, Jovcic D, Dennetiere S, Jardini J, Saad H (2013) The cigre b4 dc grid test system. Electra 270:10–19

    Google Scholar 

  18. Ahmed N, Ängquist L, Mahmood S, Antonopoulos A, Harnefors L, Norrga S, Nee HP (2015) Efficient modeling of an mmc-based multiterminal dc system employing hybrid hvdc breakers. IEEE Trans Power Deliv 30(4):1792–1801. https://doi.org/10.1109/TPWRD.2015.2398825

    Article  Google Scholar 

  19. Harnefors L, Antonopoulos A, Norrga S, Angquist L, Nee HP (2013) Dynamic analysis of modular multilevel converters. IEEE Trans Ind Electron 60(7):2526–2537. https://doi.org/10.1109/TIE.2012.2194974

    Article  Google Scholar 

  20. Martinez-Rodrigo F, de Pablo S, de Lucas LCH (2015) Current control of a modular multilevel converter for hvdc applications. Renewable Energy 83:318–331. https://doi.org/10.1016/j.renene.2015.04.037, http://www.sciencedirect.com/science/article/pii/S0960148115003171

  21. Leterme W, Tielens P, Boeck SD, Hertem DV (2014) Overview of grounding and configuration options for meshed hvdc grids. IEEE Trans Power Deliv 29(6):2467–2475. https://doi.org/10.1109/TPWRD.2014.2331106

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abhisek Ukil .

5.1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (zip 308 KB)

Open Problems

Open Problems

5.1

For a given fault in multi-terminal dc system, we are able to see vastly different rate of change of current/voltage at each terminal, with that the faulted line can be identified. To what extent is the dc line too short that the difference becomes insignificant, resulting in detection failure?

5.2

In actual application, the fault current limiting (FCL) inductor will be employed along with the dc circuit breaker. Consequently, the rate of change of current will be far lower than what is seen in the analysis here which does not consider FCL inductor. Can all terminals adopt the same threshold?

5.3

For capacitive discharge method, what are the alternative to Pearson correlation coefficient measuring the similarity between dc current and capacitive discharge current?

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ukil, A., Yeap, Y.M., Satpathi, K. (2020). Time-Domain Based Fault Detection in DC Grids. In: Fault Analysis and Protection System Design for DC Grids. Power Systems. Springer, Singapore. https://doi.org/10.1007/978-981-15-2977-1_5

Download citation

  • DOI: https://doi.org/10.1007/978-981-15-2977-1_5

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-15-2976-4

  • Online ISBN: 978-981-15-2977-1

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics