Skip to main content

Abstract

Basic aspect: Each analgesic drug acts under its pharmacokinetics and pharmacodynamics. Pharmacokinetics is defined how each drug is affected by the body, whereas pharmacodynamics is defined how each drug affects the body.

Pharmacokinetics: A number of different models have been developed in order to simplify many processes that take place in the interaction between the body and the drugs. Although the multi-compartment model gives the best approximation to real processes of drugs inside the body, the monocompartmental models and especially two compartmental models are the most frequently used, as many factors are involved in using the multi-compartment model.

The various compartments are commonly referred to as the LADME scheme, liberation, absorption, distribution, metabolization, excretion. Based on this conception, various compartment models are proposed.

Pharmacodynamics: The study of the biochemical and physiological effects of drugs on the body metabolism. The majority of drugs either activates or inhibits normal physiological and/or biochemical processes in the body or inhibits vital processes of endo- or ectoparasites and microbial organisms. There are seven main actions: stimulating action, derepressing action, blocking/antagonizing action, exchanging/replacing substances, direct beneficial chemical reaction (radical scavenging), direct harmful chemical reaction (cytotoxicity).

Clinical Aspect: Nonsteroidal anti-inflammatory drugs (NSAIDs) should be considered as the first choice of treatment for superficial somatic pain. Adjuvant drugs may enhance the efficacy of analgesics or have analgesic activity of their own. NSAIDs inhibit the activity of cyclooxygenase isoenzymes COX-1 and COX-2 and, consequently, the synthesis of prostaglandins. Prostaglandins affect vascular tone and permeability, modulates inflammation, and influences pain perception. Acetylsalicylic acid (aspirin) is effective in the treatment of most types of mild-to-moderate pain. Ketorolac is available in both oral and parenteral formulations. Intolerance to NSAIDs is most likely to occur in individuals with a history of asthma, nasal polyps, and chronic urticarial states. Therapeutic doses of NSAIDs may cause nausea and vomiting and have been associated with abdominal pain, diarrhea, and dyspepsia. NSAIDs may also have side effects such as antithrombotic effect, hepatotoxicity, renal toxicity, cardiovascular toxicity, CNS side effects (tinnitus, dizziness, anxiety, drowsiness, confusion, disorientation, depression, and severe headaches), miscarriage in pregnancy, overdosage in children, drug–drug interactions.

There are three types of opioid receptors: mu (μ), delta (δ), and kappa (K). Opioid-receptor agonists produce analgesia by acting primarily at μ-receptors found in the brain, brainstem, spinal cord, and primary afferent sensory neurons. Morphine is the naturally found archetypic opioid analgesic. It is a naturally existing strong, full μ-receptor agonist. Oxycodone is a semi-synthetic strong full μ-receptor agonist. Codeine is a naturally occurring weak, full μ-receptor agonist. Tramadol is a weak, centrally acting μ-receptor agonist with norepinephrine and serotonin reuptake inhibiting activity. Tapentadol is a weak, centrally acting μ-receptor agonist/norepinephrine reuptake inhibitor.

Side effects and precautions of opioid-receptor agonists include intolerance, gastropathy, respiratory depression, CNS side effects (dizziness, drowsiness, sedation, and cognitive changes), tolerance, dependence, discourage (in pregnancy). Basic principle in prescription of analgesic drugs is reviewed in mild, moderate, or severe pain.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Gabrielsson J, Meibohm B, Weiner D. Pattern recognition in pharmacokinetic data analysis. AAPS J. 2016;18:47–63.

    CAS  PubMed  Google Scholar 

  2. Gabrielsson J, Weiner D. Non-compartmental analysis. Methods Mol Biol. 2012;929:377–89.

    CAS  PubMed  Google Scholar 

  3. Anderson BJ, van Lingen RA, Hansen TG, Lin YC, Holford NH. Acetaminophen developmental pharmacokinetics in premature neonates and infants: a pooled population analysis. Anesthesiology. 2002;96:1336–45.

    CAS  PubMed  Google Scholar 

  4. Haslund-Krog SS, Hertel S, Dalhoff K, et al. Interventional cohort study of prolonged use (>72 hours) of paracetamol in neonates: protocol of the PARASHUTE study. BMJ Paediatr Open. 2019;30(3):e000427.

    Google Scholar 

  5. Hughes MA, Glass PS, Jacobs JR. Context-sensitive half-time in multicompartment pharmacokinetic models for intravenous anesthetic drugs. Anesthesiology. 1992;76:334–41.

    CAS  PubMed  Google Scholar 

  6. Olofsen E, Dahan A. Population pharmacokinetics/pharmacodynamics of anesthetics. AAPS J. 2005;7:E383–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Heeremans EH, Proost JH, Eleveld DJ, et al. Population pharmacokinetics and pharmacodynamics in anesthesia, intensive care and pain medicine. Curr Opin Anaesthesiol. 2010;23:479–84.

    PubMed  Google Scholar 

  8. Martini C, Olofsen E, Yassen A, et al. Pharmacokinetic-pharmacodynamic modeling in acute and chronic pain: an overview of the recent literature. Expert Rev Clin Pharmacol. 2011;4:719–28.

    CAS  PubMed  Google Scholar 

  9. Lees P, Cunningham FM, Elliott J. Principles of pharmacodynamics and their applications in veterinary pharmacology. J Vet Pharmacol Ther. 2004;27:397–414.

    CAS  PubMed  Google Scholar 

  10. Carruthers SG. Duration of drug action. Am Fam Physician. 1980;21:119–26.

    CAS  PubMed  Google Scholar 

  11. Vauquelin G, Charlton SJ. Long-lasting target binding and rebinding as mechanisms to prolong in vivo drug action. Br J Pharmacol. 2010;161:488–508.

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Shen C, Meng Q. Prediction of cytochrome 450 mediated drug-drug interactions by three-dimensional cultured hepatocytes. Mini Rev Med Chem. 2012;12:1028–36.

    CAS  PubMed  Google Scholar 

  13. Drugs for pain. Treat Guidel Med Lett. 2013;11:31–42.

    Google Scholar 

  14. Manchikanti L, Buenaventura RM, Manchikanti KN, et al. Effectiveness of therapeutic lumbar transforaminal epidural steroid injections in managing lumbar spinal pain. Pain Physician. 2012;15:E199–245.

    PubMed  Google Scholar 

  15. Liu K, Liu P, Liu R, et al. Steroid for epidural injection in spinal stenosis: a systematic review and meta-analysis. Drug Des Devel Ther. 2015;9:707–16.

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Finniss DG, Benedetti F. Mechanisms of the placebo response and their impact on clinical trials and clinical practice. Pain. 2005;114:3–6.

    PubMed  Google Scholar 

  17. Puri KS, Suresh KR, Gogtay NJ, Thatte UM. Declaration of Helsinki, 2008: implications for stakeholders in research. J Postgrad Med. 2009;55:131–4.

    CAS  PubMed  Google Scholar 

  18. Geppetti P, Benemei S. Pain treatment with opioids: achieving the minimal effective and the minimal interacting dose. Clin Drug Investig. 2009;29(Suppl 1):3–16.

    CAS  PubMed  Google Scholar 

  19. Patrignani P, Patrono C. Cyclooxygenase inhibitors: from pharmacology to clinical read-outs. Biochim Biophys Acta. 2015;1851:422–32.

    CAS  PubMed  Google Scholar 

  20. Hayashi S, Ueno N, Murase A, Nakagawa Y, Takada J. Novel acid-type cyclooxygenase-2 inhibitors: design, synthesis, and structure-activity relationship for anti-inflammatory drug. Eur J Med Chem. 2012;50:179–95.

    CAS  PubMed  Google Scholar 

  21. Crofford LJ. COX-1 and COX-2 tissue expression: implications and predictions. J Rheumatol Suppl. 1997;49:15–9.

    CAS  PubMed  Google Scholar 

  22. Kawabata A. Prostaglandin E2 and pain--an update. Biol Pharm Bull. 2011;34:1170–3.

    CAS  PubMed  Google Scholar 

  23. Chen YF, Jobanputra P, Barton P, Bryan S, Fry-Smith A, Harris G, Taylor RS. Cyclooxygenase-2 selective non-steroidal anti-inflammatory drugs (etodolac, meloxicam, celecoxib, rofecoxib, etoricoxib, valdecoxib and lumiracoxib) for osteoarthritis and rheumatoid arthritis: a systematic review and economic evaluation. Health Technol Assess. 2008;12:1–278.

    PubMed  Google Scholar 

  24. Monk AB, Harrison JE, Worthington HV, Teague A. Pharmacological interventions for pain relief during orthodontic treatment. Cochrane Database Syst Rev. 2017;11:CD003976.

    PubMed  Google Scholar 

  25. Volpe M, Battistoni A, Gallo G, et al. Aspirin and the primary prevention of cardiovascular diseases: an approach based on individualized, integrated estimation of risk. High Blood Press Cardiovasc Prev. 2017;24:331–9.

    CAS  PubMed  Google Scholar 

  26. Chubak J, Kamineni A, Buist DSM, et al. Aspirin use for the prevention of colorectal cancer: an updated systematic evidence review for the U.S. In: Preventive services task force; 2015.

    Google Scholar 

  27. Vacha ME, Huang W, Mando-Vandrick J. The role of subcutaneous ketorolac for pain management. Hosp Pharm. 2015;50:108–12.

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Tirunagari SK, Derry S, Moore RA, McQuay HJ. Single dose oral etodolac for acute postoperative pain in adults. Cochrane Database Syst Rev. 2009;3:CD007357.

    Google Scholar 

  29. Bulley S, Derry S, Moore RA, McQuay HJ. Single dose oral rofecoxib for acute postoperative pain in adults. Cochrane Database Syst Rev. 2009;4:CD004604.

    Google Scholar 

  30. Derry S, Moore RA. Single dose oral celecoxib for acute postoperative pain in adults. Cochrane Database Syst Rev. 2013;10:CD004233.

    Google Scholar 

  31. Liew Z, Ritz B, Rebordosa C, Lee PC, Olsen J. Acetaminophen use during pregnancy, behavioral problems, and hyperkinetic disorders. JAMA Pediatr. 2014;168:313–20.

    PubMed  Google Scholar 

  32. Aminoshariae A, Khan A. Acetaminophen old drug, new issues. J Endod. 2015;41:588–93.

    PubMed  Google Scholar 

  33. Bunchorntavakul C, Reddy KR. Acetaminophen-related hepatotoxicity. Clin Liver Dis. 2013;17:587–607.

    PubMed  Google Scholar 

  34. Pinson GM, Beall JW, Kyle JA. A review of warfarin dosing with concurrent acetaminophen therapy. J Pharm Pract. 2013;26:518–21.

    PubMed  Google Scholar 

  35. Jiang J, Briedé JJ, Jennen DG, et al. Increased mitochondrial ROS formation by acetaminophen in human hepatic cells is associated with gene expression changes suggesting disruption of the mitochondrial electron transport chain. Toxicol Lett. 2015;234:139–50.

    CAS  PubMed  Google Scholar 

  36. Lancaster EM, Hiatt JR, Zarrinpar A. Acetaminophen hepatotoxicity: an updated review. Arch Toxicol. 2015;89:193–9.

    CAS  PubMed  Google Scholar 

  37. Omidi A, Riahinia N, Montazer Torbati MB, Behdani MA. Hepatoprotective effect of Crocus sativus (saffron) petals extract against acetaminophen toxicity in male Wistar rats. Avicenna J Phytomed. 2014;4:330–6.

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Abdel-Azeem AS, Hegazy AM, Ibrahim KS, Farrag AR, El-Sayed EM. Hepatoprotective, antioxidant, and ameliorative effects of ginger (Zingiber officinale Roscoe) and vitamin E in acetaminophen treated rats. J Diet Suppl. 2013;10:195–209.

    CAS  PubMed  Google Scholar 

  39. Lin M, Zhai X, Wang G, et al. Salvianolic acid B protects against acetaminophen hepatotoxicity by inducing Nrf2 and phase II detoxification gene expression via activation of the PI3K and PKC signaling pathways. J Pharmacol Sci. 2015;127:203–10.

    CAS  PubMed  Google Scholar 

  40. Benzon HT, Kendall MC, Katz JA, et al. Prescription patterns of pain medicine physicians. Pain Pract. 2013;13:440–50.

    PubMed  Google Scholar 

  41. Clement C, Scala-Bertola J, Javot L, et al. Misuse of acetaminophen in the management of dental pain. Pharmacoepidemiol Drug Saf. 2011;20:996–1000.

    PubMed  Google Scholar 

  42. Risser A, Donovan D, Heintzman J, Page T. NSAID prescribing precautions. Am Fam Physician. 2009;80(1):371–1378.

    Google Scholar 

  43. Szczeklik A, Nizankowska E, Duplaga M. Natural history of aspirin-induced asthma. AIANE investigators. European Network on Aspirin-Induced Asthma. Eur Respir J. 2000;16:432–6.

    CAS  PubMed  Google Scholar 

  44. Shin SW, Park BL, Chang H, et al. Exonic variants associated with development of aspirin exacerbated respiratory diseases. PLoS One. 2014;9:e111887.

    PubMed  PubMed Central  Google Scholar 

  45. Simon RA. Adverse respiratory reactions to aspirin and nonsteroidal anti-inflammatory drugs. Curr Allergy Asthma Rep. 2004;4:17–24.

    PubMed  Google Scholar 

  46. Inaba T, Ishikawa S, Miyoshi M, Kurahara K. Present status of gastrointestinal damage due to non-steroidal anti-inflammatory drugs (NSAIDs). Nihon Rinsho. 2013;71:1109–15.

    PubMed  Google Scholar 

  47. Ong CK, Lirk P, Tan CH, Seymour RA. An evidence-based update on nonsteroidal anti-inflammatory drugs. Clin Med Res. 2007;5:19–34.

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Tufan F. Importance of acute renal failure with ibuprofen. Clin Interv Aging. 2014;9:763.

    PubMed  PubMed Central  Google Scholar 

  49. Hamilton DA, Ernst CC, Kramer WG, et al. Pharmacokinetics of Diclofenac and Hydroxypropyl-β-Cyclodextrin (HPβCD) following Administration of Injectable HPβCD-Diclofenac in subjects with mild to moderate renal insufficiency or mild hepatic impairment. Clin Pharmacol Drug Dev. 2018;7:110–22.

    CAS  PubMed  Google Scholar 

  50. Waddington F, Naunton M, Thomas J. Paracetamol and analgesic nephropathy: are you kidneying me? Int Med Case Rep J. 2015;8:1–5.

    PubMed  Google Scholar 

  51. Ejaz P, Bhojani K, Joshi VR. NSAIDs and kidney. J Assoc Physicians India. 2004;52:632–40.

    CAS  PubMed  Google Scholar 

  52. Choi KH, Kim AJ, Son IJ, et al. Risk factors of drug interaction between warfarin and nonsteroidal anti-inflammatory drugs in practical setting. J Korean Med Sci. 2010;25:337–41.

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Aithal GP, Day CP. Nonsteroidal anti-inflammatory drug-induced hepatotoxicity. Clin Liver Dis. 2007;1(1):563–75.

    Google Scholar 

  54. Fong SY, Efferth TH, Zuo Z. Modulation of the pharmacokinetics, therapeutic and adverse effects of NSAIDs by Chinese herbal medicines. Expert Opin Drug Metab Toxicol. 2014;10:1711–39.

    CAS  PubMed  Google Scholar 

  55. Risser A, Donovan D, Heintzman J, Page T. NSAID prescribing precautions. Am Fam Physician. 2009;80:1371–8.

    PubMed  Google Scholar 

  56. Giovanni G, Giovanni P. Do non-steroidal anti-inflammatory drugs and COX-2 selective inhibitors have different renal effects? J Nephrol. 2002;15:480–8.

    PubMed  Google Scholar 

  57. Trelle S, Reichenbach S, Wandel S, et al. Cardiovascular safety of non-steroidal anti-inflammatory drugs: network meta-analysis. BMJ. 2011;342:c7086.

    PubMed  PubMed Central  Google Scholar 

  58. Chen GD, Stolzberg D, Lobarinas E, et al. Salicylate-induced cochlear impairments, cortical hyperactivity and re-tuning, and tinnitus. Hear Res. 2013;295:100–13.

    CAS  PubMed  Google Scholar 

  59. Rodriguez SC, Olguin AM, Miralles CP, Viladrich PF. Characteristics of meningitis caused by ibuprofen: report of 2 cases with recurrent episodes and review of the literature. Medicine(Baltimore). 2006;85:214–20.

    Google Scholar 

  60. Antonucci R, Zaffanello M, Puxeddu E, et al. Use of non-steroidal anti-inflammatory drugs in pregnancy: impact on the fetus and newborn. Curr Drug Metab. 2012;13:474–90.

    CAS  PubMed  Google Scholar 

  61. Ostensen ME, Skomsvoll JF. Anti-inflammatory pharmacotherapy during pregnancy. Expert Opin Pharmacother. 2004;5:571–80.

    CAS  PubMed  Google Scholar 

  62. Nalamachu S, Pergolizzi JV, Raffa RB, Lakkireddy DR, Taylor R Jr. Drug-drug interaction between NSAIDS and low-dose aspirin: a focus on cardiovascular and GI toxicity. Expert Opin Drug Saf. 2014;13:903–17.

    CAS  PubMed  Google Scholar 

  63. Houston MC. Nonsteroidal anti-inflammatory drugs and antihypertensives. Am J Med. 1991;90:42S–7S.

    CAS  PubMed  Google Scholar 

  64. Hersh EV, Pinto A, Moore PA. Adverse drug interactions involving common prescription and over-the-counter analgesic agents. Clin Ther. 2007;29(11):2477–97.

    CAS  PubMed  Google Scholar 

  65. Hernandez-Diaz S, Rodriguez LA. Association between nonsteroidal anti-inflammatory drugs and upper gastrointestinal tract bleeding/perforation: an overview of epidemiologic studies published in the 1990s. Arch Intern Med. 2000;160:2093–9.

    CAS  PubMed  Google Scholar 

  66. Meek IL, Vonkeman HE, Kasemier J, Movig KL, van de Laar MA. Interference of NSAIDs with the thrombocyte inhibitory effect of aspirin: a placebo-controlled, ex vivo, serial placebo-controlled serial crossover study. Eur J Clin Pharmacol. 2013;69:365–71.

    CAS  PubMed  Google Scholar 

  67. Awa K, Satoh H, Hori S, Sawada Y. Prediction of time-dependent interaction of aspirin with ibuprofen using a pharmacokinetic/pharmacodynamic model. J Clin Pharm Ther. 2012;37:469–74.

    CAS  PubMed  Google Scholar 

  68. Waldhoer M, Bartlett SE, Whistler JL. Opioid receptors. Annu Rev Biochem. 2004;73:953–90.

    CAS  PubMed  Google Scholar 

  69. Pasternak GW, Pan YX. Mu opioids and their receptors: evolution of a concept. Pharmacol Rev. 2013;65:1257–317.

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Samer CF, Lorenzini KI, Rollason V, Daali Y, Desmeules JA. Applications of CYP450 testing in the clinical setting. Mol Diagn Ther. 2013;17:165–84.

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Crews KR, Gaedigk A, Dunnenberger HM, et al. Clinical Pharmacogenetics implementation consortium guidelines for cytochrome P450 2D6 genotype and codeine therapy: 2014 update. Clin Pharmacol Ther. 2014;95:376–82.

    CAS  PubMed  PubMed Central  Google Scholar 

  72. Grond S, Sablotzki A. Clinical pharmacology of tramadol. Clin Pharmacokinet. 2004;43:879–923.

    CAS  PubMed  Google Scholar 

  73. Miotto K, Cho AK, Khalil MA, et al. Trends in tramadol: pharmacology, metabolism, and misuse. Anesth Analg. 2017;124:44–51.

    CAS  PubMed  Google Scholar 

  74. Desai B, Freeman E, Huang E, Hung A, Knapp E, Breunig IM, McPherson ML. Shaya FT: clinical value of tapentadol extended-release in painful diabetic peripheral neuropathy. Expert Rev Clin Pharmacol. 2014;7:203–9.

    CAS  PubMed  Google Scholar 

  75. Hartrick CT, Rozek RJ. Tapentadol in pain management: a μ-opioid receptor agonist and noradrenaline reuptake inhibitor. CNS Drugs. 2011;25:359–70.

    CAS  PubMed  Google Scholar 

  76. Vadivelu N, Huang Y, Mirante B, Jacoby M, Braveman FR, Hines RL, Sinatra R. Patient considerations in the use of tapentadol for moderate to severe pain. Drug Healthc Patient Saf. 2013;5(9):151–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Kunnumpurath S, Julien N, Kodumudi G, et al. Global supply and demand of opioids for pain management. Curr Pain Headache Rep. 2018;22(5):34.

    PubMed  Google Scholar 

  78. Faria J, Barbosa J, Moreira R, et al. Comparative pharmacology and toxicology of tramadol and tapentadol. Eur J Pain. 2018;22(5):827–44. https://doi.org/10.1002/ejp.1196.

    Article  CAS  PubMed  Google Scholar 

  79. McNicol E, Horowicz-Mehler N, Fisk RA, et al. Management of opioid side effects in cancer-related and chronic noncancer pain: a systematic review. J Pain. 2003;4:231–56.

    PubMed  Google Scholar 

  80. Benyamin R, Trescot AM, Datta S, et al. Opioid complications and side effects. Pain Physician. 2008;11(2 Suppl):S105–20.

    PubMed  Google Scholar 

  81. Cummings KC 3rd, Arnaut K. Case report: fentanyl-associated intraoperative anaphylaxis with pulmonary edema. Can J Anaesth. 2007;54:301–6.

    PubMed  Google Scholar 

  82. Kurz A, Sessler DI. Opioid-induced bowel dysfunction: pathophysiology and potential new therapies. Drugs. 2003;63:649–71.

    CAS  PubMed  Google Scholar 

  83. Bantel C, Tripathi SS, Molony D, et al. Prolonged-release oxycodone/naloxone reduces opioid-induced constipation and improves quality of life in laxative-refractory patients: results of an observational study. Clin Exp Gastroenterol. 2018;11:57–67.

    CAS  PubMed  PubMed Central  Google Scholar 

  84. Lalley PM. Opioidergic and dopaminergic modulation of respiration. Respir Physiol Neurobiol. 2008;164:160–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  85. Biesiada J, Chidambaran V, Wagner M, Zhang X, Martin LJ, Meller J, Sadhasivam S. Genetic risk signatures of opioid-induced respiratory depression following pediatric tonsillectomy. Pharmacogenomics. 2014;15:1749–62.

    CAS  PubMed  PubMed Central  Google Scholar 

  86. Dela Cruz AM, Trivedi MH. Opioid addiction screening tools for patients with chronic noncancer pain. Tex Med. 2015;111:61–5.

    Google Scholar 

  87. Yang Z, Wilsey B, Bohm M, Soulsby M, Roy K, Ritley D, Jones C, Melnikow J. Defining risk for prescription opioid overdose: pharmacy shopping and overlapping prescriptions among long-term opioid users in Medicaid. J Pain. 2015;16(5):445–53. pii: S1526-5900(15)00530-1

    Google Scholar 

  88. Whistler JL. Examining the role of mu opioid receptor endocytosis in the beneficial and side-effects of prolonged opioid use: from a symposium on new concepts in mu-opioid pharmacology. Drug Alcohol Depend. 2012;121:189–204.

    CAS  PubMed  PubMed Central  Google Scholar 

  89. Bird MF, Vardanyan RS, Hruby VJ, et al. Development and characterisation of novel fentanyl-delta opioid receptor antagonist based bivalent ligands. Br J Anaesth. 2015;114:646–56.

    CAS  PubMed  PubMed Central  Google Scholar 

  90. Sullivan MD, Howe CQ. Opioid therapy for chronic pain in the United States: promises and perils. Pain. 2013;154(Suppl 1):S94–100.

    PubMed  PubMed Central  Google Scholar 

  91. Nielsen S, Larance B, Lintzeris N, et al. Opioid agonist treatment for patients with dependence on prescription opioids. JAMA. 2017;317:967–8.

    PubMed  Google Scholar 

  92. Boyer EW. Management of opioid analgesic overdose. N Engl J Med. 2012;367:146–55.

    CAS  PubMed  PubMed Central  Google Scholar 

  93. Barrie J, May G. Towards evidence-based emergency medicine: best BETs from the Manchester Royal Infirmary. Diagnosis of drug overdose by rapid reversal with naloxone. Emerg Med J. 2006;23:874–5.

    PubMed  PubMed Central  Google Scholar 

  94. Patrick SW, Dudley J, Martin PR, et al. Prescription opioid epidemic and infant outcomes. Pediatrics. 2015;135:842–50.

    PubMed  PubMed Central  Google Scholar 

  95. Kraft WK. Buprenorphine in neonatal abstinence syndrome. Clin Pharmacol Ther. 2018;103:112–9.

    CAS  PubMed  Google Scholar 

  96. Fernandes K, Martins D, Juurlink D, et al. High-dose opioid prescribing and opioid-related hospitalization: a population-based study. PLoS One. 2016;11:e0167479.

    PubMed  PubMed Central  Google Scholar 

  97. Feng XQ, Zhu LL, Zhou Q. Opioid analgesics-related pharmacokinetic drug interactions: from the perspectives of evidence based on randomized controlled trials and clinical risk management. J Pain Res. 2017;10:1225–39.

    CAS  PubMed  PubMed Central  Google Scholar 

  98. Tan YM, Clewell H, Campbell J, Andersen M. Evaluating pharmacokinetic and pharmacodynamic interactions with computational models in supporting cumulative risk assessment. Int J Environ Res Public Health. 2011;8:1613–30.

    CAS  PubMed  PubMed Central  Google Scholar 

  99. Derry C, Derry S, Moore RA, McQuay HJ. Single dose oral ibuprofen for acute postoperative pain in adults. Cochrane Database Syst Rev. 2009;3:CD001548.

    Google Scholar 

  100. Koh W, Nguyen KP, Jahr JS. Intravenous non-opioid analgesia for peri- and postoperative pain management: a scientific review of intravenous acetaminophen and ibuprofen. Korean J Anesthesiol. 2015;68:3–12.

    CAS  PubMed  PubMed Central  Google Scholar 

  101. Hyllested M, Jones S, Pedersen JL, Kehlet H. Comparative effect of paracetamol, NSAIDs or their combination in postoperative pain management: a qualitative review. Br J Anaesth. 2002;88:199–214.

    CAS  PubMed  Google Scholar 

  102. Elia N, Lysakowski C, Tramer MR. Does multimodal analgesia with acetaminophen, nonsteroidal anti-inflammatory drugs, or selective cyclooxygenase-2 inhibitors and patient-controlled analgesia morphine offer advantages over morphine alone? Meta-analyses of randomized trials. Anesthesiology. 2005;1(03):1296–304.

    Google Scholar 

  103. Weil K, Hooper L, Afzal Z, Esposito M, Worthington HV, van Wijk AJ, Coulthard P. Paracetamol for pain relief after surgical removal of lower wisdom teeth. Cochrane Database Syst Rev. 2007;3:CD004487.

    Google Scholar 

  104. Moore RA, Derry S, McQuay HJ, Wiffen PJ. Single dose oral analgesics for acute postoperative pain in adults. Cochrane Database Syst Rev. 2011;9:CD008659.

    Google Scholar 

  105. Frampton C, Quinlan J. Evidence for the use of non-steroidal anti-inflammatory drugs for acute pain in the post anaesthesia care unit. J Perioper Pract. 2009;19:418–23.

    PubMed  Google Scholar 

  106. Toms L, McQuay HJ, Derry S, Moore RA. Single dose oral paracetamol (acetaminophen) for postoperative pain in adults. Cochrane Database Syst Rev. 2008;4:CD004602.

    Google Scholar 

  107. Wideman GL, Keffer M, Morris E, et al. Analgesic efficacy of a combination of hydrocodone with ibuprofen in postoperative pain. Clin Pharmacol Ther. 1999;65:66–76.

    CAS  PubMed  Google Scholar 

  108. Litkowski LJ, Christensen SE, Adamson DN, et al. Analgesic efficacy and tolerability of oxycodone 5 mg/ibuprofen 400 mg compared with those of oxycodone 5 mg/acetaminophen 325 mg and hydrocodone 7.5 mg/acetaminophen 500 mg in patients with moderate to severe postoperative pain: a randomized, double-blind, placebo-controlled, single-dose, parallel-group study in a dental pain model. Clin Ther. 2005;27(4):418–29.

    CAS  PubMed  Google Scholar 

  109. McClellan K, Scott LJ. Tramadol/paracetamol. Drugs. 2003;63:1079–86.

    CAS  PubMed  Google Scholar 

  110. Kleinert R, Lange C, Steup A, et al. Single dose analgesic efficacy of tapentadol in postsurgical dental pain: the results of a randomized, double-blind, placebo-controlled study. Anesth Analg. 2008;1(07):2048–55.

    Google Scholar 

  111. Finco G, Mura P, Musu M, et al. Long-term, prolonged-release oral tapentadol for the treatment of refractory chronic low back pain: a single-center, observational study. Minerva Med. 2018;109:259–65.

    PubMed  Google Scholar 

  112. McNaughton EC, Black RA, Weber SE, Butler SF. Assessing abuse potential of new analgesic medications following market release: an evaluation of internet discussion of tapentadol abuse. Pain Med. 2015;16:131–40.

    PubMed  Google Scholar 

  113. Butler SF, McNaughton EC, Black RA. Tapentadol abuse potential: a postmarketing evaluation using a sample of individuals evaluated for substance abuse treatment. Pain Med. 2015;16:119–30.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Koki Shimoji .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Shimoji, K., Fujioka, H. (2021). Pharmacology of Analgesics. In: Shimoji, K., Nader, A., Hamann, W. (eds) Chronic Pain Management in General and Hospital Practice. Springer, Singapore. https://doi.org/10.1007/978-981-15-2933-7_5

Download citation

  • DOI: https://doi.org/10.1007/978-981-15-2933-7_5

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-15-2932-0

  • Online ISBN: 978-981-15-2933-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics