Skip to main content

Long-Range Surface Plasmon Resonance-Induced Tunable Optical Bistability Using Silver Nano-layer at 1550 nm

  • Conference paper
  • First Online:
Optical and Wireless Technologies

Part of the book series: Lecture Notes in Electrical Engineering ((LNEE,volume 648))

Abstract

A proposal towards analytical implementation of optical bistability in a multilayered configuration comprising a ZnSe prism, 1-µm-thick PMMA-DR1 (Polymethylmethacrylate-Disperse red) as dielectric layer, nano-Ag: polymeric composite material as a Kerr polymer and a 15-nm thin film of silver which is sandwiched between the dielectric layer and the Kerr polymer at incident light wavelength of 1550 nm with a beam waist of 0.5 mm is presented at 25 °C temperature. Here, the nonlinear Kerr medium is having quadratic dependence on the long-range surface plasmon polariton mode resonance-enhanced local electric field amplitude. Through the larger nonlinear effect of the optimized design by employing high local field effect in the nonlinear regime, a low threshold optical bistability of about 1.6 MW/cm2 in the transmitted light intensity is achieved. The reported threshold is less compared to the previous efforts where the works were carried out with a wavelength other than the important telecommunication wavelength within the C-band. The design also provides tunability of bistable threshold by exploitation of Kerr effect-induced refractive index change through varying pump light intensity. The proposed system proffers potential applications in all-optical networks.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Wu C, Song G, Liu H, Cui L, Li Yu, Xiao J (2013) Optical bistability of surface plasmon polaritons in nonlinear Kretschmann configuration. J Mod Opt 60:190–196

    Article  MathSciNet  Google Scholar 

  2. Xiang Y, Dai X, Guo J, Wen S, Tang D (2014) Tunable optical bistability at the graphene-covered nonlinear interface. Appl Phys Lett 04:051108

    Google Scholar 

  3. Gibbs HM (1985) Optical bistability: controlling light with light. Academic Press

    Google Scholar 

  4. Abraham E, Smith SD (1982) Optical bistability and related devices. Rep Prog Phys 45:815–885

    Article  Google Scholar 

  5. Nihei H, Okamoto A (2001) Photonic crystal systems for high-speed optical memory device on an atomic scale. Proc SPIE 4416:470–473

    Article  Google Scholar 

  6. Assanto G, Wang Z, Hagan DJ, Van Stryland EW (1995) All-optical modulation via nonlinear cascading in type II second harmonic generation. Appl Phys Lett 67:2120–2122

    Article  Google Scholar 

  7. Wang XL, Jiang HQ, Chen JX, Wang P, Lu YH, Ming H (2011) Optical bistability effect in plasmonic racetrack resonator with high extinction ratio. Opt Express 19:19415–19421

    Article  Google Scholar 

  8. Wang GX, Lu H, Liu XM (2011) Optical bistability in metal-insulator metal plasmonic waveguide with nanodisk resonator containing Kerr nonlinear medium. Appl Opt 50:5287–5290

    Article  Google Scholar 

  9. Lin XS, Yan JH, Zheng YB, Wu LJ, Lan S (2011) Bistable switching in the lossy side-coupled plasmonic waveguide-cavity structures. Opt Express 19:9594–9599

    Article  Google Scholar 

  10. Lu H, Liu X, Wang L, Gong Y, Mao D (2011) Ultrafast all-optical switching in nanoplasmonic waveguide with Kerr nonlinear resonator. Opt Express 19:2910–2915

    Article  Google Scholar 

  11. Dai X, Jiang L, Xiang Y (2015) Tunable optical bistability of dielectric/nonlinear graphene/dielectric heterostructures. Opt Express 23:6497–6508

    Article  Google Scholar 

  12. Yanik MF, Fan SH, Soljacic M (2003) High-contrast all-optical bistable switching in photonic crystal microcavities. Appl Phys Lett 83:2739–2741

    Article  Google Scholar 

  13. Min C, Wang P, Chen C, Deng Y, Yonghua L, Ming H, Ning T, Zhou Y, Yang G (2008) All optical switching in subwavelength metallic grating structure containing nonlinear optical materials. Opt Lett 33:869–871

    Article  Google Scholar 

  14. Shen Y, Wang GP (2008) Optical bistability in metal gap waveguide nanocavities. Opt Express 16:8421–8426

    Article  Google Scholar 

  15. Litchinitser NM, Gabitov IR, Maimistov AI, Shalaev VM (2007) Effect of an optical negative index thin film on optical bistability. Opt Lett 32:151–153

    Article  Google Scholar 

  16. Litchinitser NM, Gabitov IR, Maimistov AI (2007) Optical bistability in a nonlinear optical coupler with a negative index channel. Phys Rev Lett 99:113902

    Article  Google Scholar 

  17. Chen P-Y, Farhat M, Alù A (2011) Bistable and self-tunable negative-index metamaterial at optical frequencies. Phys Rev Lett 106:105503

    Article  Google Scholar 

  18. Tuz VR, Prosvirnin SL, Kochetova LA (2010) Optical bistability involving planar metamaterials with broken structural symmetry. Phys Rev B 82:233402

    Article  Google Scholar 

  19. Hickernell RK, Sarid D (1986) Optical bistability using prism-coupled, long-range surface plasmons. J Opt Soc Am B 3:1059

    Article  Google Scholar 

  20. Montemayor VJ, Deck RT (1986) Optical bistability with the waveguide mode: the case of a finite-width incident beam. J Opt Soc Am B 3:1211

    Article  Google Scholar 

  21. Nenninger GG, Tobiska P, Homola J, Yee SS (2001) Long-range surface plasmons for high-resolution surface plasmon resonance sensors. Sens Actuators B Chem 74:145–151

    Article  Google Scholar 

  22. Berini P (2009) Long-range surface plasmon polaritons. Adv Opt Photonics 1:484–588

    Article  Google Scholar 

  23. Wysin GM, Simon HJ, Deck RT (1981) Optical bistability with surface plasmons. Opt Lett 6:30

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Kar, A., Goswami, N., Saha, A. (2020). Long-Range Surface Plasmon Resonance-Induced Tunable Optical Bistability Using Silver Nano-layer at 1550 nm. In: Janyani, V., Singh, G., Tiwari, M., Ismail, T. (eds) Optical and Wireless Technologies. Lecture Notes in Electrical Engineering, vol 648. Springer, Singapore. https://doi.org/10.1007/978-981-15-2926-9_3

Download citation

  • DOI: https://doi.org/10.1007/978-981-15-2926-9_3

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-15-2925-2

  • Online ISBN: 978-981-15-2926-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics