Skip to main content

A Simple Structural Design for Tuning of Bandgap and Window in 1D Photonic Crystal

  • Conference paper
  • First Online:
Optical and Wireless Technologies

Part of the book series: Lecture Notes in Electrical Engineering ((LNEE,volume 648))

  • 779 Accesses

Abstract

Tuning of bandgap in a photonic crystal is of immense importance for applications in various optical devices, such as optical filters and cavities. In this paper, a simple structural design is proposed to control both the bandgap and the bandgap window using a 1D photonic crystal. The method aims to change the bandgap by inserting a third intermediate layer of different refractive index between two layers of two fixed refractive indices in one period of the structure. The analysis is done using scattering matrix method (SMM) for a finite number of periods of the structure. The results show that there exists an optimum choice of the refractive index of the intermediate layer for which the bandgap reaches a minimum. In addition, it is also seen that refractive index of the intermediate layer can be chosen to tune the position of the bandgap window.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Yablonovitch E (1987) Inhibited spontaneous emission in solid-state physics and electronics. Phys Rev Lett 58(20):2059–2062

    Article  Google Scholar 

  2. Joannopoulos JD, Meade RD, Winn JN (1995) Photonic crystals: molding the flow of light. Princeton University Press, Princeton, NJ

    MATH  Google Scholar 

  3. Grüning U, Lehmann V, Ottow S, Busch K (1996) Macroporous silicon with a complete two-dimensional photonic band gap centered at 5 μm. Appl Phys Lett 68:747

    Article  Google Scholar 

  4. Qiu M, He S (2000) Optimal design of a two-dimensional photonic crystal of square lattice with a large complete two-dimensional bandgap. J Opt Soc Am B 17(6):1027–1030

    Article  Google Scholar 

  5. Noda S, Yamamoto N, Sasaki A (1996) New realization method of 3D photonic crystal in optical wavelength region. Jpn J Appl Phys 35(7B):L909–L912

    Article  Google Scholar 

  6. Noda S, Tomoda K, Yamamoto N, Chutinan A (2000) Full three-dimensional photonic bandgap crystals at near-infrared wavelengths. Science 289(5479):604

    Article  Google Scholar 

  7. Suh W, Yanik MF, Solgaard O, Fan S (2003) Displacement-sensitive photonic crystal structures based on guided resonance in photonic crystal slabs. Appl Phys Lett 82:1999

    Article  Google Scholar 

  8. Busch K, John S (1999) Liquid-crystal photonic-band-gap materials: the tunable electromagnetic vacuum. Phys Rev Lett 83(5):967

    Article  Google Scholar 

  9. Leonard SW, Mondia JP, van Driel HM, Toader O, John S, Busch K, Birner A, Gösele U, Lehmann V (2000) Tunable two-dimensional photonic crystals using liquid-crystal infiltration. Phys Rev B 61(4):R2389–R2392

    Article  Google Scholar 

  10. Lousse V, Fan S (2005) Tunable terahertz Bloch oscillations in chirped photonic crystals. Phys Rev B 72:075119

    Article  Google Scholar 

  11. Wu C-J, Chu B-H, Weng M-T, Lee H-L (2009) Enhancement of bandwidth in a chirped quarter-wave dielectric mirror. J Electromagn Waves Appl 23:437–447

    Article  Google Scholar 

  12. Wu C-J, Chu B-H, Weng M-T (2009) Analysis of optical reflection in a chirped distributed Bragg reflector. J Electromagn Waves Appl 23:129–138

    Article  Google Scholar 

  13. Wang X, Hu X, Li Y, Jia W, Xu C, Liu X, Zi J (2002) Enlargement of omnidirectional total reflection frequency range in one-dimensional photonic crystals by using photonic heterostructures. Appl Phys Lett 80:4291

    Article  Google Scholar 

  14. Srivastava R, Pati S, Ojha SP (2008) Enhancement of omnidirectional reflection in photonic crystal heterostructures. Prog Electromagn Res B 1:197–208

    Article  Google Scholar 

  15. Zhang D, Li Z, Hu W, Cheng B (1995) Broadband optical reflector—an application of light localization in one dimension. Appl Phys Lett 67:2431

    Article  Google Scholar 

  16. Guida G (2003) Numerical studies of disordered photonic crystals. Prog Electromagn Res 41:107–131

    Article  Google Scholar 

  17. Wu C-J, Rau Y-N, Han W-H (2010) Enhancement of photonic bandgap in a disordered quarter-wave dielectric photonic crystal. Prog Electromagn Res 100:27–36

    Article  Google Scholar 

  18. Sahu S, Ali J, Yupapin PP, Singh G, Grattan KTV (2018) High-Q and temperature stable photonic biosensor based on grating waveguides. Opt Quantum Electron 50:307

    Article  Google Scholar 

  19. Pham SV, Dijkstra M, Hollink AJF, Kauppinen LJ, de Ridder RM, Pollnau M, Lambeck PV, Hoekstra HJWM (2012) On-chip bulk-index concentration and direct, label-free protein sensing utilizing an optical grated-waveguide cavity. Sens Actuators B 174:602–608

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. R. Das .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Ghosh, A., Pal, A., Das, N.R. (2020). A Simple Structural Design for Tuning of Bandgap and Window in 1D Photonic Crystal. In: Janyani, V., Singh, G., Tiwari, M., Ismail, T. (eds) Optical and Wireless Technologies. Lecture Notes in Electrical Engineering, vol 648. Springer, Singapore. https://doi.org/10.1007/978-981-15-2926-9_15

Download citation

  • DOI: https://doi.org/10.1007/978-981-15-2926-9_15

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-15-2925-2

  • Online ISBN: 978-981-15-2926-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics