Skip to main content

Microbial Synthesis of Nanoparticles and Their Applications for Wastewater Treatment

  • Chapter
  • First Online:
Microbial Biotechnology: Basic Research and Applications

Abstract

For the last few decades, with the emergence of nanoscience and nanotechnology, nanoparticles gained enormous attention due to their high surface/volume ratio and other novel, unique, and remarkable properties. Traditionally, nanoparticles are fabricated by either chemical or physical approaches which not only utilize toxic chemicals but also are energy-intensive and consequently costly. The microbe-based synthesis of nanoparticles is biocompatible, economical, eco-friendly, and energy-intensive. Metallic and nonmetallic, metal oxide, and sulfide nanoparticles are synthesized by bacteria, virus, fungi, and algae. These nanoparticles act as an adsorbent for the remediation of water and wastewater pollutants clearly due to their physicochemical properties, nano size, controlled growth, and surface modification. The carbohydrates, proteins, and enzymes present in such microbes act as surfactant and capping agents which reduce the use of harmful chemical surfactants. Nanoparticles find application in the remediation of dyes, heavy metals, microbial contaminants, and pesticides, in the area of wastewater treatment. The widely used adsorbents are iron oxide nanoparticle, zinc oxide, alumina, and titanium dioxide. The present chapter highlights the synthesis of nanoparticles from bacteria, algae, fungi, and viruses and their application for wastewater treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abdal Dayem A, Hossain MK, Lee SB, Kim K, Saha SK, Yang G-M et al (2017) The role of reactive oxygen species (ROS) in the biological activities of metallic nanoparticles. Int J Mol Sci 18(1):120

    PubMed Central  Google Scholar 

  • Abdeen M, Sabry S, Ghozlan H, El-Gendy AA, Carpenter EE (2016) Microbial-physical synthesis of Fe and Fe3O4 magnetic nanoparticles using Aspergillus Niger YESM1 and supercritical condition of ethanol. J Nanomater 2016:1–7

    Google Scholar 

  • Abdel-Raouf N, Al-Homaidan AA, Ibraheem IBM (2012) Microalgae and wastewater treatment. Saudi J Biol Sci 19(3):257–275

    CAS  PubMed  PubMed Central  Google Scholar 

  • Agarwal P, Gupta R, Agarwal N (2019) Advances in synthesis and applications of microalgal nanoparticles for wastewater treatment. J Nanotechnol 2019:9

    Google Scholar 

  • Ali A, Zafar H, Zia M, Ul Haq I, Phull AR, Ali JS et al (2016) Synthesis, characterization, applications, and challenges of iron oxide nanoparticles. Nanotechnol Sci Appl 9:49

    CAS  PubMed  PubMed Central  Google Scholar 

  • Arakaki A, Nakazawa H, Nemoto M, Mori T, Matsunaga T (2008) Formation of magnetite by bacteria and its application. J R Soc Interface 6:977–999

    Google Scholar 

  • Archana Y, Theivasanthi T, Paul PK, Upadhyay KC (2015) Extracellular biosynthesis of silver nanoparticles from plant growth promoting Rhizobacteria Pseudomonas sp. Int J Curr Microbiol App Sci 4(8):11

    Google Scholar 

  • Azimi A, Azari A, Rezakazemi M, Ansarpour M (2017) Removal of heavy metals from industrial wastewaters: a review. ChemBioEng Rev 4:1–24

    Google Scholar 

  • Aziz N, Pandey R, Barman I, Prasad R (2016) Leveraging the attributes of Mucor hiemalis-derived silver nanoparticles for a synergistic broad-spectrum antimicrobial platform. Front Microbiol 7:1984. https://doi.org/10.3389/fmicb.2016.01984

  • Beveridge TJ, Murray RG (1980) Sites of metal deposition in the cell wall of Bacillus subtilis. J Bacteriol 141(2):876–887

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bhargava A, Jain N, Panwar J (2011) Synthesis and application of magnetic nanoparticles: a biological perspective, pp 117–155

    Google Scholar 

  • Bhateria R, Jain D (2016) Water quality assessment of lake water: a review. Sustain Water Res Manag 2(2):161–173

    Google Scholar 

  • Bhuyan T, Mishra K, Khanuja M, Prasad R, Varma A (2015) Biosynthesis of zinc oxide nanoparticles from Azadirachta indica for antibacterial and photocatalytic applications. Mater Sci Semicond Process 32:55–61. https://doi.org/10.1016/j.mssp.2014.12.053

  • Bilton M, Milne S, Brown A (2012) Comparison of hydrothermal and sol-gel synthesis of nano-particulate hydroxyapatite by characterisation at the bulk and particle level. Open J Inorg Non-metal Mater 2:1–10

    CAS  Google Scholar 

  • Blakemore R (1975) Magnetotactic bacteria. Science 190:377–379

    CAS  PubMed  Google Scholar 

  • Boroumand Moghaddam A, Namvar F, Moniri M, Tahir P, Azizi S, Mohamad R (2015) Nanoparticles biosynthesized by Fungi and yeast: a review of their preparation, properties, and medical applications. Molecules 20(9):16540–16565

    PubMed  PubMed Central  Google Scholar 

  • Brock TD, Gustafson J (1976) Ferric iron reduction by sulfur- and iron-oxidizing bacteria. Appl Environ Microbiol 32:567–571

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chang JH, Kang KH, Choi J, Jeong YK (2008) High efficiency protein separation with organosilane assembled silica coated magnetic nanoparticles. Superlattice Microstruct 44(4–5):442–448

    CAS  Google Scholar 

  • Chen D, Zhang X, Lee AF (2015) Synthetic strategies to nanostructured photocatalysts for CO2 reduction to solar fuels and chemicals. J Mater Chem A 3(28):14487–14516

    CAS  Google Scholar 

  • Chintamani RB, Salunkhe KS, Chavan MJ (2018) Emerging use of green synthesis silver nanoparticle: an updated review. Int J Pharmaceut Sci Res 9(10)

    Google Scholar 

  • Chircov C, Grumezescu AM, Holban AM (2019) Magnetic Particles for Advanced Molecular Diagnosis. Materials 12(13):2158

    CAS  PubMed Central  Google Scholar 

  • Das RK, Pachapur VL, Lonappan L, Naghdi M, Pulicharla R, Maiti S et al (2017) Biological synthesis of metallic nanoparticles: plants, animals and microbial aspects. Nanotechnol Environ Eng 2(1):18

    Google Scholar 

  • Das S, Chakraborty J, Chatterjee S, Kumar H (2018) Prospects of biosynthesized nanomaterials for the remediation of organic and inorganic environmental contaminants. Environ Sci Nano 5(12):2784–2808

    CAS  Google Scholar 

  • Dong H, Huang J, Koepsel RR, Ye P, Russell AJ, Matyjaszewski K (2011) Recyclable antibacterial magnetic nanoparticles grafted with quaternized poly(2-(dimethylamino)ethyl methacrylate) brushes. Biomacromolecules 12:1305–1311

    CAS  PubMed  Google Scholar 

  • Drewniak L, Sklodowska A (2013) Arsenic-transforming microbes and their role in biomining processes. Environ Sci Pollut Res 20(11):7728–7739

    CAS  Google Scholar 

  • Elcey CD, Kuruvilla AT, Thomas D (2014) Synthesis of magnetite nanoparticles from optimized iron reducing bacteria isolated from iron ore mining sites. Int J Curr Microbiol App Sci 3(8):408–417

    CAS  Google Scholar 

  • El-Saadony MT, El-Wafai N, El-Fattah HIA, Mahgoub S (2019) Biosynthesis, optimization and characterization of silver nanoparticles using a soil isolate of Bacillus pseudomycoides MT32 and their antifungal activity against some pathogenic Fungi. Adv Anim Vet Sci 7:238–249

    Google Scholar 

  • Fang X, Wang Y, Wang Z, Jiang Z, Dong M (2019) Microorganism assisted synthesized nanoparticles for catalytic applications. Energies 12(1):190

    CAS  Google Scholar 

  • Fijan S (2014) Microorganisms with claimed probiotic properties: an overview of recent literature. Int J Environ Res Public Health 11(5):4745–4767

    PubMed  PubMed Central  Google Scholar 

  • Fujishima A, Rao T, Tryk D (2000) Titanium dioxide photocatalysis. J Photochem Photobiol C: Photochem Rev 1:1–21

    CAS  Google Scholar 

  • Gahlawat G, Choudhury AR (2019) A review on the biosynthesis of metal and metal salt nanoparticles by microbes. RSC Adv 9(23):12944–12967

    CAS  Google Scholar 

  • Ganachari SV, Banapurmath NR, Salimath B, Yaradoddi JS, Shettar AS, Hunashyal AM et al (2017) Synthesis techniques for preparation of nanomaterials. In: Martínez LMT, Kharissova OV, Kharisov BI (eds) Handbook of ecomaterials. Springer, Cham, pp 1–21

    Google Scholar 

  • Gawande MB, Goswami A, Felpin F-X, Asefa T, Huang X, Silva R et al (2016) Cu and Cu-based nanoparticles: synthesis and applications in catalysis. Chem Rev 116(6):3722–3811

    CAS  PubMed  Google Scholar 

  • Gowramma B, Keerthi U, Rafi M, Muralidhara RD (2015) Biogenic silver nanoparticles production and characterization from native stain of Corynebacterium species and its antimicrobial activity. 3 Biotech 5(2):195–201

    CAS  PubMed  Google Scholar 

  • Gu H, Xu K, Xu C, Xu B (2006) Biofunctional magnetic nanoparticles for protein separation and pathogen detection. Chem Commun 9:941–949

    Google Scholar 

  • He S, Zhang Y, Guo Z, Gu N (2008) Biological synthesis of gold nanowires using extract of Rhodopseudomonas capsulata. Biotechnol Prog 24(2):476–480

    CAS  PubMed  Google Scholar 

  • Hoseinnejad M, Mahdi Jafari S, Katouzian I (2017) Inorganic and metal nanoparticles and their antimicrobial activity in food packaging applications. Crit Rev Microbiol 44:1–21

    Google Scholar 

  • Iravani S (2014) Bacteria in nanoparticle synthesis: current status and future prospects. Int Scholar Res Not 2014:359316

    Google Scholar 

  • Jayaseelan C, Rahuman AA, Kirthi AV, Marimuthu S, Santhoshkumar T, Bagavan A, Gaurav K et al (2012) Novel microbial route to synthesize ZnO nanoparticles using Aeromonas hydrophila and their activity against pathogenic bacteria and fungi. Spectrochim Acta A Mol Biomol Spectrosc 90:7

    Google Scholar 

  • Jiang J, Pi J, Cai J (2018) The advancing of zinc oxide nanoparticles for biomedical applications. Bioinorg Chem Appl 2018:18

    Google Scholar 

  • Kalpana VN, Kataru BAS, Sravani N, Vigneshwari T, Panneerselvam A, Rajeswari VD (2018) Biosynthesis of zinc oxide nanoparticles using culture filtrates of Aspergillus Niger: antimicrobial textiles and dye degradation studies. OpenNano 3:48–55

    Google Scholar 

  • Karthika D, Vadakkan K, Ashwini R, Shyamala A, Hemapriya J, Vijayanand S (2015) Prodigiosin mediated biosynthesis of silver nanoparticles (AgNPs) and evaluation of its antibacterial efficacy. Int J Curr Microbiol App Sci 4(11):7

    Google Scholar 

  • Kashefi K, Lovley DR (2000) Reduction of Fe(III), Mn(IV), and toxic metals at 100 degrees C by Pyrobaculum islandicum. Appl Environ Microbiol 66(3):1050–1056

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kashefi K, Tor J, Nevin K, Lovley D (2001) Reductive precipitation of gold by dissimilatory Fe(III)-reducing bacteria and archaea. Appl Environ Microbiol 67:3275–3279

    CAS  PubMed  PubMed Central  Google Scholar 

  • Katayama Y, Kuraishi H (1978) Characteristics of Thiobacillus thioparus and its thiocyanate assimilation. Can J Microbiol 24(7):804–810

    CAS  PubMed  Google Scholar 

  • Kessi J, Ramuz M, Wehrli E, Spycher M, Bachofen R (1999) Reduction of selenite and detoxification of elemental selenium by the phototrophic bacterium Rhodospirillum rubrum. Appl Environ Microbiol 65(11):4734–4740

    CAS  PubMed  PubMed Central  Google Scholar 

  • Khan R, Fulekar MH (2016) Biosynthesis of titanium dioxide nanoparticles using Bacillus amyloliquefaciens culture and enhancement of its photocatalytic activity for the degradation of a sulfonated textile dye reactive red 31. J Colloid Interface Sci 475:184

    CAS  PubMed  Google Scholar 

  • Khan SH, Pathak B, Fulekar MH (2016) Development of zinc oxide nanoparticle by sonochemical method and study of their physical and optical properties. In: AIP conference proceedings vol 1724(1), p 020108

    Google Scholar 

  • Khan S, Pathak B, Fulekar MH (2018) Synthesis, characterization and photocatalytic degradation of chlorpyrifos by novel Fe: ZnO nanocomposite material. Nanotechnol Environ Eng 3

    Google Scholar 

  • Khan I, Saeed K, Khan I (2019) Nanoparticles: Properties, applications and toxicities. Arab J Chem 12:908–931

    CAS  Google Scholar 

  • Khanna L, Verma NK, Tripathi SK (2018) Burgeoning tool of biomedical applications - Superparamagnetic nanoparticles. J Alloys Compd 752:332–353

    CAS  Google Scholar 

  • Kirthi AV, Rahuman AA, Rajakumar G, Marimuthu S, Santhoshkumar T, Jayaseelan C et al (2011a) Biosynthesis of titanium dioxide nanoparticles using bacterium Bacillus subtilis. Mater Lett 65(17–18):2745–2747

    CAS  Google Scholar 

  • Kirthi V, Rahuman A, Rajakumar G, Marimuthu S, Thirunavukkarasu S, Chidambaram J et al (2011b) Biosynthesis of titanium dioxide nanoparticles using bacterium Bacillus subtilis. Mater Lett 65:2745

    CAS  Google Scholar 

  • Koopi H, Buazar F (2018) A novel one-pot biosynthesis of pure alpha aluminum oxide nanoparticles using the macroalgae Sargassum ilicifolium: a green marine approach. Ceram Int 44(8):8940–8945

    CAS  Google Scholar 

  • Kulkarni RR, Shaiwale NS, Deobagkar DN, Deobagkar DD (2015) Synthesis and extracellular accumulation of silver nanoparticles by employing radiation-resistant Deinococcus radiodurans, their characterization, and determination of bioactivity. Int J Nanomedicine 10:963–974

    PubMed  PubMed Central  Google Scholar 

  • Kumar A, Ghosh A (2016) Biosynthesis and characterization of silver nanoparticles with bacterial isolate from GangeticAlluvial soil. Int J Biotechnol Biochem 12(2):7

    Google Scholar 

  • Kumari M, Giri VP, Pandey S, Kumar M, Katiyar R, Nautiyal CS et al (2019) An insight into the mechanism of antifungal activity of biogenic nanoparticles than their chemical counterparts. Pestic Biochem Physiol 157:45–52

    CAS  PubMed  Google Scholar 

  • Kundu D, Hazra C, Chatterjee A, Chaudhari A, Mishra S (2014) Extracellular biosynthesis of zinc oxide nanoparticles using Rhodococcus pyridinivorans NT2: multifunctional textile finishing, biosafety evaluation and in vitro drug delivery in colon carcinoma. J Photochem Photobiol B Biol 140:194–204

    CAS  Google Scholar 

  • Kuppusamy P, Yusoff MM, Maniam GP, Govindan N (2016) Biosynthesis of metallic nanoparticles using plant derivatives and their new avenues in pharmacological applications – an updated report. Saudi Pharmaceut J 24(4):473–484

    Google Scholar 

  • Lakshmi Das V, Thomas RT, Varghese R, Vasudevan S, Mathew JK, Radhakrishnan E (2014) Extracellular synthesis of silver nanoparticles by the Bacillus strain CS 11 isolated from industrialized area. 3 Biotech 4:121–126

    Google Scholar 

  • Lareen A, Burton F, Schäfer P (2016) Plant root-microbe communication in shaping root microbiomes. Plant Mol Biol 90(6):575–587

    CAS  PubMed  PubMed Central  Google Scholar 

  • Latiffah Z, Mah Kok F, Heng Mei H, Maziah Z, Baharuddin S (2010) Fusarium species isolated from mangrove soil in Kampung Pantai Acheh, Balik Pulau, Pulau Pinang, Malaysia. Trop Life Sci Res 21(1):21–29

    PubMed  PubMed Central  Google Scholar 

  • Ledakowicz S, Solecka M, Zylla R (2001) Biodegradation, decolourisation and detoxification of textile wastewater enhanced by advanced oxidation processes. J Biotechnol 89(2):175–184

    CAS  PubMed  Google Scholar 

  • Liang D-W, Yang Y-H, Xu W-W, Peng S, Lu S-F, Xiang Y (2014) Nonionic surfactant greatly enhances the reductive debromination of polybrominated diphenyl ethers by nanoscale zerovalent iron: mechanism and kinetics. J Hazard Mater 278:592–596

    CAS  PubMed  Google Scholar 

  • Liao H, Reitberger T (2013) Generation of free OHaq radicals by black light illumination of Degussa (Evonik) P25 TiO2 aqueous suspensions. Catalysts 3(2):418–443

    CAS  Google Scholar 

  • Lin P-C, Lin S, Wang PC, Sridhar R (2014) Techniques for physicochemical characterization of nanomaterials. Biotechnol Adv 32(4):711–726

    PubMed  Google Scholar 

  • Liu Y, Fu J, Chen P, Yu X, Yang P (2000) Studies on biosorption of Au3+ by Bacillus megaterium. Wei Sheng Wu Xue Bao 40(4):425–429

    CAS  PubMed  Google Scholar 

  • Liu A, Yang L, Verwegen M, Reardon D, Cornelissen JJLM (2017) Construction of core-shell hybrid nanoparticles templated by virus-like particles. RSC Adv 7(89):56328–56334

    CAS  Google Scholar 

  • Lovley D (2013) Dissimilatory Fe(III)- and Mn(IV)-reducing prokaryotes. In: Rosenberg E, EF DL, Lory S, Stackebrandt E, Thompson F (eds) The prokaryotes: prokaryotic physiology and biochemistry. Springer, Berlin, pp 287–308

    Google Scholar 

  • Lu H, Wang J, Stoller M, Wang T, Bao Y, Hao H (2016) An overview of Nanomaterials for water and wastewater treatment. Adv Mater Sci Eng 2016:10

    Google Scholar 

  • Luangpipat T, Beattie IR, Chisti Y, Haverkamp R (2011) Gold nanoparticles produced in a microalga. J Nanopart Res 13:6439–6445

    CAS  Google Scholar 

  • Mahdieh M, Zolanvari A, Azimee AS, Mahdieh M (2012) Green biosynthesis of silver nanoparticles by Spirulina platensis. Sci Iranica 19(3):926–929

    CAS  Google Scholar 

  • Malarkodi C, Chitra K, Rajeshkumar S, Gnanajobitha G, Paulkumar K, Vanaja M et al (2013) Novel eco-friendly synthesis of titanium. Der Pharm Sinica 4(3):8

    Google Scholar 

  • Malik P, Shankar R, Malik V, Sharma N, Mukherjee TK (2014) Green chemistry based benign routes for nanoparticle synthesis. J Nanopart 2014:14

    Google Scholar 

  • Marikani DK, Uma Sangareswari K, Suganya P, Ganesan R, Rajarathinam K (2016) Biobased approach for the synthesis, characterization, optimization and application of silica nanoparticles by fungus Fusarium oxysporum. Pharmaceut Biol Eval 2:223–233

    Google Scholar 

  • Mazrouaa AM, Mohamed MG, Fekry M (2019) Physical and magnetic properties of iron oxide nanoparticles with a different molar ratio of ferrous and ferric. Egypt J Pet 28(2):165–171

    Google Scholar 

  • Mazumdar H, Haloi N (2011) A study on biosynthesis of iron nanoparticles by Pleurotus sp. J Microbiol Biotechnol Res 1(3):39–49

    CAS  Google Scholar 

  • Meng X, Seton HC, Lu LT, Prior IA, Thanh NTK, Song B (2011) Magnetic CoPt nanoparticles as MRI contrast agent for transplanted neural stem cells detection. Nanoscale 3:977–984

    CAS  PubMed  Google Scholar 

  • Menon S, Shanmugam R, Kumar V (2017) A review on biogenic synthesis of gold nanoparticles, characterization, and its applications. Resource-Efficient Technol 3:516

    Google Scholar 

  • Mohammed B, Abdulsattar J, Adnan W (2016) Biosynthesis of iron oxide nanoparticles using Lactobacillus rhamnosus and its effect against pathogenic bacteria

    Google Scholar 

  • Mohd Yusof H, Mohamad R, Zaidan UH, Abdul Rahman NA (2019) Microbial synthesis of zinc oxide nanoparticles and their potential application as an antimicrobial agent and a feed supplement in animal industry: a review. J Anim Sci Biotechnol 10(1):57

    PubMed  PubMed Central  Google Scholar 

  • Mohseniazar M, Barin M, Zarredar H, Alizadeh S, Shanehbandi D (2011) Potential of microalgae and lactobacilli in biosynthesis of silver nanoparticles. Bioimpacts 1:149–152

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mourdikoudis S, Pallares RM, Thanh NTK (2018) Characterization techniques for nanoparticles: comparison and complementarity upon studying nanoparticle properties. Nanoscale 10(27):12871–12934

    CAS  PubMed  Google Scholar 

  • Nalenthiran P, Sambandam A, Kathiravan G, Kannaian N, Prakash U, Crawford S, Muthupandian AK (2009) Microbial synthesis of silver nanoparticles by Bacillus sp. J Nanopart Res 11:1811–1815. https://doi.org/10.1007/s11051-009-9621-2

  • Nangia Y, Wangoo N, Goyal N, Shekhawat G, Suri CR (2009) A novel bacterial isolate Stenotrophomonas maltophilia as living factory for synthesis of gold nanoparticles. Microb Cell Fact 8(1):39

    PubMed  PubMed Central  Google Scholar 

  • Nath D, Banerjee P (2013) Green nanotechnology – a new hope for medical biology. Environ Toxicol Pharmacol 36(3):997–1014

    CAS  PubMed  Google Scholar 

  • Niu Z, Kabisatpathy S, He J, Lee LA, Rong J, Yang L et al (2010) Synthesis and characterization of bionanoparticle—silica composites and mesoporous silica with large pores. Nano Res 2(6):474–483

    Google Scholar 

  • Ovais M, Khalil AT, Ayaz M, Ahmad I, Nethi SK, Mukherjee S (2018) Biosynthesis of metal nanoparticles via microbial enzymes: a mechanistic approach. Int J Mol Sci 19(12):4100

    PubMed Central  Google Scholar 

  • Park B, Dempsey BA (2005) Heterogeneous oxidation of Fe(II) on ferric oxide at neutral pH and a low partial pressure of O2. Environ Sci Technol 39(17):6494–6500

    CAS  PubMed  Google Scholar 

  • Patel V, Berthold D, Puranik P, Gantar M (2014) Screening of cyanobacteria and microalgae for their ability to synthesize silver nanoparticles with antibacterial activity. Biotechnol Rep (Amst) 5:112–119

    Google Scholar 

  • Patra JK, Baek K-H (2014) Green nanobiotechnology: factors affecting synthesis and characterization techniques. J Nanomater 2014:12

    Google Scholar 

  • Philipse AP, Maas D (2002) Magnetic colloids from magnetotactic bacteria: chain formation and colloidal stability. Langmuir 18(25):9977–9984

    CAS  Google Scholar 

  • Pineda-Vásquez TG, Casas-Botero AE, Ramírez-Carmona ME, Torres-Taborda MM, Soares CHL, Hotza D (2014) Biogeneration of silica Nanoparticles from Rice husk ash using Fusarium oxysporum in two different growth media. Ind Eng Chem Res 53(17):6959–6965

    Google Scholar 

  • Pourali P, Badiee SH, Manafi S, Noorani T, Rezaei A, Yahyaei B (2017) Biosynthesis of gold nanoparticles by two bacterial and fungal strains, Bacillus cereus and Fusarium oxysporum, and assessment and comparison of their nanotoxicity in vitro by direct and indirect assays. Electron J Biotechnol 29:86–93

    CAS  Google Scholar 

  • Prasad M, Lambe UP, Brar B, Shah I, Manimegalai J, Ranjan K et al (2018) Nanotherapeutics: an insight into healthcare and multi-dimensional applications in medical sector of the modern world. Biomed Pharmacother 97:1521–1537

    CAS  PubMed  Google Scholar 

  • Prasad R (2016) Advances and applications through fungal nanobiotechnology. Springer International Publishing, Cham. ISBN 978-3-319-42989-2. http://www.springer.com/us/book/9783319429892

  • Prasad R (2017) Fungal nanotechnology: applications in agriculture, industry, and medicine. Springer International Publishing, Cham. ISBN 978-3-319-68423-9. https://www.springer.com/gb/book/9783319684239

  • Prasad R, Kumar V, Kumar M, Shanquan W (2018) Fungal nanobionics: principles and applications. Springer Singapore, Singapore. ISBN 978-981-10-8666-3. https://www.springer.com/gb/book/9789811086656

  • Prasad R, Pandey R, Barman I (2016) Engineering tailored nanoparticles with microbes: quo vadis. WIREs Nanomed Nanobiotechnol 8:316–330. https://doi.org/10.1002/wnan.1363

  • Prema P, Iniya PA, Immanuel G (2016) Microbial mediated synthesis, characterization, antibacterial and synergistic effect of gold nanoparticles using Klebsiella pneumoniae (MTCC-4030). RSC Adv 6(6):4601–4607

    CAS  Google Scholar 

  • Puyol D, Batstone DJ, Hülsen T, Astals S, Peces M, Krömer JO (2017) Resource recovery from wastewater by biological technologies: opportunities, challenges, and prospects. Front Microbiol 7:2106

    PubMed  PubMed Central  Google Scholar 

  • Reed RB, Ladner DA, Higgins CP, Westerhoff P, Ranville JF (2012) Solubility of nano-zinc oxide in environmentally and biologically important matrices. Environ Toxicol Chem 31(1):93–99

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ruttkay-Nedecky B, Krystofova O, Nejdl L, Adam V (2017a) Nanoparticles based on essential metals and their phytotoxicity. J Nanobiotechnol 15(1):33

    Google Scholar 

  • Ruttkay-Nedecky B, Krystofova O, Nejdl L, Adam V (2017b) Nanoparticles based on essential metals and their phytotoxicity. J Nanobiotechnol 15(1):33

    Google Scholar 

  • Sabri MA, Umer A, Awan GH, Hassan MF, Hasnain A (2016) Selection of suitable biological method for the synthesis of silver nanoparticles. Nanomater Nanotechnol 6:29

    Google Scholar 

  • Sakaguchi T, Burgess JG, Matsunaga T (1993) Magnetite formation by a sulphate-reducing bacterium. Nature 365(6441):47–49

    CAS  Google Scholar 

  • Salvadori MR, Ando RA, Nascimento CAO, Corrêa B (2015) Extra and intracellular synthesis of nickel oxide nanoparticles mediated by dead fungal biomass. PLoS One 10(6):e0129799

    PubMed  PubMed Central  Google Scholar 

  • Sarker PK, Talukdar SA, Deb P, Sayem SA, Mohsina K (2013) Optimization and partial characterization of culture conditions for the production of alkaline protease from Bacillus licheniformis P003. Springerplus 2:506

    PubMed  PubMed Central  Google Scholar 

  • Sehgal N, Soni K, Gupta N, Kohli K (2018) Microorganism assisted synthesis of gold nanoparticles: a review. Asian J Biomed Pharmaceut Sci 8(64):–8

    Google Scholar 

  • Senthil M, Ramesh C (2012) Biogenic synthesis of Fe3O4 nanoparticles using Tridax Procumbens leaf extract and its antibacterial activity on Pseudomonas aeruginosa. Dig J Nanomater Biostruct 7(3):6

    Google Scholar 

  • Seqqat R, Blaney L, Quesada D, Kumar B, Cumbal L (2019) Nanoparticles for environment, engineering, and nanomedicine. J Nanotechnol 2019:2

    Google Scholar 

  • Shah M, Fawcett D, Sharma S, Tripathy S, Poinern G (2015a) Green synthesis of metallic nanoparticles via biological entities. Materials 8(11):7278–7308

    CAS  PubMed  PubMed Central  Google Scholar 

  • Shah M, Fawcett D, Sharma S, Tripathy SK, GEJ P (2015b) Green Synthesis of Metallic Nanoparticles via Biological Entities. Materials 8:7278–7308. (1996-1944 (Print))

    CAS  PubMed  PubMed Central  Google Scholar 

  • Shan G, Yan S, Tyagi R, Surampalli R (2009) Applications of nanomaterials in environmental science and engineering: review. Pract Period Hazard Toxic Radioact Waste Manage 13:110

    CAS  Google Scholar 

  • Shannon E, Abu-Ghannam N (2016) Antibacterial derivatives of marine algae: an overview of pharmacological mechanisms and applications. Mar Drugs 14(4):81

    PubMed Central  Google Scholar 

  • Sharma N, Pinnaka AK, Raje M, Ashish A, Bhattacharyya M, Choudhury AR (2012) Exploitation of marine bacteria for production of gold nanoparticles. Microb Cell Fact 11:86

    CAS  PubMed  PubMed Central  Google Scholar 

  • Show S, Tamang A, Chowdhury T, Mandal D, Chattopadhyay B (2015) Bacterial (BKH1) assisted silica nanoparticles from silica rich substrates: a facile and green approach for biotechnological applications. Colloids Surf B Biointerfaces 126:245–250

    CAS  PubMed  Google Scholar 

  • Siddiqi KS, Husen A (2016a) Fabrication of metal and metal oxide nanoparticles by algae and their toxic effects. Nanoscale Res Lett 11(1):363

    PubMed  PubMed Central  Google Scholar 

  • Siddiqi KS, Husen A (2016b) Fabrication of metal and metal oxide nanoparticles by algae and their toxic effects. Nanoscale Res Lett 11(1):363

    PubMed  PubMed Central  Google Scholar 

  • Siddiqi KS, Husen A, Rao RAK (2018) A review on biosynthesis of silver nanoparticles and their biocidal properties. J Nanobiotechnol 16(1):14

    Google Scholar 

  • Singh P, Kim Y-J, Zhang D, Yang D-C (2016a) Biological synthesis of nanoparticles from plants and microorganisms. Trends Biotechnol 34:588

    CAS  PubMed  Google Scholar 

  • Singh R, Kumar M, Mittal A, Mehta PK (2016b) Microbial enzymes: industrial progress in 21st century. 3 Biotech 6(2):174

    PubMed  PubMed Central  Google Scholar 

  • Singh J, Dutta T, Kim K-H, Rawat M, Samddar P, Kumar P (2018) ‘Green’ synthesis of metals and their oxide nanoparticles: applications for environmental remediation. J Nanobiotechnol 16(1):84

    CAS  Google Scholar 

  • Sintubin L, de Gusseme B, van der Meeren P, Pycke BF, Verstraete W, Boon N (2011) The antibacterial activity of biogenic silver and its mode of action. Appl Microbiol Biotechnol 91(1):10

    Google Scholar 

  • Skandalis N, Dimopoulou A, Georgopoulou A, Gallios N, Papadopoulos D, Tsipas D et al (2017) The effect of silver nanoparticles size, produced using plant extract from Arbutus unedo, on their antibacterial efficacy. Nano 7(7):178

    Google Scholar 

  • Srinath BS, Keerthiraj DN, Byrappa K (2017) Eco-friendly synthesis of gold nanoparticles by gold mine bacteria Brevibacillus formosus and their antibacterial and biocompatible studies. J Pharm 7:53–60

    CAS  Google Scholar 

  • Srivastava SK, Constanti M (2012) Room temperature biogenic synthesis of multiple nanoparticles (Ag, Pd, Fe, Rh, Ni, Ru, Pt, Co, and Li) by Pseudomonas aeruginosa SM1. J Nanopart Res 14:831

    Google Scholar 

  • Suman J, Neeraj S, Rahul J, Sushila K (2014) Microbial synthesis of silver nanoparticles by actinotalea sp. MTCC 10637. Am J Phytomed Clin Therapeut 2(8):7

    Google Scholar 

  • Sundaram PA, Augustine R, Kannan M (2012) Extracellular biosynthesis of iron oxide nanoparticles by Bacillus subtilis strains isolated from rhizosphere soil. Biotechnol Bioprocess Eng 17(4):835–840

    CAS  Google Scholar 

  • Syed B, Prasad NMN, Satish S (2016) Endogenic mediated synthesis of gold nanoparticles bearing bactericidal activity. J Microscopy Ultrastruct 4(3):162–166

    Google Scholar 

  • Tamer U, GündoÄŸdu Y, Boyacı Ä°H, Pekmez K (2009) Synthesis of magnetic core–shell Fe3O4–Au nanoparticle for biomolecule immobilization and detection. J Nanopart Res 12(4):1187–1196

    Google Scholar 

  • Taran M, Rad M, Alavi M (2018) Biosynthesis of TiO2 and ZnO nanoparticles by Halomonas elongata IBRC-M 10214 in different conditions of medium. Bioimpacts 8(2):9

    Google Scholar 

  • Tchounwou PB, Yedjou CG, Patlolla AK, Sutton DJ (2012) Heavy metal toxicity and the environment. Experientia Suppl 101:133–164

    Google Scholar 

  • Thomas R, Janardhanan A, Varghese RT, Soniya EV, Mathew J, Radhakrishnan EK (2015) Antibacterial properties of silver nanoparticles synthesized by marine Ochrobactrum sp. Braz J Microbiol 45(4):1221–1227

    PubMed  PubMed Central  Google Scholar 

  • Torabian P, Ghandehari F, Fatemi M (2018) Biosynthesis of iron oxide nanoparticles by cytoplasmic extracts of bacteria lactobacillus casei. Asian J Green Chem 1(2):181–188

    Google Scholar 

  • Wang L, Hu C, Shao L (2017) The antimicrobial activity of nanoparticles: present situation and prospects for the future. Int J Nanomed 12:1227–1249

    CAS  Google Scholar 

  • Wu Q, Sanford RA, Löffler FE (2006) Uranium(VI) reduction by Anaeromyxobacter dehalogenans strain 2CP-C. Appl Environ Microbiol 72(5):3608–3614

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wu B, Hussain M, Zhang W, Stadler M, Liu X, Xiang M (2019) Current insights into fungal species diversity and perspective on naming the environmental DNA sequences of fungi. Mycology 10(3):127–140

    PubMed  PubMed Central  Google Scholar 

  • Xie J, Chen K, Chen X (2009) Production, modification and bio-applications of magnetic nanoparticles gestated by magnetotactic bacteria. Nano Res 2(4):261–278

    CAS  PubMed  PubMed Central  Google Scholar 

  • Xue W, Liu Y, Zhang N, Yao Y, Ma P, Wen H et al (2018) Effects of core size and PEG coating layer of iron oxide nanoparticles on the distribution and metabolism in mice. Int J Nanomedicine 13:5719–5731

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yadav L, Tripathi RM, Prasad R, Pudake RN, Mittal J (2017) Antibacterial activity of cu nanoparticles against E. coli, Staphylococcus aureus and Pseudomonas aeruginosa. Nano Biomed Eng 9(1):9–14. https://doi.org/10.5101/nbe.v9i1.p9-14

  • Yadav VK, Fulekar MH (2018) Biogenic synthesis of maghemite nanoparticles (γ-Fe2O3) using Tridax leaf extract and its application for removal of fly ash heavy metals (Pb, Cd). Mater Today Proc 5(9, Part 3):20704–20710

    CAS  Google Scholar 

  • Yang J, Hou B, Wang J, Tian B, Bi J, Wang N et al (2019) Nanomaterials for the removal of heavy metals from wastewater. Nanomaterials 9(3):424

    CAS  PubMed Central  Google Scholar 

  • You H, Yang S, Ding B, Yang H (2013) Synthesis of colloidal metal and metal alloy nanoparticles for electrochemical energy applications. Chem Soc Rev 42(7):2880–2904

    CAS  PubMed  Google Scholar 

  • Zargar M, Hamid AA, Bakar FA, Shamsudin MN, Shameli K, Jahanshiri F et al (2011) Green synthesis and antibacterial effect of silver nanoparticles using Vitex negundo L. Molecules 16(8):6667–6676

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Yadav, V.K. et al. (2020). Microbial Synthesis of Nanoparticles and Their Applications for Wastewater Treatment. In: Singh, J., Vyas, A., Wang, S., Prasad, R. (eds) Microbial Biotechnology: Basic Research and Applications. Environmental and Microbial Biotechnology. Springer, Singapore. https://doi.org/10.1007/978-981-15-2817-0_7

Download citation

Publish with us

Policies and ethics