Skip to main content

Microwave-Assisted Pyrolysis of Biomass: An Overview

  • Chapter
  • First Online:
Production of Biofuels and Chemicals with Pyrolysis

Part of the book series: Biofuels and Biorefineries ((BIOBIO,volume 10))

  • 830 Accesses

Abstract

Biomass is considered as an important resource for the production of biofuels and bioproducts through conventional and advanced thermochemical and biochemical technologies. Among the thermochemical technologies, pyrolysis is a quick and efficient method to produce solid, liquid, and gaseous fuels from biomass. Microwave-assisted pyrolysis has many advantages over conventional pyrolysis methods. Volumetric heating obtained though the supply of microwaves leads to the rapid initiation of biomass pyrolysis. Microwave-assisted pyrolysis has high energy efficiency and feedstock with high moisture content can be directly pyrolyzed with this technique. Computer-aided modeling and simulation tools have been applied in the development of equipment and process for the microwave-assisted pyrolysis of biomass. The modeling of process has helped to elucidate the heat and mass transfer mechanism during the microwave-assisted pyrolysis, and the optimised models have been validated using laboratory-scale experiments. Microwave-assisted pyrolysis has been investigated in the production of fuels and biproducts from various agricultural and forest residues. The studies have shown that the composition of feedstock as well as the process conditions have significant effects on the yield and composition of pyrolysis products. Additionally, microwave-absorbers have been investigated to increase the efficiency of the microwave-assisted pyrolysis. There are many challenges to be addressed in the further development of microwave-assisted pyrolysis. The high capital cost and heterogeneity in the heating of complex materials like biomass are to be resolved. These challenges should be addressed to make this technique scalable and suitable for remote and under-developed locations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Huang YF, Chiueh PT, Kuan WH, Lo SL. Microwave pyrolysis of lignocellulosic biomass: heating performance and reaction kinetics. Energy. 2016;100:137–44. https://doi.org/10.1016/j.energy.2016.01.088.

    Article  CAS  Google Scholar 

  2. Kurian JK, Nair GR, Hussain A, Raghavan GSV. Feedstocks, logistics and pre-treatment processes for sustainable lignocellulosic biorefineries: a comprehensive review. Renew Sust Energ Rev. 2013;25:205–19. https://doi.org/10.1016/j.rser.2013.04.019.

    Article  CAS  Google Scholar 

  3. McKendry P. Energy production from biomass (part 2): conversion technologies. Bioresour Technol. 2002;83(1):47–54. https://doi.org/10.1016/S0960-8524(01)00119-5.

    Article  CAS  Google Scholar 

  4. Mohamed BA, Ellis N, Kim CS, Bi X. Microwave-assisted catalytic biomass pyrolysis: effects of catalyst mixtures. Appl Catal B Environ. 2019;253:226–34. https://doi.org/10.1016/j.apcatb.2019.04.058.

    Article  CAS  Google Scholar 

  5. White JE, Catallo WJ, Legendre BL. Biomass pyrolysis kinetics: a comparative critical review with relevant agricultural residue case studies. J Anal Appl Pyrolysis. 2011;91(1):1–33. https://doi.org/10.1016/j.jaap.2011.01.004.

    Article  CAS  Google Scholar 

  6. Dong Q, Xiong Y. Kinetics study on conventional microwave pyrolysis of moso bamboo. Bioresour Technol. 2014;171:127–31. https://doi.org/10.1016/j.biortech.2014.08.063.

    Article  CAS  Google Scholar 

  7. Ren S, Lei H, Wang L, Bu Q, Chen S, Wu J, Julson J, Ruan R. Biofuel production and kinetics analysis for microwave pyrolysis of Douglas fir sawdust pellet. J Anal Appl Pyrolysis. 2012;94:163–9. https://doi.org/10.1016/j.jaap.2011.12.004.

    Article  CAS  Google Scholar 

  8. Miura M, Kaga H, Sakurai A, Kakuchi T, Takahashi K. Rapid pyrolysis of wood block by microwave heating. J Anal Appl Pyrolysis. 2004;71(1):187–99. https://doi.org/10.1016/S0165-2370(03)00087-1.

    Article  CAS  Google Scholar 

  9. Lei H, Ren S, Julson J. The effects of reaction temperature and time and particle size of corn stover on microwave pyrolysis. Energy Fuels. 2009;23(6):3254–61. https://doi.org/10.1021/ef9000264.

    Article  CAS  Google Scholar 

  10. Huang YF, Chiueh PT, Kuan WH, Lo SL. Microwave pyrolysis of rice straw: products, mechanism, and kinetics. Bioresour Technol. 2013;142:620–4. https://doi.org/10.1016/j.biortech.2013.05.093.

    Article  CAS  Google Scholar 

  11. Zhang S, Dong Q, Zhang L, Xiong Y. High quality syngas production from microwave pyrolysis of rice husk with char-supported metallic catalysts. Bioresour Technol. 2015;191:17–23. https://doi.org/10.1016/j.biortech.2015.04.114.

    Article  CAS  Google Scholar 

  12. Kuan WH, Huang YF, Chang CC, Lo SL. Catalytic pyrolysis of sugarcane bagasse by using microwave heating. Bioresour Technol. 2013;146:324–9. https://doi.org/10.1016/j.biortech.2013.07.079.

    Article  CAS  Google Scholar 

  13. Zhang Z, Macquarrie DJ, De Bruyn M, Budarin VL, Hunt AJ, Gronnow MJ, Fan J, Shuttleworth PS, Clarka JH, Matharu AS. Low-temperature microwave-assisted pyrolysis of waste office paper and the application of bio-oil as an Al adhesive. Green Chem. 2015;17(1):260–70. https://doi.org/10.1039/C4GC00768A.

    Article  CAS  Google Scholar 

  14. Zhou R, Lei H, Julson J. The effects of pyrolytic conditions on microwave pyrolysis of prairie cordgrass and kinetics. J Anal Appl Pyrolysis. 2013;101:172–6. https://doi.org/10.1016/j.jaap.2013.01.013.

    Article  CAS  Google Scholar 

  15. Budarin VL, Clark JH, Lanigan BA, Shuttleworth P, Breeden SW, Wilson AJ, Macquarrie DJ, Milkowski K, Jones J, Bridgeman T, Ross A. The preparation of high-grade bio-oils through the controlled, low temperature microwave activation of wheat straw. Bioresour Technol. 2009;100(23):6064–8. https://doi.org/10.1016/j.biortech.2009.06.068.

    Article  CAS  Google Scholar 

  16. Huang YF, Chiueh PT, Lo SL. A review on microwave pyrolysis of lignocellulosic biomass. Sustain Environ Res. 2016;26:103–9. https://doi.org/10.1016/j.serj.2016.04.012.

    Article  CAS  Google Scholar 

  17. Chen MQ, Wang J, Zhang MX, Chen MG, Zhu XF, Min FF, Tan ZC. Catalytic effects of eight inorganic additives on pyrolysis of pine wood sawdust by microwave heating. J Anal Appl Pyrolysis. 2008;82(1):145–50. https://doi.org/10.1016/j.jaap.2008.03.001.

    Article  CAS  Google Scholar 

  18. Menezes RR, Souto PM, Kiminami RHGA. Microwave fast sintering of ceramic materials. In: Lakshmanan A, editor. Sintering of ceramics: new emerging techniques. Rijeka: InTech; 2012. p. 1–26. ISBN: 978-953-51-0017-1.

    Google Scholar 

  19. Mello PA, Barin JS, Guarnieri RA. Microwave heating. In: Flores ÉMDM, editor. Microwave-assisted sample preparation for trace element analysis. Waltham: Elsevier; 2014. p. 59–75. ISBN: 978-0-444-59420-4.

    Chapter  Google Scholar 

  20. Clark DE, Folz DC, West JK. Processing materials with microwave energy. Mater Sci Eng A. 2000;287(2):153–8. https://doi.org/10.1016/S0921-5093(00)00768-1.

    Article  Google Scholar 

  21. Ziherl S, Bajc J, Čepič M. Refraction and absorption of microwaves in wood. Eur J Phys. 2013;34:449. https://doi.org/10.1088/0143-0807/34/2/449.

    Article  Google Scholar 

  22. Leonelli C, Veronesi P. In: Fang Z, Smith Jr RL, Qi X, editors. Microwave reactors for chemical synthesis and biofuels preparation. Production of biofuels and chemicals with microwave, biofuels and biorefineries 3. Dordrecht: Springer; 2015. p. 17–40. https://doi.org/10.1007/978-94-017-9612-5_2.

    Chapter  Google Scholar 

  23. Dutta B. Development and optimization of pyrolysis biochar production systems towards advanced carbon management. PhD Dissertation, McGill University, Montreal; 2014. https://escholarship.mcgill.ca/concern/theses/9z903318r.

  24. Clark DE, Sutton WH. Microwave processing of materials. Annu Rev Mater Sci. 1996;26:299–331. https://doi.org/10.1146/annurev.ms.26.080196.001503.

    Article  CAS  Google Scholar 

  25. Halim SA, Swithenbank J. Simulation study of parameters influencing microwave heating of biomass. J Energy Inst. 2019;92(4):1191–212. https://doi.org/10.1016/j.joei.2018.05.010.

    Article  CAS  Google Scholar 

  26. American Chemical Society. Discharge produces hydrocarbons from coal. Chem Eng News. 1968;46(4):34–5. https://doi.org/10.1021/cen-v046n004.p034.

    Article  Google Scholar 

  27. Fu YC, Blaustein BD, Sharkey AG. Reaction of coal with nitrogen in a microwave discharge. Fuel. 1972;51(4):308–11. https://doi.org/10.1016/0016-2361(72)90009-9.

    Article  CAS  Google Scholar 

  28. Elsevier BV. Scopus; 2019. https://www.scopus.com. Accessed 16 Aug 2019.

  29. Dutta B, Dev SRS, Raghavan VGS. Finite element modeling of selective heating in microwave pyrolysis of lignocellulosic biomass. Prog Electromagnetics Res B. 2013;56:1–24. https://doi.org/10.2528/PIERB13082502.

    Article  Google Scholar 

  30. Huang YF, Chiueh PT, Kuan WH, Lo SL. Effects of lignocellulosic composition and microwave power level on the gaseous product of microwave pyrolysis. Energy. 2015;89:974–81. https://doi.org/10.1016/j.energy.2015.06.035.

    Article  CAS  Google Scholar 

  31. Lei H, Ren S, Wang L, Bu Q, Julson J, Holladay J, Ruan R. Microwave pyrolysis of distillers dried grain with solubles (DDGS) for biofuel production. Bioresour Technol. 2011;102(10):6208–13. https://doi.org/10.1016/j.biortech.2011.02.050.

    Article  CAS  Google Scholar 

  32. Domínguez A, Menéndez JA, Inguanzo M, Pís JJ. Investigations into the characteristics of oils produced from microwave pyrolysis of sewage sludge. Fuel Process Technol. 2005;86(9):1007–20. https://doi.org/10.1016/j.fuproc.2004.11.009.

    Article  CAS  Google Scholar 

  33. Domínguez A, Menéndez JA, Inguanzo M, Pís JJ. Production of bio-fuels by high temperature pyrolysis of sewage sludge using conventional and microwave heating. Bioresour Technol. 2006;97(10):1185–93. https://doi.org/10.1016/j.biortech.2005.05.011.

    Article  CAS  Google Scholar 

  34. Mathiarasu A, Pugazhvadivu M. Production of bio-oil from soapnut seed by microwave pyrolysis. National Conference on Recent Advances in Fuel Cells and Solar Energy, Karaikal, U.T of Puducherry, India. IOP Conference Series: Earth Environmental Science; 2019. https://doi.org/10.1088/1755-1315/312/1/012022.

  35. Xin S, Guo L, Lifang L, Wei T, Xu Q. Hydrogen-rich gas production from soybean straw via microwave pyrolysis under CO2 atmosphere. Energy Sources, Part A. 2019. https://doi.org/10.1080/15567036.2019.1676330.

  36. Kostas ET, Williams OSA, Duran-Jimenez G, Tapper AJ, Cooper M, Meehan R, Robinson JP. Microwave pyrolysis of Laminaria digitata to produce unique seaweed-derived bio-oils. Biomass Bioenergy. 2019;125:41–9. https://doi.org/10.1016/j.biombioe.2019.04.006.

    Article  CAS  Google Scholar 

  37. Zhao X, Wang M, Liu H, Li L, Ma C, Song Z. A microwave reactor for characterization of pyrolyzed biomass. Bioresour Technol. 2012;104:673–8. https://doi.org/10.1016/j.biortech.2011.09.137.

    Article  CAS  Google Scholar 

  38. Bu Q, Lei H, Ren S, Wang L, Zhang Q, Tang J, Ruan R. Production of phenols and biofuels by catalytic microwave pyrolysis of lignocellulosic biomass. Bioresour Technol. 2012;108:274–9. https://doi.org/10.1016/j.biortech.2011.12.125.

    Article  CAS  Google Scholar 

  39. Debalina B, Reddy RB, Vinu R. Production of carbon nanostructures in biochar, bio-oil and gases from bagasse via microwave assisted pyrolysis using Fe and Co as susceptors. J Anal Appl Pyrolysis. 2017;124:310–8. https://doi.org/10.1016/j.jaap.2017.01.018.

    Article  CAS  Google Scholar 

  40. Salema AA, Ani FN. Microwave induced pyrolysis of oil palm biomass. Bioresour Technol. 2011;102(3):3388–95. https://doi.org/10.1016/j.biortech.2010.09.115.

    Article  CAS  Google Scholar 

  41. Mushtaq F, Abdullah TAT, Mat R, Ani FN. Optimization and characterization of bio-oil produced by microwave assisted pyrolysis of oil palm shell waste biomass with microwave absorber. Bioresour Technol. 2015;190:442–50. https://doi.org/10.1016/j.biortech.2015.02.055.

    Article  CAS  Google Scholar 

  42. Dai L, Zeng Z, Tian X, Jiang L, Yu Z, Wu Q, Wang Y, Liu Y, Ruan R. Microwave-assisted catalytic pyrolysis of torrefied corn cob for phenol-rich bio-oil production over Fe modified bio-char catalyst. J Anal Appl Pyrolysis. 2019;143:104691. https://doi.org/10.1016/j.jaap.2019.104691.

    Article  CAS  Google Scholar 

  43. Santaniello R, Galgano A, Blasi CD. Coupling transport phenomena and tar cracking in the modeling of microwave-induced pyrolysis of wood. Fuel. 2012;96:355–73. https://doi.org/10.1016/j.fuel.2012.01.040.

    Article  CAS  Google Scholar 

  44. Arul M, Dineshkumar M, Ramanathan A. Aspen HYSYS simulation of biomass pyrolysis for the production. National Conference on Recent Advances in Fuel Cells and Solar Energy, Karaikal, U.T of Puducherry, India. IOP Conference Series: Earth and Environmental Science; 2019. https://doi.org/10.1088/1755-1315/312/1/012015.

  45. Dineshkumar M, Shrikar B, Ramanathan A. Development of computer aided modelling and optimization of microwave pyrolysis of biomass by using ASPEN plus. National Conference on Recent Advances in Fuel Cells and Solar Energy, Karaikal, U.T of Puducherry, India. IOP Conference Series: Earth and Environmental Science; 2019. https://doi.org/10.1088/1755-1315/312/1/012006.

  46. Parvez AM, Wu T, Afzal MT, Mareta S, He T, Zhai M. Conventional and microwave-assisted pyrolysis of gumwood: a comparison study using thermodynamic evaluation and hydrogen production. Fuel Process Technol. 2019;184:1–11. https://doi.org/10.1016/j.fuproc.2018.11.007.

    Article  CAS  Google Scholar 

  47. Zhao X, Zhang J, Song Z, Liu H, Li L, Ma C. Microwave pyrolysis of straw bale and energy balance analysis. J Anal Appl Pyrolysis. 2011;92:43–9. https://doi.org/10.1016/j.jaap.2011.04.004.

    Article  CAS  Google Scholar 

  48. Asomaning J, Haupt S, Chae M, Bressler DC. Recent developments in microwave-assisted thermal conversion of biomass for fuels and chemicals. Renew Sust Energ Rev. 2018;92:642–57. https://doi.org/10.1016/j.rser.2018.04.084.

    Article  CAS  Google Scholar 

  49. Beneroso D, Albero-Ortiz A, Monzó-Cabrera J, Díaz-Morcillo A, Arenillas A, Menéndez JA. Dielectric characterization of biodegradable wastes during pyrolysis. Fuel. 2016;172:146–52. https://doi.org/10.1016/j.fuel.2016.01.016.

    Article  CAS  Google Scholar 

  50. Beneroso D, Monti T, Kostas ET, Robinson J. Microwave pyrolysis of biomass for bio-oil production: scalable processing concepts. Chem Eng J. 2017;316:481–98. https://doi.org/10.1016/j.cej.2017.01.130.

    Article  CAS  Google Scholar 

  51. Iribarren D, Peters JF, Dufour J. Life cycle assessment of transportation fuels from biomass pyrolysis. Fuel. 2012;97:812–21. https://doi.org/10.1016/j.fuel.2012.02.053.

    Article  CAS  Google Scholar 

  52. Wang L, Lei H, Ruan R. Techno-economic analysis of microwave-assisted pyrolysis for production of biofuels. In: Fang Z, Smith Jr RL, Qi X, editors. Production of biofuels and chemicals with microwave. Dordrecht: Springer; 2015. p. 251–63. https://doi.org/10.1007/978-94-017-9612-5_12.

    Chapter  Google Scholar 

  53. Doucet J, Laviolette JP, Farag S, Chaouki J. Distributed microwave pyrolysis of domestic waste. Waste Biomass Valoriz. 2014;5:1–10. https://doi.org/10.1007/s12649-013-9216-0.

    Article  CAS  Google Scholar 

  54. Sun J, Wang W, Yue Q. Review on microwave-matter interaction fundamentals and efficient microwave-associated heating strategies. Materials. 2016;9(4):231. https://doi.org/10.3390/ma9040231.

    Article  CAS  Google Scholar 

Download references

Acknowledgement

The authors have acknowledged the support from The Natural Sciences and Engineering Research Council of Canada (NSERC) for the research on microwave-assisted pyrolysis of biomass.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. S. Vijaya Raghavan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kurian, J., Raghavan, G.S.V. (2020). Microwave-Assisted Pyrolysis of Biomass: An Overview. In: Fang, Z., Smith Jr, R.L., Xu, L. (eds) Production of Biofuels and Chemicals with Pyrolysis. Biofuels and Biorefineries, vol 10. Springer, Singapore. https://doi.org/10.1007/978-981-15-2732-6_7

Download citation

Publish with us

Policies and ethics